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Adherens junctions (AJs) anddesmosomes connect the actin and keratin filament networks of
adjacent cells into a mechanical unit. Whereas AJs function in mechanosensing and in
transducing mechanical forces between the plasma membrane and the actomyosin cyto-
skeleton, desmosomes and intermediate filaments (IFs) providemechanical stability required
to maintain tissue architecture and integrity when the tissues are exposed to mechanical
stress. Desmosomes are essential for stable intercellular cohesion, whereas keratins deter-
mine cell mechanics but are not involved in generating tension. Here, we summarize the
current knowledge of the role of IFs and desmosomes in tissue mechanics and discuss
whether the desmosome–keratin scaffold might be actively involved in mechanosensing
and in the conversion of chemical signals into mechanical strength.

T
he majority of tissues are constantly exposed

to external forces, such as mechanical load,

stretch, and shear stress, in addition to intrinsic
forces generated by contractile elements inside

tissues. Both extrinsic and intrinsic forces con-

tribute to tissue morphogenesis, homeostasis,
and regeneration and affect cell shape, prolifer-

ation, andmigration (Evans et al. 2013). Sensing

and transmitting forces depend to a large extent
on tight interactions between cell adhesion

complexes and the cytoskeleton. Mechanosens-

ing andmechanotransduction can be defined as
cellular processes that convert mechanical cues

into intracellular signaling (Furuse et al. 2002;

Huveneers and de Rooij 2013; Janmey et al.
2013). These processes are exemplified by

epithelia that line organ and body surfaces to

provide structural support and serve as barriers

against diverse external stressors such as me-
chanical force, pathogens, toxins, and dehydra-

tion. Epithelia contain two types of intercellular

adhesion complexes: adherens junctions (AJs)
and desmosomes, connected to the actin and

keratin cytoskeleton, respectively (Fletcher and

Mullins 2010).
The detailed molecular mechanisms that

underlie mechanotransduction are complex

and only partially understood. Recent data in-
dicate that mechanosensor proteins can under-

go force-induced conformational changes that,

in turn, induce changes in their activity or affin-
ity for binding partners (Yonemura et al. 2010;
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Huveneers and de Rooij 2013). This can finally

lead to the activation of chemical signaling
cascades. As discussed in Yap (2017), AJs func-

tion as mechanosensors (Huveneers and de

Rooij 2013; Yao et al. 2014; Ladoux et al. 2015;
Muhamed et al. 2016), whereas a role in force

sensing has so far not been attributed to desmo-

somes. At the same time, desmosome-mediated
intercellular adhesion ismuch stronger than AJ-

mediated cohesion as shown by the epithelial

sheet assay: Whereas depletion of the desmoso-
mal plaque component plakophilin 1 (PKP1) in

keratinocytes disrupts epithelial cohesion on

application of mechanical stress, knockdown
of the corresponding components from AJs,

p120, or p0071/PKP4, has no immediate effect

on intercellular cohesion (Fig. 1). Thus, this
suggests that in tissues in which both junctions

are present, AJs are important in mechanosens-

ing, whereas desmosomes are crucial for provid-
ing mechanical stability under force.

Here, we will review the contribution of the

desmosome–keratin complex to mechanical
integrity of epithelial barriers, in particular of

the epidermis, and discuss their potential func-

tion in sensing and transmission of forces. For
the role of intercellular contacts and intermedi-

ate filaments (IFs) of the heart, the reader is

referred to recent reviews (Meens et al. 2013;

Patel and Green 2014).

FUNCTION OF DESMOSOMES IN
CONFERRING MECHANICAL STABILITY

Composition and Structure of Desmosomes

Desmosomes are intercellular junctions essen-

tial for mediating strong intercellular cohesion

(Garrod 2010; Green et al. 2010; Kowalczyk and
Green 2013). They are composed of three pro-

tein families. The desmosomal cadherins, des-

mogleins (DSGs), and desmocollins (DSCs),
are transmembrane proteins whose extracellular

domains form the adhesive interface of the des-

mosome, whereas their cytoplasmic tails anchor
the armadillo proteins, plakoglobin (PG/JUP),
and plakophilins 1–3 (PKPs) to the desmo-

somal plaque. The armadillo proteins, in turn,
bind to desmoplakin (DSP), a member of the

plakin family of cytoskeleton-associated pro-

teins. DSP links the desmosome to the keratin
filament network, which is essential to provide

tensile strength (Fig. 2). The importance of des-

mosomes for tissue integrity is highlighted by
the severe skin and cardiac defects that arise in

autoimmune and genetic diseases.
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Figure 1.Dispase-based dissociation assay highlights the importance of desmosomes for intercellular cohesion.
Only the knockdown of the desmosomal plaque protein plakophilin 1 (PKP1) severely disturbed intercellular
cohesion of mouse keratinocytes grown for 24 h in a medium containing 1.2 mMCa2þ. The knockdown of the
corresponding proteins from adherens junctions (AJs), p120, or p0071/PKP4 did not interfere withmechanical
resistance of mouse keratinocytes (A), although the respective protein amounts were considerably decreased as
shown by western blot (B).
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Desmosomal cadherins are divided into

fourDSGs and threeDSCs. TheDSG–DSC het-
erodimers represent the basic adhesive unit of

desmosomes (Harrison et al. 2016). All DSGs

form adhesive dimers with all DSC isoforms
with affinities characteristic of each DSG–DSC

pair. In contrast, homophilic DSG–DSG and

DSC–DSC trans-interactions were suppressed
by charged amino acids. In multilayered epithe-

lia such as the epidermis, desmosomal cadher-

ins reveal differentiation-dependent expression.
DSG1, -4, and DSC1 are expressed in flattened

cells of the upper granular and cornified layers,

whereas DSG2, -3, and DSC2, -3 occur primar-

ily in the lower layers of the epidermis (Green
and Gaudry 2000).

