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Standard factorial designs may sometimes be inadequate for experiments that aim to estimate
a generalized linear model, for example, for describing a binary response in terms of several
variables. A method is proposed for finding exact designs for such experiments which uses
a criterion that allows for uncertainty in the link function, the linear predictor or the model
parameters, together with a design search. Designs are assessed and compared by simulation
of the distribution of efficiencies relative to locally optimal designs over a space of possible
models. Exact designs are investigated for two applications and their advantages over factorial
and central composite designs are demonstrated.
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1. INTRODUCTION
The most common type of planned experiment in scientific and industrial research is one in
which the design for the experiment is the “best” choice when the observations are adequately
described by a linear model. Experiments sometimes take place which use such designs when
this assumption is not justified. An important example is when a combination of values of the
explanatory variables, or treatment, is applied to each unit and a binary response is observed;
either a “success” or a “failure”. A design that is efficient under a linear model may then be
inadequate for obtaining accurate description, prediction and understanding of the system under
investigation, even when the experimental data are analyzed using an appropriate nonlinear
model, such as a generalized linear model. Particular circumstances when this problem may
arise include experiments in which the probability of success is near 0 or 1 for one or more of
the treatments, see Cox and Reid (2000, p.180).

The methods developed in this paper are investigated through two applications. The first is an
experiment to model how process variables affect the probability that a new product is formed
in a crystallography experiment. The experiment was to use 48 observations in an investigation
of four explanatory variables, namely, rate of agitation during mixing, volume of composition,
temperature and evaporation rate. Possible designs for such an experiment are discussed in
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Sections 3 and 5, where it is shown that the methods in this paper have advantages over the use
of standard factorial designs. A further example from our own consulting is an investigation
by a food manufacturing company, Dalgety plc, into the use of protected atmosphere packing
to give peeled potatoes a shelf-life of one week. This experiment studied the effect of three
quantitative variables, namely, vitamin concentration in the pre-packaging dip and the levels
of two gases in the packing atmosphere, on several binary responses including the presence or
absence of liquid in the pack after seven days. In Section 7, we demonstrate the advantage of
using a design obtained by the proposed methods compared with the central composite design
used by the experimenters. Further industrial experiments where a generalized linear model
described the response were discussed by Myers, Montgomery, and Vining (2002).

Research to date on the generation of designs tailored for generalized linear models has concen-
trated mainly on simple models with only one or two explanatory variables; see, for example,
Minkin (1987), Chaloner and Larntz (1989) and Sitter and Torsney (1995). For larger numbers
of variables, Torsney and Gunduz (2001) extended the work of Ford, Torsney, and Wu (1992)
to several variables but the results obtained do not lead to a general method for the generation
of designs. Where more than one variable may jointly affect a response, theoretical results are
scarce and have not resulted in generally applicable methods for the generation of optimal de-
signs. A flexible algorithmic approach is needed that allows a range of models to be considered,
together with an appropriate method of evaluating design performance.

The key difference between the design of experiments for linear and for nonlinear models is that,
for nonlinear models, initial estimates of the model parameters must be available from previous
studies or scientific understanding, in order to allow an optimal design to be constructed.
Three approaches to finding a design using such estimates are: Bayesian methods, described
by Chaloner and Larntz (1989), Chaloner and Verdinelli (1995) and Firth and Hinde (1997),
a sequential approach developed, for example, by Abdelbasit and Plackett (1983), Wu (1985)
and Minkin (1987), and the use of a minimax criterion, see, for example, Sitter (1992) and
King and Wong (2000). A review of design methods for generalized linear models was given by
Atkinson and Haines (1996).

The aim of this paper is to provide a method of obtaining exact designs, that is, designs for a
specified number of runs, for experiments in which there are several explanatory variables and
the response is described by a generalized linear model. (The approach may also be applied to
finding optimal continuous designs for which a General Equivalence Theorem can be established;
see Lewis and Woods (2006)). A particular goal of this paper is the generation of compromise

