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Summary. A gap in Hironaka's proof [5] and [6, Introduction] of de-
singularization of surfaces based on the study of Newton polyhedra may be
filled. Indeed, in [5], only the case of a trivial residual extension is studied.

Introduction. In [5] the point at issue is reduced by Hironaka to
the study of a singular point xeX isolated in its Samuel stratum.
Then he makes the blowing-up Xf —»X with center x. The difficult
case is when the directrix, i.e., the vector space of translations leaving
stable the tangent cone to X at point x (as a scheme) is of dimension
2. Indeed, if the directrix is of dimension 1, the near points of the
blowing-up with center x are rational, while if it is of dimension 0,
there is none. We recall that a near point of X at x of a blowing-up
Xr —» X is a point xf e X' verifying the following equality between the
Hilbert-Samuel series of X and X' at x and x': HX{X) = H.,(X')/0 - T)d,
where d is the transcendence degree of the residue extension.

In the case of the directrix being of dimension 2, Hironaka proves
that an invariant denoted (β, ε, a) strictly decreases for the lexico-
graphical ordering at any very near rational point. Here we show that
at any very near algebraic non rational point the invariant β strictly
decreases. We recall that a near algebraic point is very near if its
directrix has the same dimension as that of x.

We will not try to say more precisely here how the theorem below
fits in with Hironaka's proof.

HYPOTHESES. Let R be a local regular excellent ring, SW its max-
imal ideal, k = R/ίΰt9 J an ideal of R. Let us suppose that X = Spec(jR//)
is of dimension 2 and that the closed point of X is isolated in its Samuel
stratum. Then we can choose a regular system of parameters (ylf ,
yr, uu Tit) and a base (/) = (/lf , fm) of J such that:

(a) (/i, •••,/») is a 0-normalized (^)-standard base of J [6, (2-20)
and (3-13)] with reference datum (yl9 - ,yr, D) [6, (2-20)], where D is
an F-set [6, (2-1) and (2-2)] such that: DaA{yu - , yrt uu u2, flf , / J =
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u, f) and dDf\dΔ{y, u, f) = 0 . We recall that Δ(y9 u, f) is the
Newton polyhedron defined by (y, u, / ) . See the definition and the ex-
plicit construction in [6, (3-1)].

(b) Let v(y, u, f) be the vertex of the smallest abscissa of Δ(y9 u, f)
and let β(y, u, f) be its ordinate. The (/) = (flt , / J is not v(y, u, /)-
solvable with respect to (u, y) [6, (3-9)].

(c) The base (/) is v(y, u, /)-normalized with respect to (u, y)
[6, (3-11)].

Let β(R9 J) = infβ(y, u, f) where (y, u, f) verifies (a), (b) and (c).
We know [6, (3-15)] that we can choose (y, u, f) satisfying (a), (b) and
(c) and:

(d) β(y, u, f) - β(R, J) .
(e) The base (/) is not ^-solvable with respect to (u, y), where

w is the vertex of the smallest abscissa of the side of slope —1 of
, /)

(f) The initial form of (/) with respect to the side of slope — 1 of
u, f) is normalized [6, end of the proof of (3-10)] with respect to

(u, y).

REMARK. We set that β(R, J) Φ 0. Indeed there is no permissible
smooth curve through x [3, (11-13)]. Therefore the abscissa of v(y, u, f)
is smaller than 1, which results in β(R9 J) Φ 0.

THEOREM. With these hypotheses, if we blow up the ideal SK, then
at any very near algebraic non rational point, the invariant β = β(Rf J)
strictly decreases.

The proof of the theorem consists of five lemmas in which we shall
always consider an algebraic non rational very near point x' e l ' of I
at x. We will follow the same procedure as in [5].

In Lemma 1 we construct a regular system of parameters (y[, ,
y'n uu Φ') a * the point x', with y] — yά\uly 1 <; j ^ r. The original point
here is the construction of φ'.

In Lemma 2 we compute the ordinate β(y', ulf Φ', /') of v(y'f ult Φ'f f),
the point of the smallest abscissa of the new polyhedron Δ(y', u19 Φ', /')
with /; - /,K ( ί ) , n{i) = vm(fτ).

Lemma 3 ends the proof of the theorem if (/') is not v{y\ uu Φ', / ' )-
solvable with respect to (ul9 Φ\ yf), [6, (3-9)].

In Lemma 4 we show that under the hypothesis denoted (**) we
can choose the regular system of parameters (y, uu u2) at x such that
we get the hypotheses (a) (b) (c) (d) (e) (f) and that of Lemma 3.

