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Abstract

This paper discusses an example of the application of a high-level modelling framework which
supports both the specification and implementation of a system's conceptual design. This
framework, DESIRE (framework for DEsign and Specification of Interacting REasoning
components), explicitly models the knowledge, interaction, and coordination of complex tasks and
reasoning capabilities in agent systems. For the application domain addressed in this paper, an
operational multi-agent system which manages an electricity transportation network for a Spanish
electricity utility, a comprehensible specification is presented.

Keywords: Multi-agent system; Modelling framework; Compositional modelling

1.  Introduction

As multi-agent technology begins to emerge as a viable solution for large-scale
industrial and commercial applications, there is an increasing need to ensure that the
systems being developed are robust, reliable and fit for purpose. To this end, it is
important that the basic principles and lessons of software engineering are applied to the
development and deployment of multi-agent systems. At present, the majority of the
extant agent applications are developed in an ad hoc fashion - following little or no
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rigorous design methodology and with limited a priori specification of the agents or of
the system as a whole. This lack of rigour is one of the major factors hampering the
wide-scale adoption of agent technology.

This situation is, however, beginning to change as a number of researchers recognise
the importance of verifying and validating the properties and characteristics of agent
systems. Within this field, two broad camps can be identified: (i) those who use
advanced logics to specify their systems1,2,3; and (ii) those who use tools adapted from
software and knowledge engineering to specify their systems.4,5,6,7 This paper describes
work in the latter camp - a modelling framework, called DESIRE (framework for
DEsign and Specification of Interacting REasoning components),8,9 is introduced and
then used to specify an operational multi-agent system.

DESIRE allows the system designer to explicitly and precisely specify both the intra-
agent functionality (i.e., the expertise required to perform the domain tasks for which the
agent is responsible in terms of the knowledge requirements and the reasoning
capabilities) and the inter-agent functionality (i.e., the expertise required to perform and
guide coordination, cooperation and other forms of social interaction in terms of the
knowledge requirements and the reasoning capabilities). DESIRE views both the
individual agents and the overall system as a compositional architecture - hence all
functionality is designed as a series of interacting, task-based, hierarchically structured
components. Tasks are characterised in terms of their inputs, their outputs and their
relationship to other tasks. Interaction and coordination between components, between
components and the external world, and between components and users10 is specified in
terms of information exchange,  sequencing information and  control dependencies. The
components themselves can be of any complexity (from simple functions and
procedures up to whole knowledge-based systems) and can perform any domain
function (e.g. numerical calculations, information retrieval, optimization, et cetera).

Although DESIRE was originally conceived as a means of specifying complex
knowledge-based systems, its philosophy of viewing the system as a series of interacting
components means it is ideally suited to the specification of multi-agent systems.6,7,11

DESIRE's philosophy contrasts with those of general purpose specification languages
such as Z4,12,13 or VDM14 at precisely this point: by committing to a specific type of
architecture for the design specification of multi-agent systems, DESIRE provides more
structure and thus more support. General purpose specification languages, such as Z and
VDM, provide less support in this respect. One of the goals in the design and (continual)
development of the DESIRE framework is to provide constructs with which reasoning
patterns can be explicitly modelled. This is an additional advantage with respect to
general purpose specification languages in modelling multi-agent systems, as agents are
most often capable of reasoning about both internal and external processes. The
constructs included in DESIRE support modelling and specification of agents in this
respect.

The main contribution of this work is that it presents an easy to use and expressive
framework which allows multi-agent system designers to focus on the conceptual design
and specification of their system (rather than having to worry about low-level system
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programming issues). Tools such as graphical editors support the designer in this
process. Moreover, DESIRE's high-level modelling environment can automatically
generate prototype applications directly from the specifications.

DESIRE is an industrial strength system - it has been used by a number of companies
and research institutes (such as chemical industry, financial sector, software industry,
institutes for enviromental studies) to develop operational systems for a number of
complex tasks (including systems for diagnosis, design, routing, scheduling and
planning). DESIRE has the additional advantage that the specifications and their
semantics can be made formal, using temporal logic as a base.15,16,17 This allows to
prove various properties about the system during the verification and validation phases
of the software lifecycle.

This paper describes the DESIRE framework and shows how it can be applied to
model and specify multi-agent systems. The exemplar application is that of electricity
transportation management18 which is one of the few operational multi-agent systems
currently in existence (Section 2). Section 3 introduces the DESIRE framework and
Sections 4 to 6 show how the framework can be used to model and specify the electricity
transportation application. In particular, Section 4 presents a generic formal model and
specification of a compositional agent, Section 5 details the specific agents involved in
the scenario in terms of their specific tasks, while Section 6 deals with interaction
between the agents and between agents and the world. Finally, Section 7 discusses the
results of this modelling exercise and highlights those aspects which require further
work.

2.  An Example Application Domain

The multi-agent system used as an illustration in this paper has been developed for the
domain of electricity management in general and the management of an electricity
transportation network in particular. The system described was developed in the
ARCHON project and is currently running on-line in a control room in the North of
Spain.18,19  An electricity transportation network carries electricity from generation
sites to the local networks where it is distributed to customers.  Managing this network
is a complex activity which involves a number of different subtasks: monitoring the
network, diagnosing faults, and planning and carrying out maintenance when such faults
occur. The running application involves seven agents. This paper focusses on four of
these agents.