designs that are as robust as possible to uncertainty in aspects of the model. For linear models,
methods of obtaining such designs are already available, including those of Läuter (1974, 1976),
Cook and Nachtsheim (1982) and DuMouchel and Jones (1994). The goal of finding robust
designs differs from that of finding designs to discriminate between two or more models, for
example, through the T -optimality criterion of Atkinson and Fedorov (1975). We assess the
performance of a design under model uncertainty through comparison with locally optimal de-
signs across a range of model assumptions using simulation. We show that a factorial design can
sometimes be inadequate and discuss a design selection criterion that encompasses three types
of uncertainty in a generalized linear model. In practice, designs may have qualitative or quan-
titative variables or be subject to constraints on the combinations of variable values that can be
run; for example, when variables are chemical descriptors used to characterize solvents. To meet
these various requirements, the criterion has been implemented to find near-optimal designs
using simulated annealing (see, for example, Haines (1987)) and also within a modified Fedorov
exchange algorithm (Cook and Nachtsheim, 1980), where the first implementation provides a
more thorough search and applies when all the variables are quantitative. The approach requires
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less computational effort than a minimax or a fully Bayesian method, particularly when several
variables are to be investigated. The algorithms for finding and assessing the designs, writ-
ten in C++, are available from http://www.maths.soton.ac.uk/staff/woods/glm design,
together with supplementary material.

2. GENERALIZED LINEAR MODELS
Suppose an experiment involves f explanatory variables and a set of design points xj =
(x1j , . . . , xfj), for j = 1, . . . , n, where −1 ≤ xij ≤ 1 is the value of the ith variable at the
jth design point and the n design points are not necessarily distinct. The distinct design points
are called the treatments in the experiment or, alternatively, the support points of the design.
It is assumed that the units in the experiment are exchangeable, in the sense that the distri-
bution of the response to a treatment does not depend on the unit to which the treatment is
applied, and that one observation Yj is made on each unit. The observations are assumed to
be independent and described by a generalized linear model; see McCullagh and Nelder (1989)
or Myers et al. (2002). Such models have three components: (i) a distribution of the response,
(ii) a linear predictor, and (iii) a link function g(.) that relates the mean response E(Yj) = µj

to the linear predictor

η = Xβ , (1)

where β = (β0, . . . , βq−1)
′ is a vector of unknown parameters, X is an n × q matrix of known

functions of the f explanatory variables and η is an n × 1 vector with jth element ηj = g(µj).
For a given distribution for the response, a choice of link function is often available. If the
response variable at the jth design point has a Bernoulli distribution with success probability
πj = g−1(ηj), then a widely used link function is the logit or logistic link

g(πj) = log

(

πj

1 − πj

)

, for j = 1, . . . , n. (2)

Alternative link functions for Bernoulli data include the probit link g(πj) = Φ−1(πj), where
Φ−1 is the inverse of the cumulative distribution function of the standard normal distribution,
and the complementary log-log link g(πj) = log [− log(1 − πj)]. The methods described here
may be applied to the wide class of generalized linear models including, for example, a Poisson
response with log link function. They are demonstrated in this paper for binary and binomial
responses.

Suppose that a design d for a generalized linear model s = (g, η, β) consists of t treatments,
where the kth treatment is applied to mk units (k = 1, . . . , t) chosen at random. The assump-
tion of independent observations and exchangeability of units allows the number of successes
observed on the kth treatment to be modeled by a binomial(mk, pk) distribution, where pk is
the probability of success when the kth treatment is applied to a unit.

The maximum likelihood estimators of β (from (1)) have asymptotic variance-covariance matrix
that is the inverse of the Fisher information matrix

M(d, s) = X ′WX , (3)

where W = diag{w(xj)} and the weights w(xj) are determined by the model s and the design
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d. For Bernoulli data, the weights are

w(xj) =

(

dπj

dηj

)2

/{πj(1 − πj)} .

For example, w(xj) = πj(1 − πj) for the logistic link function.

For a generalized linear model, a locally D-optimal design minimizes the volume of the asymp-
totic confidence ellipsoid for the model parameters or, equivalently, maximizes the objective
function

φD(d, s) = ln |M(d, s)|1/qs , (4)

where qs is the number of parameters in s.

For a given model s, we define the local efficiency under D-optimality of a particular design d
relative to a locally optimal design dl as

eD(d, dl; s) = exp
{

φD(d, s) − φD(dl, s)
}

. (5)

We assess the performance of a design through the distribution of its local efficiency over a set
of models. The same approach may be applied to any nonlinear model.

3. PERFORMANCE OF FACTORIAL DESIGNS
When an initial screening experiment is being planned, a lack of detailed prior knowledge about
the generalized linear model may preclude the use of a locally optimal design. Experimenters
then often use two-level factorial or fractional factorial designs which are readily available and
are efficient under linear models. Such designs do not require initial parameter estimates but
their performance for parameter estimation and prediction is still determined by the unknown
values of the model parameters and varies across the parameter space. This property may lead
to poor performance in some regions of the parameter space as illustrated in this section.