The basis (/') may be v(y'9 uί9 Φ', /')-solvable with respect to (ul9
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Φ' 9 yf) and the hypothesis (**) may not be verified. Then in Lemma 5
we dissolve the point v(y'9 ul9 Φ', / ' ) . Then the coordinates of the ver-
tex with the smallest abscissa of the new polyhedron are not both
integer. So this new vertex is not solvable. This brings the proof
home in this particular and last case.

Construction of the parameters. The directrix being of dimension
2, we have grm(R/J)τeά = k[Ul9 U2], where Ui — image of ut in Wl/W.
So the reduced exceptional divisor £ of Γ - > I is a protective line.
A non rational point xf e E corresponds to an irreducible unitary homo-
geneous polynomial of k[Uί9 U2]:

Φ ( U l 9 U 2 ) = U * + a 1 U 1

d - 1 U 2 + + a d U 2

d

 9 a d Φ 0 , d > l .

Furthermore k(Xr) Φ k(X), so x' belongs to the open afϊine set Z2

of the transform Z* of Z = Spec(i2), such that Z'2 = Spec(i2[?/ί, , y'rf u'2]/
(Vj — UMS, u2 — Uiv£i), 1 ̂  3 ̂  r. The ideal of Ef)Z2' in Z2 is generated
by (ul9 y[9 , y9r) and EnZζ = Spec(k[uί]). The ideal of x' in E Π Z2 is
generated by Φ(l, u2) and the residue field is k(xr) — k[l, u'2]/Φ(l, u2),
which we denote by k\ [3, (Π-l-4)].

LEMMA 1. Let us choose a coefficient set k of k in R. If aek we
denote άeίc the coefficient whose image in i?/SK is a. If F(Uly U2) =
^ΣjFijUίUi ek[Ulf U2] is homogeneous of degree n, we denote F —
ΣFijuiuieR. Then F' = F\ul belongs to R' = Oz,,x,. The image of F'
in the function ring k[uf

2] of' EPιZ2 is F(l, u2). In fact (y[, , y'r, ulfΦ')
is a regular system of parameters of R' — Oz,^ and the image of Φr in
OE,χf is that of 0(1, u£).

PROOF. Clear from [3, (Π-l-4)] and the construction of the param-
eters.

Remarks and notations. Let L be the linear form L(alf α2) =
(αx + a2)/δ such that L — 1 is an equation of the side of slope —1 of
d(y, u, / ) . The initial form of ft with respect to L [2, Definition 1] is
denoted by inL(/,) ek[Yu Yr9 ϋu U2]. We recall that vL{yBuA) =
\B\ + L(A) in which B and A are multi-indices. Then we get with
clear notations inL(/,) = Ft(Y) + Σ YBPUUU U2)ek[Yu ••-, Γr, Uu U2],
\B\ < n{i) = val(/i), where Pi>B(Ulf U2)ek[Uu U2] is homogeneous and
either PifB = 0 or deg(Pi>jB) = (n(i) - \B\) with some Pi>B Φ 0 [6, (3-9-2)].
Let us write PitB(Uu U2) = Φa{i>B)(Ul9 Ut)QitB(Uu U2) with a(i, B) maximal.
Then we get f< = Ft(y) + Σ yBΦa{i>B\ul9 u2)Qί>B(ul9 u2) + gif vL(gt) > n{i).
We have denoted by Ft(y) the polynomial in y whose coefficients are in
ίc, their images in k = R/Wl being the coefficients of Ft(y). Let us con-
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sider the blowing-up centered at 3W. We call /• = fju?{i). The last
computation implies:

/ ! = W ) + Σ y^ur^B^-^Φ^^QlB) + g\ , vA9d > n(i) ,

with L'(a, a') = α/(δ ~ 1) and vL,(y'BuΐΦ'a') = \B\ + a/(δ - 1).

LEMMA 2. TΓiίfe £&e notations as above, we get: β{yf, ulf Φ', /') =

int{a(i,B)/(n(i)-\B\y, l^i^m, n(i) = v*(fi), O'£\B\£n(i), QttB(lf <) *

PROOF. Indeed, by definition, if QitB φ 0, then QitB(l, u[) is a unit
in R'\(y', u[) = k[u'2]miyU'2)), so Q'itB is a uni t in Rf. q.e.d.

LEMMA 3. The base (/') is vf-normalized, v' = v(yf, ulf Φ', /') being
the vertex of the smallest abscissa of A(yf, ulf Φf, / ' ) . Furthermore if
(/') is not vf-solvable (e.g., ifδ — 1 or β(y', u19 Φf, /') is not an integer),
we get the inequality:

β(R', JO ^ β(y', uu Φ', f) S β(R, J) .