Despite their critical roles in maintaining

epidermal adhesion and integrity, desmosomes
are highly dynamic entities and undergo con-

stant remodeling to allow for plasticity and cell

migration within the epidermis during epider-
mal differentiation and regeneration (Green

and Gaudry 2000; Garrod 2010; Kowalczyk

and Green 2013). Desmosome adhesion can
be regulated at several levels: Their composi-

tion, as well as size and number, vary among

A

B
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The desmosome–keratin scaffold in cell mechanics

Figure 2. The desmosome–keratin complex as a micromechanical scaffold during epidermal differentiation.
(A) Expression of keratins K5/14 and interaction with desmosomal protein isoforms forms stable cohesion
among cells and protects basal keratinocytes against mechanical stress. Under conditions of tissue homeostasis,
stable desmosome–keratin scaffolds prevail. (B) Cells react to wounding (activated keratinocytes) by
modulating their micromechanical properties through altering adhesion and the cytoskeleton. Underlying
mechanisms involve altered expression of isotype proteins and posttranslational modifications that can dimin-
ish adhesion and render cells more migratory. Expression of K6/16/17 coincides with dynamic desmosomes.
(C) Towithstand increased mechanical stress, for example, in upper strata of the epidermis, number and size of
desmosomes are increased and keratin filaments become more abundant, bundled by associated proteins and
possibly elevated interkeratin Cys crosslinks. Gray arrow in (C) indicates tissue differentiation. Desmosomes are
depicted to indicate stable adhesion (red), to demarcate dynamic, less adhesive (light red), and hyperadhesive
complexes (dark red). Keratin filaments are drawn to indicate stable networks (straight blue lines), dynamic,
less stable networks (dashed green lines) or to indicate highly resilient, bundled networks (orange thick lines).
The above properties result from expression of distinct isotypes, relative abundance, and posttranslational
modifications.

Desmosomes and Keratins in Tissue Mechanics
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tissues and among the individual layers of the

epidermis, and are controlled at the transcrip-
tional, posttranscriptional, and posttransla-

tional levels.

Evidence from Mouse Models and Human
Diseases

Gene ablation in mice has established the con-

tribution of individual desmosomal proteins

to mechanical stability and tissue integrity in
vivo. These studies show (a) that many of the

desmosomal proteins are required for organis-

mal survival and (b) that isotypes of DSGs,
DSCs, and PKPs have distinct functions in

vivo. For example, phenotypes observed after

ablation of the three DSC genes differ dramati-
cally in their severity: Whereas a DSC2 knock-

out (KO) did not result in any obvious pheno-

type (Rimpler 2014), ablation of DSC1 led to
epidermal fragility with hyperproliferation and

dermatitis, but mice were viable and fertile

(Chidgey et al. 2001). In contrast, DSC3 abla-
tion resulted in preimplantation lethality, sug-

gesting a desmosome-independent role during

early development (Den et al. 2006). Similarly,
ablation of DSG isotypes revealed distinct func-

tions in vivo: Whereas the DSG2 KO was em-

bryonic lethal (Eshkind et al. 2002), DSG3 KO
mice showed weakened desmosomal adhesion,

leading to the separation of keratinocytes (Koch

et al. 1997). The loss ofDSG1 function has so far
not been analyzed in mice as it requires deletion

of all three DSG1 genes.

Desmosomal plaque proteins are equally
important for intercellular cohesion and me-

chanical stability: PG/JUP KO embryos died

as a result of severe heart defects with reduced
and structurally altered desmosomes (Bierkamp

et al. 1996; Ruiz and Birchmeier 1998). Al-

though b-catenin, the homologue of PG in
AJs, localized to desmosomes and could substi-

tute for PG in cadherin clustering, it failed to

recruit normal levels of PKP1 and DSP to the
plaque (Bierkamp et al. 1999; Acehan et al.

2008). DSP KO embryos did not survive beyond

embryonic day 6.5 and displayed severe defects
in tissue architecture, shaping of the embryo,

and in anchoring keratin filaments to desmo-

somes (Gallicano et al. 1998). In an epidermis-

specific DSP KO, intercellular separations were
observed as expected (Vasioukhin et al. 2001).

Surprisingly, desmosome number was unal-

tered although the lack of keratin association
compromised their function. PKPs were previ-

ously considered as nonessential plaque pro-

teins. However, PKP2 KO mice died around
day 11.5 of embryonic development because of

heart defects, indicating that at least one PKP

is required for stable intercellular adhesion
(Grossmann et al. 2004). In contrast, PKP32/2

mice were viable but developed hair abnormal-

ities and increased inflammation of the skin,
manifest in mice kept in a nonpathogen-free

environment (Sklyarova et al. 2008). We have

recently shown that PKP1 is essential for epider-
mal integrity in vivo. PKP1 KO mice died

shortly after birth with defects in epidermal co-

hesion and barrier formation (Rietscher et al.
2016). Desmosomes were small and sparse in

the skin, as well as in cultured keratinocytes de-

rived from these mice, and cell separation oc-
curred in the granular layers.