Suppose that f variables are to be investigated in an initial study using a design d0 composed
of m replicates of a factorial or fractional factorial design. Suppose also that a first-order or
“main effects only” linear predictor is assumed for the jth design point given by

ηj = β0 +

f
∑

i=1

βixij , for j = 1, . . . , n . (6)

The response variable for the kth treatment is assumed to follow a binomial(m, pk) distribution,
where pk is related to the model parameters βi (i = 0, . . . , f) through the logit link.

In order to assess the performance of design d0 as β = (β0, . . . , βq−1)
′ takes values in a parameter

space B ⊂ Rq, where q = f + 1, the distribution of its local efficiency (5) is approximated as
follows:
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Table 1: Ranges of each model parameter for the parameter spaces Bj (j = 1, 2, 3)

Parameter space
Parameter B1 B2 B3

β0 [-3,3] [-1,1] [-3,3]
β1 [-2,4] [0,2] [4,10]
β2 [-3,3] [-1,1] [5,11]
β3 [0,6] [2,4] [-6,0]
β4 [-2.5,3.5] [-0.5,1.5] [-2.5,3.5]

(i) A sample of n0 parameter vectors, β, is drawn at random from B.

(ii) For each vector
(a) a design ds is found that maximizes φD(d, s), and
(b) the local efficiency eD(d0, ds; s) of the design d0 is calculated, from (5).

The above approach is now used to investigate the design d0 for f = 4 factors, composed of
m = 3 replicates of the 2f factorial treatments (±1, . . . ,±1), which is a possible design for the
crystallography application. The performances of this design are assessed and compared for
the three parameter spaces B1, B2 and B3, defined in Table 1, using a sample of n0 = 10, 000
parameter vectors. Here B2 has the same centroid as B1 but substantially smaller volume, and
B3 has the same volume as B1 but is centered further from (0, . . . , 0).

Figure 1 shows the distribution of the relative efficiency of d0 for each of the three spaces. For
B1, the design has median efficiency of 0.43 and lower quartile 0.31. The minimum efficiency
of almost 0 indicates that, for certain β values, very little information is available for the es-
timation of the parameters by maximum likelihood. The concern that a design may lead to
data from which maximum likelihood estimates cannot be obtained was addressed by Silva-
pulle (1981) and, for sequential design, by Wu (1985). It can be investigated by the approach
of Hamada and Tse (1996) or, more feasibly for large experiments, through simulation. For d0

and β located at the centroid of the space B1, the probability of the non-existence of maximum
likelihood estimates is approximately 0.77. There is therefore a high chance that an alternative
method would have to be used to analyze the data. The method of Firth (1993), based on pe-
nalized likelihood, guarantees finite parameter estimators with smaller bias than the maximum
likelihood estimators and the same asymptotic variance-covariance matrix. Hence maximiza-
tion of (4) remains an appropriate criterion for design choice for this analysis method. This
method is applied in Section 7 to the potato packing experiment.

The distribution of the efficiency of the factorial design varies according to the parameter
space. For example, the efficiency distribution of d0 for B2 compared with the corresponding
distribution for B1 has smaller spread, a higher median (0.48) and a larger minimum (0.16),
as shown in Figure 1. The worst performance of the factorial design is for B3 which has the
lowest minimum (0.003), median (0.07) and maximum (0.28) efficiency. These findings support
the view that factorial designs perform badly when a logit model is poorly approximated by a
linear model; this occurs in B3 when one or more parameters may have large values.
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Figure 1: Histograms of the efficiency of the 24 factorial design relative to locally optimal
designs for each of the parameter spaces B1, B2 and B3.

4. COMPROMISE DESIGN SELECTION CRITERIA
The above example demonstrates the need for designs that take account of uncertainty in the
values of the parameters in the linear predictor. Further uncertainty in a generalized linear
model may arise from the choice of link function or from the functional form of the linear
predictor; for example, whether first or second order is appropriate. We represent uncertainty
in the model s = (g, η, β) through sets G, (N |g) and (B |g, η) of possible link functions, linear
predictors and model parameters, respectively. This formulation allows η to depend on g, and
the model parameters β within the linear predictor to depend on both g and η. The sets may be
incorporated into a general criterion for design selection that maximizes an objective function
ΦI obtained by integrating or averaging a local objective function φ(d, s) across a model space
M to give

ΦI(d,M) =

∫

g

∫

η |g

∫

β |g,η

φ(d, s) dh1(β |g, η) dh2(η |g) dh3(g) , (7)

where M = {(g, η, β) : g ∈ G, η ∈ (N |g), β ∈ (B |g, η)} and h1, h2 and h3 are appropriate
cumulative distribution functions. In practice, G and (N |g) will often be finite sets and the
corresponding Stieltjes integrals in (7) are then evaluated as summations. In some applications
of the criterion, (B |g, η) is also a finite set, as illustrated in Section 6.