The Control System Interface agent (called CSI) continuously receives data from the
network - e.g., alarm messages about unusual events and status information about the
network's components. From this information, the agent CSI periodically produces a
snapshot which describes the entire system state at the current instant in time.
Additionally, CSI supports the overall system's diagnosis and the restoration
functionality by doing some pre-processing on the alarm messages. In the former case, it
performs a preliminary analysis of the data it  receives to determine whether a fault has
occured. This analysis is  then used to initiate the system's diagnosis functionality. In the
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latter case, CSI monitors the network to determine whether  significant changes have
occured. This functionality ensures that the assumptions upon which the restoration
phase is based are still valid as the restoration plan is executed.

The system's diagnosis functionality is provided by two separate agents - an Alarm
Analysis Agent (called AAA) and a Blackout Area Identifier agent (BAI). Upon receipt
of notification of possible faults from the agent CSI, both AAA and BAI become active.
These two agents use the snapshot information transferred by CSI to update the models
of the network they construct and maintain. The agents' diagnoses are based on the
information represented in these models. The agent BAI is a fast and relatively
unsophisticated diagnostic system which can pinpoint the approximate region of the
fault (the initial blackout area) but not the specific element which is at fault. The agent
AAA, on the other hand, is a sophisticated model-based diagnosis system which is able
to generate and verify the cause of the fault in the network. It does this in a number of
different phases. Firstly, it performs an approximate hypothesis generation task which
produces a large number of potential hypotheses (the knowledge used here guarantees
that the actual fault is always contained in this initial list). Each of these hypotheses is
taken in turn and a time consuming validation task is performed to determine the
likelihood that the given hypothesis is the cause of the network fault.

Cooperation occurs between the agents AAA and BAI in that BAI's initial blackout
area can be used to prune the search space of AAA's hypothesis validation task. It can do
this because the fault will be contained in the initial blackout area - hence any
hypotheses produced by AAA's generation task which are not in the blackout area can
be removed from the list which needs to be considered by AAA's validation task. This
task is performed by AAA's  hypothesis refinement task.  The blackout area can be
received by AAA in two different ways. The most usual route is that BAI will volunteer
it as unsolicited information - the agent BAI maintains a model of all the agents in the
system (its acquaintance models) and its model of AAA  specifies that it is interested in
receiving information about the blackout area. Hence, when this information is produced
it will automatically send it after making reference to its acquaintance models. The other
route is that the agent AAA will generate an information request to have the initial
blackout area produced - this will, in fact, result in a request being directed to the agent
BAI because AAA's acquaintance model of BAI indicates that it has a task which
produces the initial blackout area as a result.

The final agent considered is a Service Restoration Agent (SRA) which generates a
plan of action which can be used to repair the network once the cause and location of the
fault have been  determined. To this end, first candidate actions are proposed based on
information about the nature of the fault (provided by AAA) and its extent (the black out
area provided by BAI). Next these candidates are checked for  feasibility and relevance.
Finally, from the approved actions a repair plan is prepared. The execution of this plan is
guided by the human control engineer (or operator) and is monitored by the agent CSI
to ensure that any significant changes in the network state are reported to SRA so that it
can make a decision about how to respond (e.g., to carry on regardless, to generate a
new restoration plan from scratch or to modify the existing plan).
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3.   A Specification Framework for Multi-Agent Systems

Task models define the structure of compositional architectures: components in a
compositional architecture are directly related to (sub)tasks in a task (de)composition.
The hierarchical structures of tasks, interaction and knowledge, are fully preserved
within compositional architectures. Often more than one agent is involved in the
performance of a given task. Task coordination between agents then becomes essential.
As agents, however, often are capable of performing one or more (sub)tasks, either
sequentially or in parallel, task coordination within the agents themselves is also
essential.

Below a formal compositional framework for modelling multi-agent tasks is
introduced, in which

(1)  a task (de)composition,
(2)  information exchange,
(3)  sequencing of (sub)tasks,
(4)  subtask delegation, and
(5)  knowledge structures,

are explicitly modelled and specified.

3.1.  Task (de)composition

In order to adequately model and specify (de)composition of tasks, knowledge is
required of:

•  a task hierarchy,
•  information a task requires as input,
•  information a task produces as a result of task performance
•  meta-object relations between (sub)tasks (which (sub)tasks reason about

which other (sub)tasks).

For each task in a task hierarchy a set of subtasks may be specified. Within a task
hierarchy composed and primitive tasks are distinguished: in contrast to primitive tasks,
composed tasks are tasks for which (a non-empty set of) subtasks are identified.
Subtasks, in turn, can be either composed or primitive. Tasks are directly related to
components: composed tasks are specified as composed components, and primitive tasks
as primitive components, respectively.

An example of a task hierarchy for the task of electricity transportation management,
independent of the agents involved, is shown below in Figure 1. The leaves represent the
primitive tasks.
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determine focus

generate hypotheses

refine hypotheses

validate hypotheses

generate proposed actions

check proposed actions

prepare plans

analyse 
incoming data

diagnose

generate plans

execute  plans

monitor plan execution

alarm message acquisition

disturbance detection

chronological message acquisition

provision of snapshots

monitor restoration  process

derive causal consequences

evaluate hypotheses

monitor restoration

Fig. 1  Task hierarchy of electricity transportation management

Information required/produced by a (sub)task is defined as input/output signature of a
component. The signatures used to name the information are defined in a predicate logic
with a hierarchically ordered sort structure (order-sorted predicate logic). Units of
information are represented by the (ground; i.e., instantiated) atoms defined in the
signature.