Additional support for the importance of

desmosomal adhesion in tissue integrity comes
from monogenetic human diseases. Ectoder-

mal dysplasia-skin fragility syndrome (EDSFS,

MIM604536), a genetic disease caused by PKP1
mutations (McGrath et al. 1997), is character-

ized by skin fragility with generalized superficial

erosions and chronic inflammatory plaques and
pruritus. Additional abnormalities include alo-

pecia and nail dystrophy (McGrath et al. 1997;

Sprecher et al. 2004; McGrath 2005; McGrath
and Mellerio 2010). Desmosomes in the skin

of patients were generally small with perturbed

desmosome–keratin interactions. Severe der-
matitis, multiple allergies and metabolic wast-

ing (sinobronchial allergic mycosis, SAM) syn-

drome (MIM615508) is a recently described
genodermatosis caused by homozygous muta-

tions in DSG1 or DSP. Dermatologic manifesta-

tions comprise congenital erythroderma, striate
palmoplantar keratoderma (SPPK), skin ero-

sions, scaling, and hypotrichosis. Patients devel-

oped severe allergies, recurrent skin, and respi-
ratory tract infections, indicating that loss of

DSG1 interferes with skin barrier function (Sa-

M. Hatzfeld et al.
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muelov et al. 2013; Has et al. 2015). More re-

cently, a point mutation in the keratin-binding
domain of DSP was identified as causing SAM

syndrome (McAleer et al. 2015). Nonsense, as

well as splice site mutations, have been observed
in PG causing skin fragility, generalized epider-

molysis, palmoplantar keratoderma, and wool-

ly hair (Pigors et al. 2011; Li et al. 2012). Ar-
rhythmogenic cardiomyopathy (AC) is a rare

disease of the heart characterized by progres-

sive myocardial dystrophy with fibro-fatty re-
placement. In the majority of cases, dominant

mutations have been identified in desmosomal

genes including DSP: ARVD8 (MIM607450);
PKP2: ARVD9 (MIM609040); DSG2: ARVD10

(MIM610193); DSC2: ARVD11 (MIM610476);

JUP: ARVD12 (MIM611528) (Al-Jassar et al.
2013; Cerrone and Delmar 2014; Calore et al.

2015; Pilichou et al. 2016).

Desmosomes can also be affected in ac-
quired diseases, which comprise epidermal au-

toimmune disorders and infections (Stahley

and Kowalczyk 2015). Pemphigus is a family
of diseases characterized by circulating autoan-

tibodies that target desmosomal proteins and

compromise cell–cell adhesion (Amagai 2010;
Jennings et al. 2011; Amagai and Stanley 2012).

Pemphigus autoantibodies are directed against

the extracellular domains of desmosomal cad-
herins and are sufficient to cause the loss of

keratinocyte adhesion.

Taken together, these studies clearly indicate
that desmosomes are essential for robust inter-

cellular cohesion and tissue integrity under me-

chanical strain.

Why is Desmosomal Adhesion Stronger
than AJ-Mediated Adhesion?

Isoform-Dependent Composition
of Desmosomes Determines Adhesive
Strength

Although the differential expression of desmo-

somal cadherins and PKPs has been known for a
long time, experiments addressing their indi-

vidual and distinct contributions to desmoso-

mal adhesion have only recently emerged. Har-
rison et al. (2016) have systematically analyzed

the structural basis of adhesive binding byDSGs

and DSCs. Using analytical ultracentrifugation

and plasmon plasmon surface resonance reso-
nance, these investigators determinedKD-values

for DSG and DSC homodimers, as well as het-

erodimers. Whereas homodimers were very
weak with KD values .400 mM, heterodimeric

pairs revealedKDs ranging from 3.6 to 43.9 mM,

indicative of stronger adhesion thanprovided by
E-cadherin (Harrison et al. 2016). These data

correlate well with the role of AJs in mechano-

sensing and one for desmosomes in conferring
stability. Interestingly, the strongest-binding

pairs were Dsg1:Dsc1 and Dsg4:Dsc1, which

are expressed in the outermost layers of the epi-
dermis, whereas the basally expressed cadherins

Dsg3:Dsc3 formed the weakest adhesive pair.

This correlates with the force-protective func-
tion of the outer epidermal layers, although the

basal layers must allow for remodeling and re-

generation, which is facilitated by weaker adhe-
sion. In agreement, preliminary experiments

suggest an up-regulation of DSG1 on applica-

tion of stretch to cultured keratinocytes (our
own unpublished results).

Similarly, PKPs -1 and -3 contribute differ-

entially to intercellular cohesion. A comparison
of keratinocytes derived from the correspond-

ing KO mice confirmed that the loss of PKP1

interfered with formation of a stable epithelial
sheet, whereas adhesion was not compromised

in PKP3 KO keratinocytes. Surprisingly, desmo-

somal PKP3 was not only much more dynamic
compared with PKP1, but was able to destabi-

lize PKP1-dependent desmosomes when over-

expressed (Keil et al. 2016). Collectively, these
data indicate that isoform expression has a con-

siderable influence on desmosome stability and

resistance to force and appears well suited to
adapt desmosomes to mechanical stresses.