The maximization of (7) is a generalization of the average criterion of Fedorov and Hackl (1997)
which includes only uncertainty in β. Pettersson and Nyquist (2003) found optimal designs
under the average criterion for generalized linear models where only a fixed and finite choice
of possible values is allowed for each variable. The concept of compromise criteria can, in fact,
be traced back to Stigler (1971) who considered polynomial regression models. Further work
on this idea for linear models includes that of Atkinson and Cox (1974), Studden (1982), Cook
and Nachtsheim (1982) and Cook and Wong (1994).

The evaluation of ΦI for design selection is mathematically intractable and hence numerical
methods must be used. When designs involve several variables, the usual deterministic and
Monte Carlo methods (see, for example, Evans and Swartz (2000)) are too computationally
intensive for incorporation within a search algorithm. Hence we use a surrogate for (7), namely,

Φ(d,S) =
∑

s∈S

φ(d, s)p(s) , (8)
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where S = {(g, η, β) : g ∈ S1, η ∈ (S2|g), β ∈ (S3|g, η)}, for the finite sets
S1 ⊂ G, (S2|g) ⊂ (N|g) and (S3|g, η) ⊂ (B|g, η), and where p(s) is a probability mass function.
The set S is chosen to represent the model space M, as described in the following sections.
Similar criteria for uncertainty in linear models have also been considered by Läuter (1974, 1976)
and Dette and Studden (1995). When the approach is viewed from a Bayesian perspective as, for
example, by Zhou et al. (2003), it may exhibit the dichotomy discussed by Etzioni and Kadane
(1993) and, most recently, by Han and Chaloner (2004), that different prior distributions are
used for design and analysis.

Under D-optimality, that is when φ = φD from (4), it is not necessary to adjust (8) to scale for
the maximum obtainable value of φD achieved by locally optimal design ds for each s ∈ S. This
is because a design that maximizes (8), that is, maximizes ΦD(d,S) =

∑

s∈S p(s) ln |M(d, s)|/qs,
will also maximize

exp ΦD(d,S) =
∏

s∈S

|M(d, s)|p(s)/qs . (9)

Since M(ds, s) does not depend on d, the same choice of design will maximize the geometric

mean
∏

s∈S

[

|M(d, s)|p(s)/|M(ds, s)|
]1/qs

. The maximization of (9) requires less computation
than the alternative of maximizing a weighted sum of efficiencies

∑

s∈S

p(s)

[

|M(d, s)|

|M(ds, s)|

]1/qs

, (10)

as it does not require locally optimal designs to be obtained. We have found that the difference
between the performances of designs found via (9) and (10) is small when they are assessed using
the method and model spaces of Section 3. This situation is analogous to that of exact D- and
A-optimal designs for a linear statistical model, where the objective functions are respectively
geometric and arithmetic means of eigenvalues of the information matrix.

Throughout this paper, D-optimality is employed and a uniform probability mass function is
assumed for p(s). If certain generalized linear models were believed to be more appropriate
than others, then a distribution that assigns greater weight to those models would be used. A
design that maximizes (8) will be called a compromise design with respect to φ, S and p(s).
Such designs are obtained and compared with alternative designs where there is uncertainty
in the model parameters (Section 5) and in the form of the linear predictor and/or the link
function (Sections 6 and 7).

5. COMPROMISE ACROSS A PARAMETER SPACE
In the early stages of an investigation, a design is needed to detect those variables that have a
substantial effect on the response. A design might then be sought which performs well under a
model with a first-order linear predictor (6) and a fixed link function. This was the situation
for the crystallography example described in Section 1.