The different roles information can play within reasoning can be distinguished by
different (meta)levels, specified by the level of an atom within a signature. In a two level
situation the lowest level is termed object-level information, and the second level meta-
level information. Meta-level information expresses information about object-level
information and reasoning processes; for example, for which atoms the values are still
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unknown (epistemic information), or for which determination of the values is a goal for
the reasoning process (target information). Accordingly, tasks  that include reasoning
about other tasks are indicated as meta-level tasks with respect to object-level tasks.
Often more than two levels of information and reasoning are involved, resulting in meta-
meta-level information and reasoning.

3.2.  Information exchange between tasks

Information exchange between tasks is specified as information links between
components. Each information link relates output of one component to input of another,
by specifying which specific output atom and truth value are linked with which specific
input atom and truth value. Atoms can be renamed;  therefore, each component can be
specified in its own language, independent of other components. The conditions for
activation of information links are explicitly specified as part of the task control
knowledge:  knowledge of sequencing of tasks.

3.3.  Sequencing of tasks

Task sequencing is explicitly modelled within components as task control knowledge.
Task control knowledge includes not only knowledge of which subtasks should be
activated when and how, but also knowledge of the control information associated with
task activation (targets and requestables) and the amount of effort which can be afforded
to achieve a goal to a given extent (exhaustiveness and effort). Subcomponents are, in
principle, black boxes to the task control of an encompassing component: task control is
based purely on information about the success and/or failure of the subcomponents'
processes. The process of a component is considered to have been successful, for
example, with respect to one of its target sets if it has reached the goals specified by this
target set (and specifications of the number of goals to be reached (e.g., any or every)
and the effort to be afforded).

3.4.  Delegation of tasks

During knowledge acquisition a task as a whole is modelled. In the course of the
modelling process decisions are made as to which (sub)tasks are best performed by
which agent. This process, which in general may also be performed at run-time, results
in the delegation of (sub)tasks to the parties involved in task execution. For electricity
transportation management tasks can be divided over the participating agents as shown
below in Figure 2.
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determine focus

generate hypotheses

refine hypotheses

validate hypotheses

generate proposed actions

check proposed actions

prepare plans

analyse 
incoming data

diagnose

generate plans

execute  plans

monitor plan execution

alarm message acquisition

disturbance detection

chronological message acquisition

provision of snapshots

monitor restoration  process

derive causal consequences

evaluate hypotheses

CSI

AAA, BAI

SRA

human
operator

CSI, SRA

BAI

AAA

monitor restoration

CSI

SRA

Fig. 2   Delegation of tasks to agents

3.5.  Knowledge structures

During knowledge acquisition an appropriate structure for domain knowledge must be
devised. The meaning of the concepts used to describe a domain and the relations
between concepts and groups of concepts, must be determined. Concepts are required to
identify objects distinguished in a domain, but also to express the methods and strategies
employed to perform a task. Concepts and relations between concepts are defined in
hierarchies and rules (based on order-sorted predicate logic). In a specification
document references to appropriate knowledge structures (specified elsewhere) suffice.
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4.  A Formal Model of a Compositional Agent

The task hierarchy presented in Section 3.1 is a task hierarchy for the electricity
transportation management task represented as a single composed task. Agents,
however, not only perform tasks directly related to electricity transportation
management; they also perform tasks related to their own internal process management
and tasks related to interaction with other agents and with the world outside the agents
(the external world).  A generic decomposition of an agent is presented below in Section
4.1, a description of information exchange within an agent is described in Section 4.2
and in Section 4.3 task control knowledge within an agent is depicted.

4.1.  A Generic Model of an Agent

The agents described in Section 2 have a number of tasks in common: control of their
own processes, update of world state information,  and management of  communication
with other agents.  In addition each agent has one or more specific tasks to perform: e.g.,
diagnose fault (for the agent AAA), or identify blackout area (for the agent BAI), as
shown in Figure 3. The levelled input and output interfaces depicted on the outer edges
of the components in this figure indicate object-meta level distinctions in input and
output. The agent task control (depicted at the top in the component) has interaction with
each and every subcomponent. The task control links through which such interaction is
achieved (between task control and subcomponents) are not explicitly specified nor
depicted in graphical representations as shown in Figures 3 and 5. These links are
predefined for all components in the DESIRE framework.

…

…

…

…

own
process
control

manage 
communication

update world
state info

diagnose
fault

 agent AAA task control

Fig. 3   Generic top level compositional structure of an agent
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The specialisation and instantiation of each of the three generic tasks may differ
significantly between agents: not only do agents reason on the basis of different types of
information and interaction, they differ with respect to their models of the external world
and the tasks they are capable of performing. A decomposition of the three generic tasks,
one level deep, is shown in Figure 4.

The generic component responsible for the task of the central coordination of an
agent's reasoning processes and other activities, own_process_control, uses (either internal or
input) knowledge of:

(1) its own abilities, beliefs, desires, intentions, motivations, et cetera,
(2) the status of available knowledge about interaction with other agents,
(3) the current state of affairs in the world outside the agent and
(4) subtask performance to reason about its current "state of mind": current

processes and knowledge.

This entails both monitoring the (status of) available knowledge and reasoning about the
current state (often in relation to the past).

1.  Own process control

1.1  Monitor incoming data

 1.2  Evaluate  process state

2.  Update world state information

3.  Agent specific tasks

4.  Manage communication

4.1   Examine agent model

4.2   Generate information

4.3   Receive information

Fig. 4   Generic task decomposition of an agent

The task of managing communication with other agents is a task in itself: the generic
task assigned to the component manage_communication. To this purpose agents may have
representations of other (relevant) agents: often of agents with whom interaction is
known to be required. Agents are capable of examining these models, of generating
information for other agents, and of receiving information  from other agents.  This
information may be object-level information (facts about the world), but it may also be
meta-information such as requests for specific object level information.