Hyperadhesion is a Unique Feature
of Desmosomes

In contrast to AJs, desmosomes can occur in
two functionally distinct adhesive states, which

are distinguished on Ca2þ-depletion. In normal

tissues, desmosomes adopt a Ca2þ-indepen-
dent state, also referred to as hyperadhesion,

which is crucial for stable intercellular cohesion

Desmosomes and Keratins in Tissue Mechanics
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and resistance to mechanical strain (Garrod

2010; Thomason et al. 2010). In contrast, dur-
ing regeneration and wound healing, desmo-

somes become Ca2þ-dependent resulting in

weaker intercellular cohesion, which allows for
tissue remodeling (Wallis et al. 2000; Kimura

et al. 2012). In cultured keratinocytes, desmo-

somes depend on extracellular Ca2þ after their
formation but undergo a maturation process to

become hyperadhesive. Although the mecha-

nism controlling formation of Ca2þ- insensitive
desmosomes is incompletely understood, one

model predicts that a highly organized arrange-

ment of the DSG and DSC extracellular do-
mains is induced (Thomason et al. 2010), which

correlates with a wider intercellular space and

the presence of a midline observed in electron
microscopic images, whereas Ca2þ-dependent

desmosomes appear to lack this midline (Gar-

rod 2010).
Based on structural analyses of DSG2, Tariq

et al. (2015) proposed that the flexibility of des-

mosomal cadherin ectodomains allows them to
adopt a conformation that facilitates desmo-

some plasticity. The desmosomal plaque would

contribute to plasticity by introducing spacings
between desmosomal cadherins and preventing

ectodomain cis-interactions. The distance be-

tween cadherins and the lack of cis-interactions
facilitates conformational changes needed to

adopt the ordered architecture in the Ca2þ-in-

dependent state. Depletion of DSC2 prevented
the acquisition of hyperadhesion in keratino-

cytes (Kurinna et al. 2014), although it is not

knownwhether this is a unique feature of DSC2
or shared by all DSCs and DSGs. The fact that a

DSC2 mouse KO did not reveal any phenotypic

abnormalities (Rimpler 2014) suggests that hy-
peradhesion does not critically depend on the

DSC2 isoform. In an attempt to characterize the

combinatorial roles of DSCs and DSGs in des-
mosome assembly, micropatterned substrates

were used to uncouple desmosome assembly

from other cell contacts (Lowndes et al. 2014).
In this assay, DSC2, but not DSG2, formed

Ca2þ-dependent homophilic bonds, indicating

that DSC2 was required for desmosome assem-
bly. In contrast, DSG2 formed Ca2þ-indepen-

dent heterophilic bonds with DSC2, suggesting

a role of DSG2 in desmosome maturation and

in the switch to Ca2þ-independent adhesion
(Lowndes et al. 2014).

Because an ordered intercellular zone re-

quires an ordered plaque, desmosomal plaque
proteins are also important in regulatingdesmo-

somal hyperadhesion. PKP1 overexpression in-

duced Ca2þ-independent hyperadhesive des-
mosomes. This prevented Pemphigus vulgaris

(PV)-IgG-mediated desmosome disruption

(Tucker et al. 2014), indicative of a very stable
adhesive state. Moreover, PKP1 enhances des-

mosome size and number by laterally interact-

ingwithDSP inagreementwith apostulated role
of plaque proteins in mediating cadherin spac-

ing (Kowalczyk et al. 1999; Hatzfeld et al. 2000;

Bornslaeger et al. 2001; Hatzfeld 2007). Thus,
the desmosomal cadherins, as well as the plaque

protein PKP1, cooperate to provide strong ad-

hesion and stability under mechanical strain.

What are the Upstream Signals that Modulate
Desmosomal Adhesion?

Cross Talk Desmosomes-AJ

Epithelial junction assembly, maturation, and
maintenance occur through sequential process-

es that are differentially regulated (Keil et al.

2016). Earlier work suggested a hierarchical
process in which AJs form before desmosomes.

However, increasing evidence indicates that

newly formed contacts contain components of
AJs and desmosomes, and sorting into distinct

junctional complexes occurs on junction mat-

uration in epithelial cells (Green et al. 2010; Keil
et al. 2016).

PGwas the first protein identified in desmo-

somes and AJs based on colocalization studies
and its coimmunoprecipitationwithE-cadherin

(Cowin et al. 1986; McCrea et al. 1991). Gosavi

et al. (2011) showed that PKP3, PG, and E-cad-
herin are present at the cell border when cells are

grown inmediawith lowconcentrations ofCa2þ

and suggested a model in which PG and E-cad-
herin recruit PKP3 to the cell border to initiate

desmosome formation. A role of PKP3 in coor-

dinating AJ and desmosome formation was fur-
ther supported by the finding that PKP3 locali-

zation at the plasma membrane occurs together

M. Hatzfeld et al.
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with E-cadherin and precedes other desmo-

somal proteins, including PKP1 and DSP (Keil
et al. 2016). At themolecular level, PKP3 forms a

complex with the Rap1 GTPase, promoting its

activation and facilitating desmosome assembly
(Todorovic et al. 2014). Moreover, PKP3 was

required for AJ maturation and sealing. These

findings reveal PKP3 as a coordinator of desmo-
some assembly and AJ maturation through its

association with Rap1 (Todorovic et al. 2014).

Actin and Desmosomes

Formation of AJs but not desmosomes coin-
cides with an increase in the apparent stiffness

of cell monolayers reflecting the generation of a

tissue-level tension (Harris et al. 2014). Tension
rapidly increases with a maximum at 150 min,

which correlates with the initiation of desmo-

some assembly. Although desmosomes are as-
sociated with IFs and according to current views

are unable to generate tension, their assembly

requires actin microfilaments (Pasdar and Li
1993). It is, therefore, possible that AJ-associat-

ed actomyosin-dependent force generation is an

important signal for desmosome formation al-
though direct experimental evidence remains to

be adduced.