PROOF. We recall that x' is a very near point of X at x, so β(R', J')
is well defined. The property (f) says that the base (/') is ^'-normalized.
One of the two conditions in parenthesis taken for granted, the co-
ordinates of vf are not both integers, so (/') is not '̂-solvable [6, (3-
9-2)]. We will end the proof after the next remark:

REMARK (3-1). Let L" be the linear form Ur(al9 a2) = (a1 + a2)/δ'
such that L"(au α2) = 1 is the equation of the side of slope —1 of
Δ(y', ulf Φf, /')• Then δ' ^ 1. Indeed, if h' < 1, we should get
Vvt'ifi) < ^(i) f° r some i (1 ^ i ^ m) in which W is the maximal ideal
of Rr. Hence Hx>{Xf) < HX(X), & contradiction because x' is very near
to x.

If l<δ\ then mM = Ft(Y')ek[Y']<zgrm.(R') = k'[Y', Uu Ψ],
1 ^ i ^ m, in which Yf = mm,(y'), U1 = in^iu^ and Ψ = inm,(Φ'). More-
over, the property (a) is verified by (/') and the regular system of
parameters (yr, ulf Φ').

If ft' = l, χf being very near to x, we can dissolve, using [7, (1-10)],
the points on the side of slope — 1 of Δ(y\ uu Φr, /') [6, (3)]; further-
more if (/') is v(yf, uu Φf, /')-normalized and not v(y', ulf Φ', /')-solvable,
then v(y', u19 Φf, f) is not an element of the side of slope —1 of
A{y', uu Φf, /')• So the property (a) will be true for the new equations
and the new system of parameters. Then [6, (3-15)] shows that
v(yr, ulf Φf, /') will be the vertex of the smallest abscissa of the new
polyhedron and properties (b) and (c) will be true. Moreover in this
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last case we shall get β(R', J') <: β(y', ult Φ', / ' ) . Let us prove
β(y', ulf Φ', /') ^ β(R, J) . For all (ΐ, 5) such that Q^ETx, ί72) =£ 0, we
get β(R, J) ^ (α(i, B)deg Φ + deg Q,iB(l, U2))/(n(i) - \B\). Since degΦ ^ 2
we get β(R, J) ^ 2α(ί, B)/(n(i) - \B\). Then (3-1) shows β(R, J) ^
2/3(2/', ^i, Φ\ /') ^ 2/3(22', J '). As /3(22, J) =£ 0, we are done.

NOTATION (3-2). Henceforth we will write as a rule /, QB, a(B), n
etc. instead of fi9 Qi)B, α(i, B), n(i) etc.

DISSOLUTION OF V' (3-3). If (/') is ^'-solvable, we get:

in,,(/') = F(Γ') + Σ Y'BΦ(X9 uT^^Uf-^-vQsa, <) , \B\<n,

where β = β(y\ uu Φ\ / ' ) , πv(/') = F ( F ' + Ψ'Ui^AJek'lY', Uu Ψ], with
fc' = R'lW and, Ay e V for 1 ^ i ^ r, [6, (3-7) and (3-9)]. Let Ad(Ulf U2) e
Jc[Ulf U2] be the homogeneous polynomial such that άeg(Aj) < deg(Φ) and
the image of As(l, U2) in k' = Jc[U2]/(Φ(l, U2)) is A, . Then we denote
z) = y) + Φ'tut'A'jβR', 1 ^ i ^ r, with A; = i y K 0 Ί , α(i) = deg Aif (the
notation of Lemma 1).

REMARK (3-4). The following condition (**) implies (*), which in
turn shows that zά — zf

άuγ is an element of R:
( * ) For any j , 1 ^ j ^ r, we have β deg Φ + deg As ^ δ with β =

(**) There exists B and ΐ with 1 <̂  i ^ m such that QiyB Φ 0 and
α(i, E)deg Φ + deg Qί)β(l, C/2) ^ (/3 + l)(n(i) - | J5|)deg Φ.

Indeed, for all (i, 5) such that Q<t5 ^ 0, we get a(i, B)άeg Φ +
degQitB(Uu U2) = δ(w(i) - |B|). By (**) we get the inequality (β + l)x
(w(i) - |S|)degΦ ^ α(i, 5)degΦ + degQi>B(l, U2) ^ δ(n(i) - \B\). Then we
use the inequality (β + l)deg Φ > β deg Φ + deg Ajt 1 ^ j ^ r. q.e.d.