The task of maintaining a representation of the current state of the world outside an
agent, is also a generic agent task, which all agents should be capable of performing,
however limited the representation may be. The component update_world_state_info, includes
knowledge of how an agent's "personal" representation of the world is acquired. An
agent's representation will often differ from the real state of the world, and from other
agent's representations of the world.
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…

…

…

…
update world

state info
diagnose

fault

 agent AAA task control

own
process
control

manage 
communication

incoming info

request info

required bao info

info to output

boa info

info on current   
              world state

incoming world state info

fault results faults

boa request

Fig. 5Information exchange of agent AAA's top level

4.2.  Information exchange at the top level of an agent

Information links are defined to model information exchange between components
within an agent. In general, information communicated to an agent will be transferred
directly from the input interface to the agent's component manage_communication.
Comparably, information meant for other agents will be transferred from the component
manage_communication to the outer interface of an agent. In more extended models of
agents, an agent's own_process_control may frequently be informed of progress of the agent's
processes: in the models of information exchange within an agent presented in this
paper, these links have been omitted. The nature of the individual agent's processes in
the electricity management task are relatively straightforward and do not require
extended process control. To illustrate the way in which information exchange is
modelled for this task the information links of one specific agent, namely AAA are
described.  AAA's top level tasks and links are depicted in Figure 5. As described in
Section 4.1, task control links are not explicitly specified nor depicted.

The information links used within a component are specified as part of the task
structure; for agent AAA, the specification of its task structure is as follows:

task structure  AAA

  subcomponents own_process_control, update_world_state_info,

diagnose_fault, manage_communication;

  links incoming_info, incoming_world_state_info, info_on_current_world_state,

boa_info, request_info, required_bao_info, fault_results, info_to_output,

boa_request, faults;

end task structure  AAA
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Agent AAA receives two types of information: (1) information about the state of the
network and (2) information about the blackout area. This information is transferred
from the outer input interface of AAA through the link incoming_info to the component
manage_communication. Information about the state of the network is then transferred from
the component manage_communication to the component update_world_state_info through the link
incoming_world_state_info and the information about the blackout area is transferred to the
component diagnose_fault through the link  boa_info. Information about the state of the
network is forwarded from the component update_world_state_info to the component
diagnose_fault through the link info_on_current_world_state.

The component diagnose_fault may recognize a lack of information on a blackout area.
The (meta)fact that there is no blackout area information is transferred to the component
own_process_control through the link required_bao_info. The component own_process_control

establishes that the lacking blackout area information should be acquired through
communication;  this conclusion is transferred to the component manage_communication

through the link request_info. After determination of the agent(s) to be addressed, the
request is then transferred by the link info_to_output to the output interface of the
component.  The link boa_request  transfers this information to the agent BAI. Newly
acquired information on a blackout area is transferred by the component
manage_communication to the component  diagnose_fault  as described above.

A resulting fault, as diagnosed by diagnose_fault is transferred through the link fault_results

to the component manage_communication and to interested agents (in particular, SRA)
through the links info_to_output  and faults.

Note the level difference between, on the one hand, the components own_process_control

and manage_communication, and, on the other hand, the components update_world_state_info and
diagnose_fault.  The components own_process_control and manage_communication reason about the
status of the processes within update_world_state_info and diagnose_fault. The level distinction
between the origin of a link and its destination is expressed in the interfaces of the
relevant components. E.g., the link required_bao_info links the higher level of the output
interface of diagnose_fault with the lower level of the input interface of own_process_control.

Links and components are formally specified within DESIRE. An example of an
information link specification (see Sections 3.1.2 and 3.2.2) within AAA  is the
specification of the link i n fo_on_cur ren t_wor ld_s ta te  between the component
update_world_state_information  and the component diagnose_fault:

link  info_on_current_world_state: object-object

domain update_world_state_information

output world_state_obs

codomain diagnose_fault

input world_state_obs

sort links (World_state_info,World_state_info)

object links identity

term links identity

atom links
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(obs_in_current_world_state(I:World_state_info),obs_in_current_world_state(I:World_state_info)):

<<true,true>,<false,false>>

endlink

This link is defined to transfer information observed in the current world state from the
component  update_world_state_information  (the domain of the link) to the component
diagnose_fault (the codomain of the link). The truth value  (true, resp. false) of the atom
obs_in_current_world_state(I:World_state_info)  is transferred as specified by the atom  links from
update_world_state_information  to diagnose_fault.  The information observed is of the sort
World_state_info, known in both domains (linked by sort links). Object and term links relate
the syntactic entities within the sorts.  In this example the linked entities are
syntactically identical.

4.3.  Task Control of Agents

Control of agents and interaction between agents is specified in precisely the same
way as control of components and interaction between components within an agent.
Depending on the autonomy of agents and their components, specification of control
will differ. In 4.3.1 an example of autonomous agents is described. In 4.3.2 an example
of control within an agent is discussed.

4.3.1. Autonomous agents

Task control of agents in the electricity transportation management task at the highest
(global) level is minimal. An example of a specification of a rule for agent activation for
AAA is shown below.

if  start

then next_component_state(AAA, awake)

At the very beginning of system activation, agent AAA is awakened. The agent is fully
autonomous, capable of processing any new input it receives, as soon as it arrives, and
capable of transferring its output on to other agents as soon as this is required.