The AJ protein p120 plays an essential role
in limiting actomyosin-dependent tension gen-

erated at AJ as shown by uncoupling p120’s

cadherin-stabilizing and RhoA-suppressing ac-
tivities. Removing p120’s Rho-suppressing ac-

tivity lead to excessive actomyosin contractility

along the vertical axis of cells and disrupted the
integrity of the apical surface, irrespective of E-

cadherin stability (Yu et al. 2016). Interestingly,

p120 has been described to associate with des-
mosomes during their formation in a Ca2þ-

shift experiment (Kanno et al. 2008).

Desmosomes can also influence actin orga-
nization: Loss of any of the PKPs from human

or mouse keratinocytes results in changes in

cortical actin organization (Godsel et al. 2010;
Keil et al. 2016). However, it is not clear whether

PKPs regulate RhoA activity and stress fiber for-

mation directly or indirectly, by influencing the
localization or activity of a Rho GEF or a Rho

GAP (Godsel et al. 2010).

Mechanosensitive Signaling Pathways in the
Control of Desmosomes

So far, little is known about how desmosome

gene transcription and isotype expression are
controlled and how mechanical stimuli direct

these processes. Several recent studies have

addressed the question how external mechani-
cal forces are transmitted into chemical signals.

To induce changes in the cell’s gene expression

program, signaling molecules regulated by
external forces must be translocated from the

cytoplasm into the nucleus and nucleocytoplas-

mic shuttling has been suggested as a common
theme in mechanotransduction (Sharili and

Connelly 2014). The SRF (serum-response fac-

tor) and YAP (Yes-associated protein)/TAZ
(transcriptional coactivator with PDZ-binding

motif ) pathways are known mediators of this

process in multiple cell types, including kerati-
nocytes.

SRF transcriptional activity is regulated by

actin and RhoA and its cofactors MRTF (myo-
cardin-related transcription factor) -A and -B.

Monomeric actin sequesters MRTFs, which are

released on actin polymerization and accumu-
late in the nucleus where they interact with SRF

to stimulate target gene expression. Intercellular

tension can increase actin polymerization at AJs
and drive MRTF-A translocation into the nu-

cleus (Gomez et al. 2010). SRF and MRTFs co-

activate immediate early genes, such as JunB,
and adhesion-related genes, including vinculin.

Mice with a keratinocyte-specific SRF-KO re-

vealed severe intercellular gaps between kerati-
nocytes as the most striking pathophysiology

(Koegel et al. 2009). The number of desmo-

somes was significantly lower in mutant com-
pared with control mouse skin, whereas the size

of individual desmosomes was unaltered. How-

ever, a direct regulation of desmosomal genes
was not supported by transcription profiles of

SRF KO skin samples compared with control

skin (Koegel et al. 2009). In contrast, loss of
MRTF-A reduced the levels of DSG1 messenger

RNA (mRNA) in keratinocytes, suggesting that

DSG1 is directly regulated by the SRF/MRTF-A
complex (Dubash et al. 2013). Another experi-

ment showed that MRTF-A and SRF were

Desmosomes and Keratins in Tissue Mechanics
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recruited to cis-regulatory elements of the PKP2

gene to regulate its expression (Leitner et al.
2011). Taken together, these data suggest that

RhoA/MRTF-A signaling in keratinocytes af-

fects the expression of desmosomal proteins di-
rectly and indirectly although the regulation via

SRF/MRTF-A in response to mechanical strain

has not been directly shown.
The transcription factor AP-1mediates gene

expression in response to a variety of extracel-

lular stimuli and is activated by SRF/MRTF sig-
naling (Wang et al. 2015). Microarray analysis

performed onmechanical stretched and normal

human skin revealed an up-regulation of AP-1
in mechanically stretched skin (Yang et al.

2011). Other stimuli of AP-1 include growth

factor signaling via mitogen-activated protein
(MAP) kinases, which are also activated in re-

sponse tomechanical stress (Kippenberger et al.

2000). AP-1 acts as a homodimeric or hetero-
dimeric transcription factor composed ofmem-

bers of the Fos (c-Fos, FosB, Fra-1, and Fra-2)

and Jun (c-Jun, JunB, and JunD) families. Jun is
regarded as a positive regulator of keratinocyte

proliferation/differentiation during develop-

ment and in skin cancer through its direct tran-
scriptional effect on epidermal growth factor

receptor (EGFR) expression. In contrast, JunB

can antagonize proliferation of keratinocytes.
AP-1 target genes include keratins (Yates and

Rayner 2002).

TheHippo signaling pathway is another reg-
ulator of mechanotransduction. It regulates or-

gan size, tissue regeneration, and stem cell re-

newal (Zhang et al. 2011; Barry and Camargo
2013). Recently, mechanical signals were found

to be transduced by the two mediators of the

Hippo pathway, the transcriptional coactivators
YAP and TAZ (Dupont et al. 2011). In the skin,

YAP is required forepidermal barrier formation,

hair follicle development, and maintenance of
the epidermal stem cell compartment (Zhang

et al. 2011; Barry and Camargo 2013; O’Neill

2015). Overexpression of YAP in transgenic
mice promotes squamous cell carcinoma for-

mation (Chan et al. 2011; Jia et al. 2016), where-

as its knockdown inhibits cutaneous wound
healing (Lee et al. 2014), suggesting a central

role in regulating proliferation. YAP and TAZ

also respond to the rigidity of the extracellular

matrix, cell geometry, cell density, cell polarity,
and the status of the actin cytoskeleton. Sensing

of substrate stiffness by YAP/TAZ depends on

the tension of the actin cytoskeleton (Zhang
et al. 2011; Elbediwy et al. 2016). The AJ protein

a-catenin limits YAP activity by modulating its

interactionwith 14-3-3 (Kanai et al. 2000; Schle-
gelmilch et al. 2011; Sambandam et al. 2015).