Suppose that the experimenters provide feasible, possibly wide, ranges of values for each model
parameter. These ranges identify a space B ⊂ Rq of plausible model vectors where, for simplic-
ity, we suppress the dependence of B on g and η. A design that achieves a compromise in perfor-
mance across B can be found by maximization of (8) with the set of models S = {g}×{η}×S3,
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Figure 2: Distributions of efficiencies of nine compromise designs for three parameter spaces
and three parameter sets.

where S3 is a finite set of parameter vectors within B that is chosen to represent B. Thus there
are three stages to finding a “parameter compromise” design: (i) definition of the parameter
space B, (ii) choice of a subset S3 of size n1, and (iii) search for the design.

We now apply this method to the four variable crystallography example to find designs com-
posed of three replicates of 16 design points under a logistic regression model, using the pa-
rameter spaces of Section 3 for illustration. We compare compromise designs found from the
following choices of S3:

S31: A 25−2 resolution III fraction, where the levels of factor i are the limits of the βi range,
augmented by the centroid of B to give n1 = 9 terms in (8).

S32: The centroid of B alone, that is, the locally optimal design for the center of the parameter
space; this is a degenerate compromise design with n1 = 1.

S33: A coverage, or U -optimal, set of n1 = 9 parameter vectors obtained from a candidate set
of 65 equally-spaced points across B (see Johnson, Moore, and Ylvisaker, 1990).

For each parameter space Bj , j = 1, 2, 3, a compromise design was found for each set of pa-
rameter values. The nine compromise designs, together with other designs discussed in this
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Table 2: Median and minimum local efficiencies for compromise designs found from three sets
of parameter vectors under parameter space Bj (j = 1, 2, 3)

Parameter
space

Parameter set
Fraction plus centroid Centroid Coverage

B1 (0.39,0.08) (0.40,0.14) (0.44,0.13)
B2 (0.80,0.59) (0.83,0.60) (0.84,0.63)
B3 (0.32,0.03) (0.35,0.08) (0.41,0.12)

paper, are available at the website. Each of the nine designs was assessed for the parameter
space for which it was constructed using the method of Section 3. The distributions of the
local efficiencies in Figure 2, having median and minimum efficiencies given in Table 2, indicate
that design performance varies with parameter space. The designs for B2, the space of smallest
volume, have the highest median and minimum efficiencies and the smallest variation in effi-
ciency for each parameter set. The designs perform better across B1, which has centroid closer
to (0, . . . , 0), than across B3.

For each space Bj , the design obtained from using the 25−2 fraction plus centroid has poorer
performance than the locally optimal design found from the centroid alone. This finding sug-
gests that the locally optimal designs for parameter values at the vertices of a parameter space
are poor representatives of the uncountably infinite number of locally optimal designs for the
entire space. The designs obtained from the coverage set S33 generally produced better perfor-
mances than those from S31 and S32, with the greatest improvement occurring for B3, which
has large volume and is centered furthest from (0, . . . , 0). Each compromise design has higher
minimum efficiency than that of the 24 design d0 of Section 3 for each of the three parameter
spaces, with the most dramatic improvements in the efficiency distribution obtained for designs
found for space B3 (see Figures 1 and 2). The minimum local efficiencies of the two designs
found from the centroid and from the coverage sets for B3 both exceed the median efficiency
achieved by design d0 for space B3.

From the above study and other examples, we recommend that, when the suggested ranges for
the βi are not large, then a reasonable choice of design for an initial experiment is a locally
optimal design found for the midpoints of the ranges of the parameter values. (The assessment
software can be used to gauge the meaning of ‘large’ for a particular application). When the
βi ranges are large, and particularly when some are centered away from zero, a compromise
design found from a coverage set may offer a better local efficiency distribution and will usually
perform better than a factorial design.

The two-dimensional projections in Figure 3 show the distinct combinations of variable values
for the compromise designs for B1 found from S31, the fraction plus centroid, and from S33, the
coverage set. Both designs have a greater number of distinct values for each variable than d0.
The design found from S33 has more points in the extremes of the region than the S31 design
and a better performance across B1 for (8) under D-optimality. The tendency for D-optimal
designs to have points mainly concentrated in the extremes of the design region is well known
for linear models.

In considering these, or any other, near-optimal exact designs, it should be borne in mind that
there may be many designs that have similar values for the objective function. In practice, a
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Figure 3: Two-dimensional projections for compromise designs for B1 found from the fraction
plus centroid (◦) and the coverage set (+).

design in which each variable has somewhat fewer distinct values may be preferred by exper-
imenters. Such a design may be obtained by replacing variable values that are close together
by their average to give a slightly sub-optimal design.