4.3.2.  Control within agents

Within agents,  components can be autonomous, or they may be controlled. In the
electricity transportation management task, control within agents is well-defined. The
agents' task control knowledge specifies when and how components and links are to be
activated (and whether activation is continuous or temporarily instantiated). Evaluation
criteria are used for this purpose within temporal rules. Each component is assumed to
have a (local, linear) discrete time scale.

The specification of agent AAA's task control knowledge illustrates the way in which
such knowledge is specified. Control over AAA's four subtasks is limited: the rules
presented in this section express the knowledge required to specify interaction between
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the four subcomponents. Activation of components does not always depend on the
completion of a specific component. In some cases receipt of input causes a component
to become active. The specification of the fact that a component is to be continually
capable of performing its subtask during task execution (in parallel with other
components), depending on the availability of new input, is expressed by the keyword
awake. AAA's components own_process_control and manage_communication, and all internal links
become and remain awake once AAA has been activated. This is expressed by:

if start

then next-component-state(own_process_control, awake)

and next-component-state(manage_communication, awake)

and next-target-set(manage_communication, new_world_info)

and next-link-state(incoming_info, awake)

and next-link-state(incoming_world_state_info, awake)

and next-link-state(info_on_current_world_state, awake)

and next-link-state(boa_info, awake)

and next-link-state(request_info, awake)

and next-link-state(required_bao_info , awake)

and next-link-state(fault_results, awake)

and next-link-state(info_to_output, awake)

and next-link-state(boa_request, awake)

and next-link-state(fault, awake)

Here next-target-set(manage_communication, new_world_info) specifies that the target set
new_world_info  is the focus of the activity of the component manage_communication. A typical
example of a component's task control knowledge rule in which the success of one
component is required (whether or not incoming world state information has been
monitored by the component manage_communication), before a following component
(update_world_state_info) can be activated with the required information, is the following:

if evaluation(manage_communication, new_world_info, succeeded)

then next-component-state(update_world_state_info, active)

and next-target-set(update_world_state_info, new_world_state_info)

This knowledge rule states that

   if   the component  manage_communication,  has succeeded in accomplishing the
targets defined by its target set  new_world_info,

then  the component update_world_state_info is assigned a new set of targets,
namely new_world_state_info, and activated.
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Note that the output of the component manage_communication is transferred automatically to
update_world_state_information by the link incoming_world_state_info that is awake.

The component diagnose_fault is activated when input information is received on alarms
as specified below:

if evaluation(update_world_state_info, new_alarms, succeeded)

then next-component-state(diagnose_fault, active)

and next-target-set(diagnose_fault, faults)

5.  Task Models for the Agent Specific Tasks

As discussed above in Section 4 each agent in the electricity transportation management
has 3 generic tasks and an agent specific task. In this section (parts of) the models of the
agent specific tasks are presented: task decomposition and information exchange for all
agent specific tasks and task control for AAA's agent specific task.

5.1. Task model of the Agent Specific Task of  AAA

The agent AAA is responsible for identifying possible faults in the electricity network
on the basis of information from CSI and blackout area information provided by BAI.
The agent SRA analyses these faults to devise a restoration plan.

1.  Own process control

1.1  Monitor incoming data

 1.2  Evaluate  process state

2.  Update world state information

3.  Diagnose  fault (agent specific task)

3.1  Generate hypotheses 

3.2  Refine hypotheses

3.3  Validate hypotheses 

3.3.1  Derive causal consequences

3.3.2  Evaluate hypotheses

4.  Manage communication

4.1   Examine agent model

4.2   Generate information

4.3   Receive information

Fig. 6    Complete task hierarchy of agent AAA
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The task hierarchy of AAA's agent specific task - diagnose fault - is shown in Figure 6,
as part of the complete task hierarchy of agent AAA.

5.1.1.  Decomposition and information exchange of diagnose_fault

In Figure 7 the task decomposition of the agent specific task diagnose fault is depicted
together with the information exchange between subtasks. The component's task control
is depicted at the top, but, as explained in Section 4.1, the task control links are neither
specified nor graphically depicted. This model shows the link incoming_world_state_info_to_gh   

…

…

…

…

generate
hypotheses

refine
hypotheses

diagnose fault task control

validate
hypotheses

derive
causal
conse-

quences

evaluate
hypo-
theses

incoming world info to gh

incoming world info to vh

info on blackout area

initial list of hypotheses to rh

initial list of
 hypotheses to vh

refined list of hypotheses

required info

diagnosis to output

Fig. 7The component diagnose fault of agent AAA

through  which world state information is transferred from the outer input interface to
the component generate_hypotheses. The component generate_hypotheses produces an initial
list of hypotheses which is forwarded to two components:  to the component
refine_hypotheses  (through the link initial_list_of_hypotheses_to_rh) and to the component
validate_hypotheses (through the link initial_list_of_hypotheses_to_vh). If additional information on
the blackout area is available (transferred through the link info_on_blackout_area) the
component refine_hypotheses prunes the list of hypotheses on the basis of this information,
providing a more specific list of hypotheses to be tranferred to the component
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validate_hypotheses through the link refined_list_of_hypotheses. If not, the component
refine_hypotheses recognizes the need for additional information and the required
information is transferred to the output interface of the component diagnose_fault through
the link required_info. The component validate_hypotheses examines the hypotheses it has
received one by one (either from generate_hypotheses or refine_hypotheses), and transfers
plausible hypotheses (hypotheses that have not been rejected) to the output interface of
the component diagnose_fault through the diagnosis_to_output link. The structure of the
component diagnose_fault and the information links are specified in the same way as the
structure of agent AAA was specified in Section 4.1, as shown below.