YAP/TAZ mediate their function in controlling

gene expression through interactionwith TEAD
transcription factors, which drive the expression

of proliferative genes (Zhang et al. 2011). Al-

though YAP activation accelerates proliferation
and suppresses differentiation of mouse kerati-

nocytes, which correlates with altered desmo-

some number, size, and composition, a role of
YAP/TAZ/TEAD in the transcriptional regula-

tion of desmosomal genes has not been directly

addressed.However, a large scale ChIP-seq anal-
ysis of Tead4 target genes in ECC1 endometrial

cells identified DSCs 1-3, DSG1, DSP, PG, and

PKPs -1 and -2 as putative Tead4 target genes
(Liu et al. 2016).

ROLE OF IFs IN MECHANICAL STABILITY

Composition, Assembly, and Organization
of Keratin Filaments

IFs can be assembled from a superfamily of

approximately 70 proteins that form cell-type-
specific cyto- and nucleoskeletal arrays in the

majority of multicellular animal species. Based

on sequence homology and expression, IFs are
grouped into six classes, all of which except lam-

ins form predominantly cytoplasmic assemblies

(Schweizer et al. 2006; Hobbs et al. 2016). Here,
we focus on epithelial keratins to examine their

contribution to the mechanical resilience of ep-

ithelia in conjunction with desmosomes, al-
though desmin and vimentin also interact with

desmosomes in cardiac tissue, meningiomal,

and arachnoidal cells in which they fulfill anal-
ogous functions (Kartenbeck et al. 1983, 1984).

Keratin assembly begins with heterodimeri-

zation of type I and II keratin molecules, fol-
lowed by formation of antiparallel tetramers.

The lateral association of four tetramers gener-
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ates so-called unit-length filaments (ULFs),

which longitudinally coalesce into mature fila-
ments with a propensity to bundle and organize

into three-dimensional (3D) networks (Herr-

mann et al. 2009; Koster et al. 2015; Herrmann
and Aebi, 2016). Keratins show extensive se-

quence diversity, a feature that discriminates

them from actins and tubulins (Schweizer et
al. 2006; Fletcher and Mullins 2010). This se-

quence diversity is responsible for their relative

affinities to each other and to associated pro-
teins, and enables isotype-specific posttrans-

lational modifications (Hatzfeld and Franke

1985; Hofmann and Franke 1997; Snider and
Omary 2014). In humans and the mouse, 28

type I keratins (KtyI) and 26 type II keratins

(KtyII) genes are predominantly expressed as
pair-specific combinations of types I and II ker-

atin proteins, respectively, in epithelial cells and

tissues. The major impact of keratins on cell
integrity and adhesion is most obvious in the

epidermis, in addition to embryonic epithelia

(Simpson et al. 2011; Bouameur and Magin
2017). The basal compartment expresses the

keratin pair KRT5/KRT14, organized in loose

bundles that extend from hemidesmosomes
and desmosomes. On terminal differentiation,

these keratinocytes disconnect from the ECM

accompanied by replacement of KRT5/KRT14
with KRT1/KRT10. Depending on regional dif-
ferences in the epidermis, additional keratins

become expressed. At sites of high mechanical
strain, such as palms and soles, the keratins

KRT1/KRT10 are supplemented by keratins

KRT2e and KRT9 (Moll et al. 2008). Analogous
to desmosomes, keratin concentration increases

from 40 mg/ml in basal keratinocytes to prob-

ably twice as much in terminally differentiated
keratinocytes (Sun and Green 1978; Feng et al.

2013). The above keratin expression pattern var-

ies, for example, during epidermal injury, which
triggers the rapid induction of KRT6, -16, and

-17 at the wound edge at the expense of KRT1/
10, accompanied by fewer and less adhesive des-
mosomes (Garrod and Chidgey 2008; Simpson

et al. 2011). KRT6, KRT16, and KRT17 are also

expressed in hair follicles and the nails (Moll et
al. 2008). Epidermal stem cells are located in

protected niches, such as the bulge of the hair

follicle, and are characterized by the expression

of KRT15 (Lyle et al. 1998;Watt 1998; Goldstein
and Horsley 2012). The vibrissae bulge harbors

two types of slow cycling stem cells, character-

ized by the expression of KRT5/15/17/19 and
KRT5/17, respectively, which display loose ker-

atin bundles in the former and tight bundles

in the latter configurations (Larouche et al.
2008). Notably, in both subpopulations lacking

KRT14, keratin network organization is differ-

ent. The complexity of keratin expression sug-
gests that keratins contribute to an intracellular

epithelial niche, analogous to a stem cell niche

(Tumbar et al. 2004), that endows distinct epi-
thelial cells with uniquemicromechanical prop-

erties through formation of specifically tailored

keratin-desmosome networks (Fig. 2).

Human Disease and Mouse Models

The importance of keratins for providing me-

chanical stress resilience in the epidermis is best

documented by blistering and hyperkeratotic
skin disorders exemplified by Epidermolysis

bullosa simplex (EBS; OMIM #131900), caused

by mutations in KRT5 and KRT14 (Szeverenyi
et al. 2008). EBS is characterized by cytoplasmic

keratin aggregates, cytolysis of basal keratino-

cytes, and bullous lesions following mild trau-
ma to the skin. Although it is recognized that

the pathomechanisms contributing to EBS and

additional keratinopathies are more complex
than originally considered (Coulombe and Lee

2012; Roth et al. 2012; Bohnekamp et al. 2015;

Hobbs et al. 2016; Kumar et al. 2016), it is evi-
dent that loss of an intact keratin cytoskeleton

renders keratinocytes fragile on mild physical

stress, shown by KRT5 and KRT14 KO mice
(Lloyd et al. 1995; Peters et al. 2001). Of note,

even mutations causing severe disease do not

prevent formation of long keratin intermediate
filaments (KIFs) in vitro (Herrmann et al.