A further way of selecting a design for the example is to allow the algorithm to find the
best allocation d∗ of the 48 design points. This is a larger, more complex and more time-
consuming optimization problem. The speed of the search and the efficiency of the resulting
design are greatly improved by the use of a starting design dr composed of three replicates of
the corresponding compromise design for 16 runs, instead of a random starting design. The
gain in performance of d∗ compared with dr can be quite small. For example, when designs d∗

and dr are found for B1 using the coverage set, a comparison of their performances by evaluation
of the ratio h(dr, d∗, s) = exp

{

φD(dr, s) − φD(d∗, s)
}

, for a sample of 10,000 parameter vectors
from B1, gives a ratio greater than 1 for about 50% of the sample and first and third quartiles
of 0.93 and 1.04 respectively; in fact, dr has the best performance, relative to d∗, of any design
composed of u replicates of v runs such that uv = 48.

6. COMPROMISE ACROSS LINEAR PREDICTORS AND LINK FUNCTIONS
After initial experiments have identified the important variables and obtained information on
the model parameters and variable ranges to be explored, a design is often required that allows
more detailed modeling of the response. The design may need to take account of uncertainty
in the form of the linear predictor or the link function, or both, and can be found by further
application of the criterion discussed in Section 4. The approach is first explained by finding
designs for a simple example and assessing them against locally optimal designs. The effective-
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Table 3: Efficiencies calculated from (5) of a compromise design dc and four locally optimal
designs di under models si (i = 3, . . . , 6), where Comp denotes complementary log-log

Design
Model dc d3 d4 d5 d6

Probit No interaction s3 0.77 1.00 0.34 0.99 0.30
Interaction s4 0.80 0.00 1.00 0.00 0.97

Comp No interaction s5 0.64 0.99 0.24 1.00 0.11
Interaction s6 0.86 0.00 0.97 0.00 1.00

ness of the method is assessed and, in Section 7, its benefits are demonstrated for the potato
packing experiment.

Example: Suppose there are two explanatory variables and uncertainty in whether an inter-
action term should be included in the linear predictor. The set N then consists of

η(1) = β
(1)
0 + β

(1)
1 x1 + β

(1)
2 x2 (11)

and

η(2) = β
(2)
0 + β

(2)
1 x1 + β

(2)
2 x2 + β

(2)
3 x1x2 . (12)

Then
(

B |η(1)
)

= {β(1)} and
(

B |η(2)
)

= {β(2)}, where β(1) = (β
(1)
0 , β

(1)
1 , β

(1)
2 )′ and

β(2) = (β
(2)
0 , β

(2)
1 , β

(2)
2 , β

(2)
3 )′. Suppose that initial estimates of β(1) and β(2) are available and,

for simplicity, that a single logit link function g is considered. The model space M then consists
of only two models, so that S = M with elements s1 = (g, η(1), β(1)) and s2 = (g, η(2), β(2)).

A design dc that achieves a compromise in performance across the linear predictors is found
by maximizing the objective function (8) for S = M and its performance is assessed through
local efficiencies (5) for s1 and s2. For example, for designs with n = 6 points under mod-
els (11) and (12), if β(1) = (3.0, 1.6, 4.1)′ and β(2) = (1.2, 1.7, 5.4,−1.7)′, a design search finds
a compromise design with efficiencies 0.88 and 0.89 relative to d1 and d2, respectively.

Suppose that, in addition, there is uncertainty in whether the probit or complementary log-log
(comp) link is appropriate. There are then four models in S, namely, s3 = (probit, η(1), β(1)),
s4 = (probit, η(2), β(2)), s5 = (comp, η(1), β(1)), s6 = (comp, η(2), β(2)). Table 3 shows that
a compromise design enables estimation of all four models with efficiencies of at least 0.64.
The locally optimal designs for the two models with first-order linear predictors do not allow
models with an interaction to be fitted. The locally optimal designs for the models including the
interaction can be used to estimate all four models. However, they have poor efficiencies (0.11-
0.34) for estimating the first-order models. It is clear that the link function is less important
than the form of the linear predictor in the performance of the designs for these parameter
values.