task structure  diagnose_fault

subcomponents generate_hypotheses, refine_hypotheses, validate_hypotheses;

links incoming_world_info_to_gh,

incoming_world_info_to_vh, info_on_blackout_area,

initial_list_of_hypotheses_to_rh, initial_list_of_hypotheses_to_vh,

refined_list_of_hypotheses, required_info, diagnosis_to_output;

end task structure  diagnose_fault

The information links within the component diagnose_fault are also specified in precisely
the same way as the links within AAA. An example of an information link specification
is depicted below.

link  initial_list_of_hypotheses_to_vh: object-object

domain generate_hypotheses

output poss_hyps

codomain validate_hypotheses

input hyps

sort links (Hyps,Hyps)

object links identity

term links identity

atom links (poss_hyp(H:Hyps), hyp(H:Hyps)): <<true,true>,<false,false>>

endlink

This link transfers output of the component generate_hypotheses to input of the component
validate_hypotheses. The truth values of the atoms transferred remain the same, but the
atoms are renamed. An output atom of generate_hypotheses, the atom poss_hyp(H:Hyps) - is
linked to the input atom of validate_hypotheses, the atom hyp(H:Hyps).

The component  validate_hypotheses has two subcomponents: derive_causal_consequences and
evaluate_hypotheses. The component derive_causal_consequences reasons about the world
hypothetically, on the basis of causal knowledge and the hypothesis to be validated.  The
component evaluate_hypotheses reasons about the outcome of this hypothetical reasoning
and the information observed in the external world.  If discrepancies are identified the
hypothesis is rejected.  The component evaluate_hypotheses models a meta-level task
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(namely, reasoning about the process of rejection of hypotheses) with respect to the
component derive_causal_consequences (which performs reasoning about the world). This
object-meta relation is depicted by the arrows at different levels within the component
validate_hypotheses.

5.1.2. Task control knowledge of diagnose_fault

Specification of task control knowledge of the component diagnose_fault  is comparable
to the specification of task control knowledge of AAA. Activation of diagnose_fault results
in activation of the subcomponent generate_hypotheses.

if component-state(diagnose_fault, start)

then next-component-state(generate_hypotheses, active)

and next-target-set(generate_hypotheses, poss_hyps_found)

and next-link-state(incoming_world_state_info_to_gh, awake)

and next-link-state(incoming_world_state_info_to_vh, awake)

and next-link-state(initial_list_of_hypotheses_to_rh, awake)

and next-link-state(info_on_blackout_area, awake)

and next-link-state(required_info, awake)

and next-link-state(diagnosis_to_output, awake)

This rule states that once the component  diagnose_fault  has been activated, the component
generate_hypotheses  is to be activated with target set poss_hyps_found  and that all links but
two (namely initial_list_of_hypotheses_to_vh and initial_list_of_hypotheses_to_vh) are awakened.

If hypotheses have been generated successfully, refine_hypotheses is awakened:

if evaluation(generate_hypotheses, poss_hyps_found, succeeded)

then next-component-state(refine_hypotheses, awake)

and next-target-set(refine_hypotheses, status_ref_hyps_found)     

If no blackout area information is available, the component refine_hypotheses succeeds
for the target set no_blackout_area_info and this fact is transferred through the link required_info

to the outer interface of the component diagnose_fault and the component validate_hypotheses

is activated with the initial list of hypotheses produced by the component
generate_hypotheses.  The initial list of hypotheses is transferred by explicit activation of the
link initial_list_of_hypotheses_to_vh  and explication of the target set faults.

if evaluation(refine_hypotheses, no_blackout_area_info , succeeded)

then next-component-state(validate_hypotheses, active)

 and next-target-set(validate_hypotheses,  faults)

and next-link-state(initial_list_of_hypotheses_to_vh, up_to_date)
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If blackout information is available the component refine_hypotheses succeeds for the target
set ref_hyps_found and the component validate_hypotheses is activated, as specified below.  In
addition, the refined list of hypotheses is transferred to validate_hypotheses by explicit
activation of the link refined_list_of_hypotheses.

if evaluation(refine_hypotheses, ref_hyps_found, succeeded)

then next-component-state(validate_hypotheses, active)

 and next-target-set(validate_hypotheses,  faults)

and next-link-state(refined_list_of_hypotheses, up_to_date)

If blackout area information is made available while the component validate_hypotheses is
active, validate_hypotheses is reactivated (by the rule specified above) and the new list of
hypotheses is transferred (by activation of the link refined_list_of_hypotheses), replacing the
initial list of hypotheses provided by generate_hypotheses. This new input to the component
validate_hypotheses leads to revision of the validation process.

Task control of validate_hypotheses is straightforward: it specifies that the components
derive_causal_consequences and evaluate_hypotheses are activated sequentially.  The
specification has been omitted.

5.2.  Task Model of the Agent Specific Task of  CSI

The agent CSI (the Control System Interface) periodically produces a snapshot which
describes the entire state of the network at the current instant in time. It also performs a
preliminary analysis on the data it receives from the network to determine whether there
may be a fault. The agent CSI's specific task can be subdivided into the following
subtasks:

3.  Analyse incoming data (agent specific task)

3.1  Alarm messages acquisition

3.2  Chronological messages acquisition

3.3  Disturbance detection

3.4  Snaphot provision

3.5  Monitoring restoration process

The information exchange between these tasks is depicted in Figure 8. CSI receives
network snapshots every 15 minutes. This information is transferred directly to the
component provision_of_snapshots. The component alarm_messages_acquisition receives alarm
messages  from the external world through the link world_info_to_ama and combines them
into blocks of alarms.   The component disturbance_detection receives these blocks of alarms
through the link alarms and identifies indications of failure. These indications are
transferred to the output interface of analyse_incoming_data.
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Fig. 8   The component analyse incoming data of the agent CSI

The component chronological_message_acquisition uses both chronological and non-
chronological alarms (for missing information) received from the external world to
produce blocks of chronological alarms.  These blocks of chronological alarms are
transferred to the output interface of analyse_incoming_data. Once the component
monitoring_restoration_process has received information stating that the operator has started
plan execution, it monitors the restoration process on the basis of incoming snapshot
information and the current restoration plan.