2002), suggesting that mutations and physical

stress act at the level of keratin bundling, net-
work organization, dynamics, or by affecting

association with other proteins. Indeed, the

most frequent KRT14 Arg125 mutation com-
promises desmosome adhesion (Russell et al.

2004; Homberg et al. 2015).

Desmosomes and Keratins in Tissue Mechanics

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a029157 9

 on August 26, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


Deletion and/or mutation of other keratin

isotypes expressed in different epidermal com-
partments, either in the mouse or in humans,

did not cause cytolysis and skin blistering to the

same extent as KRT5 and KRT14, but was typ-
ified by altered cell and tissue growth, barrier,

and immune defects (Reichelt et al. 2001;

McGowan et al. 2002; Lessard and Coulombe
2012; Roth et al. 2012; Fischer et al. 2014, 2016;

Fu et al. 2014; Kumar et al. 2016; Bouameur and

Magin 2017). Transgenic expression of a bun-
dling-competent KRT5/KRT8 chimaera par-

tially rescued KRT52/2 mice, whereas expres-

sion of bundling-deficient KRT8 did not,
providing strong evidence that, in addition to

keratin abundancy, isotype-specific properties

and keratin network organization are crucial
contributors to keratin-mediated stress resil-

ience (Alvarado and Coulombe 2014).

The known redundancy of keratin ex-
pression in part explains lack of similarly severe

defects in other epithelial compartments and

complicates the analysis of isotype-specific
functions (Reichelt et al. 2001; McGowan et al.

2002; Lessard and Coulombe 2012; Roth et al.

2012). To overcome the latter, mice lacking the
entire KtyI and KtyII genes in their epidermis

were generated, in addition tomice lacking both

KRT1 and KRT10. Such mice developed a fully
stratified epidermis but died perinatally because

of extensive epidermal damage (Wallace et al.

2012; Bar et al. 2014; Kumar et al. 2015). Most
importantly, these mice showed diminished in-

tercellular adhesion and significantly smaller

desmosomes. This was accompanied by accu-
mulation of desmosomal proteins in the cyto-

plasm, highlighting that in vivo interactionwith

keratins was required for the maintenance of
functionally intact desmosomes.

Interdependence of Keratins and
Desmosomes

Desmosomes have been recognized early on as
important sites for KIF formation and organi-

zation in vivo (Jackson et al. 1980; Bologna et al.

1986; Schwarz et al. 2015), and genetic deletion
of DSP can cause extensive reorganization or

collapse of KIF, depending on the cell type

(Gallicano et al. 1998; Vasioukhin et al. 2001;

Sumigray and Lechler 2012). Moreover, DSP
and DSG1 mutations can give rise to SPPK

(OMIM #612908, #148700, respectively), a hy-

perkeratotic skin condition with fewer or small-
er desmosomes in the suprabasal epidermis and

perinuclear accumulation of KIF in DSP-asso-

ciated SPPK (Wan et al. 2004). Conversely, de-
letion of keratins reduced DSP deposition at the

plasma membrane (Loranger et al. 2006; Vi-

jayaraj et al. 2009). Distinct steps during desmo-
some assembly also require a transient but stable

interaction between DSP and KIF in the cyto-

plasm (Godsel et al. 2005; Hobbs and Green
2012; Albrecht et al. 2015).

Keratins interact with the plectin and DSP

carboxy termini through segments of their rod
domain (Meng et al. 1997; Fontao et al. 2003;

Bouameur et al. 2014). Association with kera-

tins is regulated by serine phosphorylation and
argininemethylation of theDSP tail, involving a

coordinated activity of glycogen synthase kinase

3 (GSK3) and protein arginine methyltransfer-
ase 1 (PRMT1). Inhibition of GSK3 or PRMT1

delayed desmosome assembly and enhanced

DSP–KIF interactions in the cytoplasm (Al-
brecht et al. 2015). In the absence of keratins,

using keratinocytes from keratin-deficient mice

(Vijayaraj et al. 2009), DSP phosphorylation
was elevated and desmosomes were endocy-

tosed at accelerated rates. Such desmosomes

were unable to render epithelial sheets stable
on rotational stress (Kroger et al. 2013). Reex-

pression of KRT5 and KRT14 reconstituted

properly formed desmosomes and shear-resis-
tant intercellular adhesion. Preliminary evi-

dence indicates that sequestration of protein ki-

nase C-a (PKCa) by the scaffold protein Rack1
and KRT5/14 contribute to the stabilization of

desmosomes (Kroger et al. 2013), whereas PKP3

may recruit PKCa to abrogate hyperadhesion
(Keil et al. 2016). In agreement, loss of PKCa

in mice delays reepithelialization following

wounding and is accompanied by maintenance
of hyperadhesive desmosomes (Thomason et al.

2012).

Reepithelialization requires not only altered
adhesion of keratinocytes at the wound edge

(Shaw and Martin 2009) but also diminished
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contacts of keratins to desmosomal proteins,

along with elevated expression of KRT6/16/17
and a decrease in KRT1/10 (Patel et al. 2006). In
agreement, cells expressing KRT6 or KRT17

show elevated, PKCa-mediated desmosome
disassembly and subsequent destabilization of

epithelial sheets. In contrast, KRT5 or KR14

supported stable desmosomes, suggesting that
expression of “wound healing” keratins weakens

intercellular adhesion. Further studies suggest

that the type II keratin KRT5 is a major deter-
minant of desmosome stability (Loschke et al.