The condition (**) may be more plainly stated: let us denote by 7
the ordinate of the vertex of the smallest abscissa of the side of slope
- 1 of A(y, u, / ) . Then:

7 = sup{α(i, £)degΦ + degQ<fΛ(l, U2))/(n(i) - \B\)

1 ^ i ^ m , Q<fB ^ 0} ,

so (**) if and only if 7 ^ (/3 + l)degΦ, where /3 = β(y', u19 Φ', /') ^

LEMMA 4. With the notations in (3-4), if the condition (**) is true,
then Zj = i/y + φPuδrβdθsΦ+aU)Ad (notation of Lemma 1) is an element of R
(oc(j) = άegAs). The system (zl9 , zr, ul9 u2) is a regular system of
parameters of R. The vertex of the smallest abscissa of the side of
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slope —1 of J(z, u, f) is the same as that of A(z, u, / ) . We have 7 —
β(y\ u[, Φ\ f) < 7 — /3(z', u[, Φf, / ' ) . Furthermore the conditions (a)
(b) (c) (d) (e) (f) are true for (z, u, / ) .

PROOF. We have proved in (3-4) that zά is an element of R. It is
clear that (z,u) is a regular system of parameters of R. The condition
(**) implies 7 > β deg Φ + deg Aά(l, U2), 1 ̂  j ^ r, so β(z9 u, f) == β(R, J)
and (z, u, f) is v(z, u, /)-normalized and not v(z, u, /)-solvable [6, (3, 15)].
For the same reason the vertex of the smallest abscissa of the side of
slope —1 of J(z, u, f) is the same as that of J(y, u, / ) . We have
β(z', ulf Φ', /') > β(y', ul9 Φ', / ' ) , which proves the inequality. Let us
denote p = UtβύesΦ+a{β)A5{Ul9 £72). The expansion of Ft(Y) = F<(Z - p)
is:

- p) - inL(/,, u, z) = Ft(Z) + Σ Ki>c,DZcpD + Σ (Z - p)BPUUlt U2) ,

KitCiDek , \C\ + \D\ =

As (y, u, f) verifies the condition (a), none of the exponents of the
monomials of Ft live in Er(Flf •••, Ft-t) (notation of [6, (3-11)]). It is
also the case for the exponents C of the first Σ The condition (f)
being true for (y, u, / ) , we have the same for the second Σ

COROLLARY (4-1). There exists a regular system of parameters {y, u)
such that the conditions (a) (b) (c) (d) (e) (f) are true for (y, u, f) and
either the condition (**) is not true for (y, u, / ) , or (/') is not v{yf, u19

Φ\ f')-8olvable.

PROOF. Apply Lemma 4 and proceed by the descending induction
on 7 ~ β(y\ ulf Φ', / ' ) .

LEMMA 5. If the condition (**) is not true for (y9 u, f) and if (/')
is v(y', ulf Φ', f ^-solvable, then if we dissolve this vertex, we get a new
regular system of parameters (z', ulf Φr) of Rr in which (zr) is defined
as above. Then (/') is v(z', ulf Φ', f')-normalized and not v{z\ ulf Φ\ / ' )-
solvable. Furthermore, we have

β(R', J') ̂  β(z', ulf Φ', /') ^ β(Rf J) .

PROOF. We use the notations of Lemma 4. Let us denote μά =
U'ΓWAΪ, 1 ̂  j ^ m, with A) = Άj/u^, a(j) = deg A3 , (the notation of
(3-3)). Then we may write

(1) F{z') = F{y' + μ) = F(y') = Σ {-l)^Kc,Dy'cμD + h ,
\C\<n,\C+D\=n

where vv(Jtι) > nf L' being the linear form L'(aly α2) = aj(δ — 1). We
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notice that JJ defines the same valuation with respect to (V, u19 Φf) or
to (y'9 u19 Φf). Then (1) implies

/ ' = F(z') + Σ y'B(Φ'a(B)Q'B - Σ (-l)lDlKB,DμD) + V ,
\B\<^n D,\B+D\=n

where vL,(h') > n. We can write the content in the parenthesis as
φHn-\B\)βu(n-\B\)(δ-l)/φra(B)-(n-\B\)βQ'B _ y> /// _ j \ \D\jζ J^D\

Let us denote : b(B) - a(B) -(n-\B\)β. Then Φ'hmQf

B- Σ"(-l)mKB>DA'D

is an element of 2R'. So in R'fty', uj = k[U2]/Φ(l, Uz) we get

If RB(Ul9 U2) Φ 0, then RB is a homogeneous polynomial divisible neither
by Φ(Ulf U2) nor by Ux.