The local efficiencies of the above compromise designs depend on the values of the model
parameters. Hence we assess the effectiveness of the method of finding designs across a large
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Table 4: Median and minimum values of the efficiency distributions for compromise designs dc

and locally optimal designs d1 and d2 for respective models s1 and s2 for various values of K

Efficiencies
K eD(dc, d1; s1) eD(d2, d1; s1) eD(dc, d2; s2) eD(d1, d2; s2)
0 (0.89, 0.48) (0.79, 0.03) (0.96, 0.50) (0.43, 0.00)

0.1 (0.89, 0.47) (0.78, 0.03) (0.96, 0.43) (0.40, 0.00)
0.3 (0.88, 0.48) (0.74, 0.03) (0.95, 0.43) (0.42, 0.00)
0.5 (0.86, 0.45) (0.69, 0.00) (0.94, 0.34) (0.38, 0.00)
0.75 (0.84, 0.34) (0.64, 0.00) (0.92, 0.42) (0.32, 0.00)

variety of values of β(1) and β(2) by the following simulation procedure, which is defined and
illustrated for compromise over s1 and s2. The steps are:

(i) A set of n0 values of β(2) is drawn from a specified distribution.

(ii) Values for β(1) are chosen to capture the fact that the removal of an interaction term from
a linear predictor is likely to change or perturb the values of the remaining parameters,
but not necessarily by large amounts. Hence, for each draw of β(2), the value of β(1) is
obtained as β

(1)
j = β

(2)
j + zj , where zj ∼ N(0, σ2

j0) (j = 0, 1, 2) and σj0 = |Kβ
(2)
j |, where

| · | denotes absolute value. This dependence of the variation in the perturbation on the
size of the realized coefficients in model s2 (see (12)) gives a higher chance of greater
perturbations on larger, than on smaller, coefficients.

(iii) For each choice of values of β(1) and β(2), a compromise design dc and locally optimal
designs d1 and d2 are each found by search and assessed through the local efficiencies
eD(di, dj; sj) for i ∈ {c, 1, 2}, j = 1, 2, i 6= j.

The above procedure is illustrated for values of β(2) drawn from an MN(0, σ2Iqs2
×qs2

) distribu-
tion, where qs2

= 4 is the number of terms in the larger model and σ2 = 6 is used to produce
fairly wide ranges of parameter values. Table 4 gives the median and minimum efficiencies for
the various compromise designs and locally optimal designs for models s1 and s2, for a choice
of values of K and n0 = 10, 000. It shows that the compromise designs are more robust to the
choice of model than the individual locally optimal designs, with median efficiencies of 0.84 -
0.89 for s1 and 0.92 - 0.96 for s2. (This is not surprising as the performance of locally optimal
designs is known to be sensitive to the choice of model). The locally optimal designs are also
more sensitive to the value of K; for example, for designs found under s1 (s2), the decrease in
the median efficiency for estimating model s2 (s1) between K = 0 and K = 0.75 is 0.15 (0.11);
the corresponding decrease for the compromise designs is only 0.05 (0.04).

7. POTATO PACKING EXAMPLE
The experimenters had carried out a small experiment using a 16 run central composite design
(CCD) composed of a full factorial design in the three variables listed in Section 1, six axial
points at ±1.2782 units from the origin and two center points; the data are available on the
website. They tried to fit a logistic regression model with a second-order linear predictor, but
found that finite maximum likelihood parameter estimators could not be obtained. However,
the penalized likelihood method of Firth (1993), using the bias reduced logistic regression
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package available for R (R Development Core Team, 2006), gives the parameter estimates and
standard errors shown in Table 5.

Usually, a pilot experiment would be used to obtain approximate ranges of the variables to be
explored and preliminary parameter estimates. In our investigation, we use the estimates given
in Table 5 to find a 16 run compromise design d†

c that incorporates uncertainty in whether
the form of the linear predictor is first-order (η(1)), first-order plus all two-variable interactions
(η(2)) or full second-order (η(3)); that is, compromising across si = (logit, η(i), β(i)), for i = 1, 2, 3.
Table 6 gives the efficiencies (5) relative to the locally optimal design di for model si, for d†

c and
for the central composite design da. The compromise design has corresponding local efficiencies
that are 36.7%, 111.8% and 44.6% larger than those for da. Its minimum efficiency (0.72) is,
in fact, greater than the maximum efficiency (0.60) of the CCD across the models; estimation
of the largest model (s3) is not possible for d1 and d2.