5.3.  Task Model of the agent specific task of BAI

The agent BAI (blackout area identifier) is a fast and relatively unsophisticated
system which can pinpoint the approximate region of a fault. This region, the blackout
area, is used to prune the list of possible hypothetical faults generated by AAA. The
agent BAI's specific task is determine_focus. This task is subdivided into two subtasks, as
shown below.

3.   Determine focus (agent specific task)

3.1  Determine initial focus

3.2  Determine final focus
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These tasks are depicted below in Figure 9 together with information exchange.

…

…

…

…

determine
initial focus

determine
final focus

determine focus task control

world info to dif

world info to dff

initial focus

focus out

Fig. 9  The component determine focus of the agent BAI

The component determine_initial_focus uses part of the world state information transferred to
determine_focus, namely indications of failure, to determine which elements are in the
blackout area during the first notification of a disturbance. The link initial_focus transfers
the result, an initial focus, to the component determine_final_focus. The component
determine_final_focus uses other world state information, namely snapshot information,
transferred through the link world_info_to_dff, to confirm whether elements are still in the
initial focus area during the phase after the disturbance took place. The result, a final
focus, is tranferred to the output interface of determine_focus through the link focus_out.

5.4 . Task Model of the Agent Specific Task of SRA

The agent SRA (the System Restoration Agent)  generates a plan of action which can
be used to repair the network once the cause and location of the fault have been
determined. The task hierarchy of SRA's agent specific tasks is the following:

3.  Determine plans and monitor plan execution (agent specific tasks)
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   3.1 Determine Plans

3.1.1  Generate proposed actions.

3.1.2  Check proposed actions.

3.1.3  Prepare plans.

3.2  Monitor plan execution.

The hierarchical structure and information exchange depicted in Figure 10 shows how
the two main tasks of this component are clearly distinguished.

…

…

…

…

determine plans and monitor plan execution task control

monitor
plan

execution
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proposed
actions
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proposed
actions

prepare
plans

world and fault info

world and fault info to pp

proposed actions checked actions plan info

plan info
    to output

plan to monitor

world info monitor info

world and fault info to cpa

Fig. 10   The component determine plans and monitor plan execution of the agent SRA

The component determine_plans receives information on the faults detected, the blackout
area identified, and the current state of the world which it uses to prepare a plan to
restore the network. This plan is transferred to the output interface of the component
determine_plans_and_monitor_plan_execution. Once determine_plans_and_monitor_plan_execution receives
information that the operator has started plan execution, the component
monitor_plan_execution evaluates the status of the network (information received on the state
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of the world) in relation to the plan. This information is tranferred to the output interface
of the component.

6.  Interaction between Agents and between Agents and the External World

Agents are not only capable of exchanging information with other agents, they are
also capable of exchanging information with the external world. Although the two types
of interaction can be realised by essentially the same mechanisms, they differ
conceptually. Interaction with the external world is discussed below in Section 6.1,
interaction between agents in Section 6.2.

In Figure 11 the information links between agents, and between agents and the
external world, are depicted, together with distinctions between the levels of the
information transferred. An example scenario is used in Section 6.3 to describe the
patterns of interaction modelled for electricity transportation management.

6.1.  Interaction between Agents and the External World

Interaction between an agent and the external world is modelled almost identically
from the agent's point of view to interaction between agents. Information links are
defined between specific agents and the external world for the purpose of either
observation or action performance.  Observation of the external world may be modelled
as an agent's specific request for information from the external world. The agent's
component own_process_control determines that such information is required and after
activation of the agent's component manage_world_interaction (which has not been modelled
in the electricity transportation management example) the request is transferred to the
agent's output interface. Once this meta-information has reached the agent's interface, it
is transferred to the external world. As a result of the request, object-level information
may be transferred through another link back to the requesting agent. The external world
includes information on the current state of the world, so that the agent can be made
aware of any changes, if it so requests.

Performance of a specific action may be modelled as an update of the external world
state. Once an agent has determined that an action is to be performed, information about
action performance is transferred to the external world, resulting in a change of the state
of the external world.

6.2. Communication between Agents

Patterns of communication between agents are made explicit by specification of
information links, together with agent-specific knowledge of when information is to be
transferred. An agent may, for example, decide to send specific information to one or
more other agents once every 15 minutes, instigated by the agent's component
manage_communication. This information is transferred through a link to its output interface,
after which the information is transferred through one or more other links to one or more
other agents. The component manage_communication uses knowledge of other agents,
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knowledge of its own plans and knowledge of the information available/requested, to
determine which information to communicate to which agent. The receiving agent may
not choose to use the information immediately, but once the information has been sent,
it is assumed to have been received by the other agent.