The condition (**) is not true, so for any ί, 1 ^ i ^ m, and for any
5 with |J5| < n(i) and Qί)jB ^ 0, we have δ(i, B)degΦ + degQ<fB(l, I72) <
(w(i) — |S|)degΦ. Then (with the abbreviated notations) for any B,
B\ < n, with RB Φ 0, we have c(B) < n — \B\. Let us admit that

RB Φ 0 for some B (we will prove it later). Then

/ ' = F(z') + Σ y'Bφ'^-w+'Wuf-ww-vRB + K" ,
\B\<n

with vL,(h") > n. That implies

(2 ) / ' - F(z') + Σ (2' - Φ ' ^ ' u r 1 ) ^ ' ^ " 1 5 1 ^ 0 ^ ^ ^ " " ^ ^ 5 - 1 ^ ^ + λ" -

|5|<»

We can write it as

( 3) / ' = F{z') + Σ z'cSo + h" .
\C\<n

By the condition (a), the exponents C in (1) do not live in Er(Fu ,
Fi-i) [6> (3-11)], so by the condition (f), the exponents B in (2) do not
live in Er(Flf , ίV-i). It is also the case for exponents C in (3). Let
us choose B so that RB Φ 0 and 1? is maximal under this condition. Then
SB = uy-\B\nδ-i)φrc{B)+in-\B\)βR^ Hence th i s exponent B verifies β(y', uί9

Φ', f) < β(z', u19 Φ', f) £ (c(B) + (n- \B\)β)/(n ~ \B\)< β(yf, ulf Φ',f) +

1. As β(y', ulf Φ', f) is an integer (Lemma 3), these inequalities prove
that β(z', ulf Φ', f) is not an integer. Hence (/') is not v{z'f uί9 Φ\ / ' )-
solvable. Furthermore, (/') is v(z', u19 Φ', /')-normalized, because the
exponents C of (3) do not live in Er(Fl9 , F^). The point x' is very
near at x, so (3-1) implies β(R'f J') ^ β(z'f uίf Φ', f) ^ β(y', ulf Φ', f) +
1. We know that β(R9 J) ;> β(y'9 u19 Φ', f')deg Φ and deg Φ ^ 2 , hence
β(R'9 J') < β(y', u» Φ\ /') + 1 ^ /3(Λ, J)/2 + 1. If β(R, J) ^ 2 then
/3(JB', J') < /3(i?, J) . If β(Rf J) < 2, since β(R, J) ^ /3(ί/', u l f Φ'9 f')x
deg ί> and β(y'9 u19 Φ'9 f) is an integer, then β(y'9 u19 Φ'9 f) — 0 . Thus
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β(R'f J') < 1. Lemma 3 implies that δ is an integer and the condition
(a) implies that δ > 1. Since there is no permissible smooth curve through
x, we g e t β(R, J ) ^ δ - l ^ l > β(R', J ' ) .

Finally, we must prove that some RB Φ 0. Let us suppose that
RB = 0 for all B. We get the equality

, U2)QB(1, U2) = Σ (-l)™KBtDA°(l, U2) , \B\<n.
DΛ\B+D\=n)

Let us denote ΓS(UU U2) = Ur^-^^A^U,, U2), where a(j) =
and β = β(y', u19 Φ', / ')• Note that the exponent of Uλ may be nega-
tive. If we multiply each term of the last equality by Uίn-]BlHδ-βdesΦ),
we get Φ*™(UU U2)QB{UU U2) = Σ,n,iB+Dι=n(-l){D]KB,DAD(Ulf U2)ίoτ \B\ < n.
That implies inL(f) = F(Y + A(UU U2)) ek[Y, Ulf U2]. We will prove
now that the condition (*) is true (<5 — deg A3 — β deg Φ ̂  0 for all j 9

1 ^ j ^ r). Let us assume that δ — deg A5 — βdegΦ is the smallest
and negative for j — 1. As gτm(RJJ)xβΛ = k[Ulf U2] we can choose an
integer a and polynomials Pi(Y)ek[Y], where Pt Φ 0 for some i and
deg Pi = a — n(i) if Pi Φ 0. A computation of the valuations with re-
spect to Ui leads to

a(δ — deg Aλ — β deg Φ) ̂  inf (α — %(ΐ))(δ — deg Aά — 8̂ deg Φ)

> a(δ — deg A1 — β deg Φ) .

This is a contradiction. Hence for all j , 1 ^ j ^ rf we have δ — deg Aά —
/3 degΦ ̂  0 (*). Let us denote zs = Vj + Γjiu,, u2) and let Z,- = Ys + fs{Ul9 U2)
be the image of sy in grw(i2) = Λ[Γ, Ulf U2], We get J P ^ Z ) = inL(jQ,
which contradicts the condition (e).

We thus complete the proof of Lemma 5, hence that of the Theorem.
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