To investigate whether the advantage of a compromise design over the CCD is maintained across
a variety of parameter values, a simulation was performed for the models s1–s3, similar to that
of Section 6. For each of 10,000 iterations, a value of β(3) was drawn from a multivariate
normal distribution with a mean vector whose elements are the parameter estimates for s3,
and diagonal variance-covariance matrix containing the corresponding estimated variances, see
Table 5. Values for β(2) and β(1) were obtained using K = 0.3 in perturbations of β(3) and β(2),
respectively. The summary of the simulation results in Table 7 shows that, under each model si,
the compromise design performs better than the CCD, with the minimum efficiency exceeding
the median efficiency for the CCD under both s2 and s3. The results again demonstrate the
weakness of locally optimal designs under model uncertainty.

The advantage of the compromise design over the CCD is due to the use of prior information
on the parameters but this information may be inaccurate. For the potato packing example,
we can examine the impact of inaccuracies on the relative performance of d†

c compared with
the CCD by using the 10,000 simulated sets of parameter values (models) which, for s3, are
centered close to the parameter estimates from Table 5. For each of the 10,000 parameter
draws, the relative efficiency h(da, d

†
c, si), defined in Section 5, was calculated. It was found

Table 5: Potato packing experiment: penalized likelihood parameter estimates and standard
errors (S.E.) for the parameters in each of the models s1–s3

First-order s1 With interaction s2 Second-order s3

Term Estimate S.E. Estimate S.E. Estimate S.E.
Intercept -0.28 0.57 -1.44 1.13 -2.93 1.98

x1 0 0.67 0 0.88 0 0.73
x2 -0.76 0.72 -1.95 1.32 -0.52 0.76
x3 -1.15 0.75 -2.36 1.38 -0.79 0.71

x1x2 – – 0 1.05 0 0.86
x1x3 – – 0 0.99 0 0.86
x2x3 – – -2.34 1.47 -0.66 0.86
x2

1 – – – – 0.94 1.18
x2

2 – – – – 0.79 1.18
x2

3 – – – – 1.82 1.19
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Table 6: Local efficiencies of a compromise design d†
c, a central composite design da and locally

optimal design di under models si (i = 1, 2, 3) using parameter values from Table 5

Design
Model d†

c da d1 d2 d3

First-order s1 0.82 0.60 1.00 0.91 0.70
With interaction s2 0.72 0.34 0.37 1.00 0.29

Second-order s3 0.81 0.56 0.00 0.00 1.00

Table 7: Median and minimum local efficiencies for compromise designs dc, a central composite
design da and locally optimal designs di under model si (i = 1, 2, 3)

Local efficiencies
Model eD(dc, di; si) eD(da, di; si) eD(d1, di; si) eD(d2, di; si) eD(d3, di; si)

First-order s1 (0.68, 0.32) (0.41, 0.06) (1.00, 1.00) (0.66, 0.03) (0.48, 0.02)
With interaction s2 (0.69, 0.36) (0.28, 0.00) (0.00, 0.00) (1.00, 1.00) (0.32, 0.00)

Second-order s3 (0.73, 0.50) (0.31, 0.01) (0.00, 0.00) (0.00, 0.00) (1.00, 1.00)

that, under s1 and s2, design d†
c has a clear advantage with median values for h(da, d

†
c, si) of

0.68 and 0.62, respectively; while for the second-order model s3, the median value is 1.01.

8. DISCUSSION
A method of finding exact designs has been presented for use with generalized linear models
with several explanatory variables. The method takes account of uncertainties in some, or all, of
the model parameters, the form of the linear predictor and the link function. The advantages
of the proposed method over the application of standard designs have been demonstrated
through considering experiments in crystallography and food technology. An investment in
preliminary runs to obtain rough estimates of parameter values leads to a substantial increase
in the information gained from subsequent experiments compared with standard designs.

The computational effort needed to find the designs is largely determined by the number of
models over which a compromise is required, and the number of variables and runs in the
design. Both algorithms use the D-optimality criterion and include an updating formula for the
determinant which is an extension of that described for linear models by, for example, Fedorov
(1972, p. 162). For the potato packing example, a 16 run design compromising across three
models took 2.5 minutes to obtain, using simulated annealing on a desktop PC with a 3.2Ghz
Intel Pentium IV processor. The designs for the crystallography example which compromised
across nine models and were composed of, respectively, three replicates of 16 runs and two
replicates of 24 runs took approximately 7 and 13 minutes to obtain. The performance of the
annealing algorithm can be adjusted by varying the many tuning parameters, particularly the
number of iterations between changes in step size and temperature. This allows a trade-off to
be made between the thoroughness of the search and the time required. Guidance on the use
of the algorithms is provided on the website.
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