Another pattern of communication frequently encountered in multi-agent
environments is modelled for situations in which agents realise that additional
information on a specific topic is required. Again, on the basis of an agent's knowledge
of other agents (including knowledge of the types of information individual agents can
possibly provide) an agent determines which information to request from which other
agent(s). The links between the agents and the mechanisms within individual agents (an
agent's component manage_communication and links for information exchange within the
agent) required to issue and receive requests, are explicitly defined. The component
own_process_control of an agent recognizes the need for additional information and informs
the component responsible for managing communication. This component reasons about
other agents and prepares specific requests to one or more agents. The requests are
transferred to the agent's output interface, after which the information is transferred
through relevant links to other agents. Note that requests for specific information are
transferred as meta-information (about object-level information) to other agents. If one
of these agents is capable of providing the information requested and is willing to do so,
this information is transferred back through another information link.

6.3.  An example scenario

The information links modelled for the electricity transportation management task
both between agents, and between agents and the external world, are shown in Figure
11. The interaction patterns are described below.

The control system of the network (part of the external world) sends alarms and
snapshots of the network to CSI. This agent groups alarms, detects indications of
disturbances, and provides snapshot information to interested agents. CSI's component
manage_communication has models of other agents on which it bases the decision to forward
the information to BAI, AAA and SRA. Agents AAA and BAI use this information to
analyse the status of the network. In addition to information acquired from CSI, the
agent AAA may also acquire information on the blackout area from BAI. The agent
AAA uses this information to focus its process of diagnosis. If this information was not
already provided, AAA notices this and specifically sends a request; this example of
agent communication between AAA and BAI is explained below in more detail.
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Fig. 11  Interaction between the agents and between agents and the world

The information link boa_request in Figure 11, linking meta-information stating that
blackout area information is needed is specified by:

link  boa_request: object-object

domain AAA

output request_output

codomain BAI

input  request_input

atom links (boa_info_needed, boa_info_needed):  <<true,true>>

endlink
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The agent AAA initiates this information exchange: the update of this information
link is specified by task control knowledge of AAA on the basis of the results of the
component manage_communication (see Section 4). AAA's own_process_control realises that it
does not have any information about a possible blackout area, and that this information
has to be acquired from another agent. This information is transferred to the component
manage_communication. This component consults the models of other agents to determine
from which agents this information can be acquired and decides to request this
information from BAI. The agent AAA's task control knowledge transfers the output of
manage_communication to AAA's outer interface. The agent BAI receives the output trough
the information link boa_request. The information link from BAI to AAA, boa_info_to_AAA,
is updated if BAI has blackout area information to transfer to AAA. BAI's task control
knowledge specifies that blackout area information produced by the component
determine_focus (modelling BAI's agent specific task) and transferred to BAI's component
manage_communication, is made available to the agents determined by manage_communication.
This is effectuated by transferring the information to BAI's output interface, and from
the output interface to the other agent's (i.e., AAA) input interface. AAA uses this
information together with the other information it has acquired, and its own knowledge,
to produce a list of hypotheses about possible faults. This list is transferred to SRA.

In addition to the information received from CSI on the state of the world, SRA
receives the faults diagnosed by AAA from AAA and information about the blackout
area from BAI. SRA uses this information to prepare a plan which it sends to the
operator for execution and to CSI to monitor at network level. The operator executes the
plan in the external world, informing SRA and CSI that execution has commenced. CSI
detects when changes have occurred in the network which are likely to require a
replanning endeavour and informs SRA of the deviations. This exchange of information
is depicted by the the meta-level information link monitor_info_to_SRA between CSI and
SRA.

7.  Discussion

The declarative compositional framework DESIRE provides a principled architecture
concept for agent design in which complex (reflective) reasoning within agents is
explicitly modelled, as are communication patterns between agents and interaction with
the external world. The framework supports conceptual design and specification of both
dynamic and static aspects of agent behaviour and of the interaction between agents, and
between agents and the external world.  Depending on the situation at hand agents can
be designed to be autonomous or fully controlled or anything in between. Interaction can
be modelled by explicit activation of information links between agents, or as continuous
processes of information exchange between agents, depending on the type of
information and the role it plays in the processes modelled. In principle, the framework
should be able to support the analysis and specification of a wide variety of agents: from
simple agents to more complex agents, from weak agents to strong agents, et cetera.
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Explication of the knowledge involved in reasoning, the information exchanged
between agents and knowledge involved in task control within and between agents, is
essential in modelling and specifying multi-agent systems.  Earlier papers6,7 focussed
on modelling and specifying task control within agents within the framework DESIRE.
In this paper, in addition the exchange of information within agents and the
communication between agents have been more closely analysed, modelled and
specified, for a number of different agents in an industrial application.

There  were two main perceived benefits of using DESIRE to help specify the
electricity management application. Firstly, it provided a much clearer and more readily
comprehensible  description of the application than the more informal and descriptive
technique which was  originally used. It is felt that if the original specification had been
produced using DESIRE then the subsequent implementation could have proceeded
more rapidly. The second benefit was that the DESIRE specification highlighted  a
number of oversights in the  original specification. Some cases of interactions and
control decisions  were found to be missing from the informal specification.
Unfortunately  this evidence is only anecdotal at present and it is also unclear as to  how
much of the aforementioned benefit  is attributable to using a formal specification tool as
opposed to using  DESIRE in particular. Future work aims to place this assessment on a
more  substantial grounding.

In on-going research, informational and motivational aspects of agent characteristics
such as beliefs, desires, intentions, commitments, and cooperation are being analysed,
modelled, and specified within the DESIRE framework. A cooperation model for project
coordination based on joint intentions and a model for collective user satisfaction in
cooperative environments have also been developed within the framework.20,21

Formal semantics of the specification language are based on temporal logic.9,15,16,17

Recent research on validation and verification based on these temporal semantics
identifies some useful notions22; an interesting and important topic in particular for
safety critical systems.
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