2016). In addition to PKCa, p38 MAP kinase

(MAPK) signaling downstream from the serine
protease inhibitor SPINT1 participates in the

interaction of keratins and desmosomal pro-

teins (Kawaguchi et al. 2015).
Thus, available data provide strong evidence

for an interdependence of keratins and DSP

regulated by posttranslational modifications.
The casein kinase I (CK-1a) scaffold protein

FAM83H regulates keratin networks by recruit-

ing CK-1a directly to keratins (Kuga et al.
2013). It may be additionally involved in mem-

brane localization of desmosomal proteins and

in regulating desmosome–keratin interactions
(Kuga et al. 2016). Whether FAM83H activity

toward keratins or desmosomal proteins is

coordinated with force-dependent conforma-
tional changes in desmosomal proteins remains

currently unknown. In Xenopus mesendoderm

cells, increased tension at P-cadherin-contain-
ing junctions recruits PG/JUP to these sites. In

turn, PG/JUP recruits KIF to these junctions to

reorganize and reinforce the keratin cytoskele-
ton. Through this sequence of events, local forc-

es from neighboring cells mediate keratin reor-

ganization required for coordinated cell
behavior (Weber et al. 2012).

Keratins as Main Determinants for the
Mechanical Integrity of Keratinocytes and
Tissues

The mechanical properties of epithelial cells

largely dependon actin filaments,microtubules,

andKIF (Fletcher andMullins 2010; Koster et al.
2015). Although the contribution of actin fila-

ments and microtubules to these properties is

well accepted, the contribution of keratins to the

resilience of epithelia against various types of
deformation remained unknown. Unlike other

cytoskeletal elements, IF networks are less rigid

at low shear strain but harden at high strains and
resist breakage, indicating that they are crucial

for the maintenance of tissue integrity (Janmey

et al. 1991, 2013). Using atomic force microsco-
py (AFM)-based single-cell compression to ex-

amine resistance against external pressure and

global rupturing forces, keratinocytes were 6–
70 times stiffer thanmost other cell types. Selec-

tive disruption of actin filaments and microtu-

bules did not significantly alter keratinocyte
mechanics (Lulevich et al. 2010). However, ap-

plication of AFM to keratin-deficient individual

keratinocytes revealed a significant softening
of keratin-deficient cells (Ramms et al. 2013).

Magnetic tweezer experiments additionally

showed a major contribution of keratins to vis-
coelastic cell properties. Similar conclusions

were reached using a microfluidic optical

stretcher (Seltmann et al. 2013). To relate these
findings to functional consequences, invasion

and 3D growth assays were performed with nor-

mal and keratin-deficient keratinocytes, reveal-
ing higher invasiveness in the latter. However,

this came at the price of increased disruption

of cells during invasion, suggesting that certain
levels of keratins or other IF proteins are re-

quired to sustain the invasive process (Cheung

et al. 2013; Seltmann et al. 2013).
Beyond single cells, very little is known

about the contribution of keratin architecture

to tissue mechanics. A recent AFM-based study,
using the human hair follicle as a model system,

showed stiffening of the soft keratinocytematrix

at the base of the hair follicle ≏360-fold, from
30 kPa to 11 MPa along the first millimeter of

the follicle. This stiffening coincided with an

increased thickness of keratin macrofibrils and
their orientation. The continued stiffening like-

ly is because of increasing network orientation,

compaction, and mechanical reinforcement of
the keratin macrofibrils by disulfide cross-links.

This study links changes in the architecture and

molecular structure of keratin macrofibrils to
the local mechanical behavior at a tissue scale

level (Bornschlogl et al. 2016).

Desmosomes and Keratins in Tissue Mechanics

Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a029157 11

 on August 26, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


Impact of Mechanical Stretch on the
Desmosome–Keratin Complex

Exposure of keratinocytes to stretch results

in rapid and transient induction of MAPK
ERK1/2 and SAP kinases (Kippenberger et al.

2000; Yano et al. 2004), accompanied by altered

keratin expression, increased keratin phosphor-
ylation and reorganization of keratin networks

(Yano et al. 2004; Snider and Omary 2014). At

least in keratinocytes, mechanical stretching
acts via induction of calcium influx, EGFR

phosphorylation, and ERK1/2 activation

(Yano et al. 2004). In this setting, the established
role of DSG1 in EGFR signaling has not yet been

examined, thus, it remains unknown whether

keratin reorganization is mediated by desmo-
somes or affects them (Harmon et al. 2013).

Onmechanical stretch, keratinocytes expressing

the disease mutation KRT10 Arg156His show
stronger activation of p38 MAPK compared

with control transfectants, which ultimately

might drive hyperproliferation typical of the
corresponding keratinopathy (Obarzanek-Fojt

et al. 2011). In lung epithelial cells, shear stress,

but not stretch, caused hyperphosphorylation
and disassembly of KRT8 and KRT18-contain-

ing IF, regulated by PKC-d (Ridge et al. 2005).

Blocking the shear stress–mediated keratin hy-
perphosphorylation and reorganization de-

creased cell viability and increased apoptosis.

Notably, shear stress induced bundling of KIF
into thick fibrils. In this study, shear stress–me-

diated phosphorylation of KRT18 at Ser33was a

prerequisite for keratin network reorganization
to alter cells’ mechanical properties and sustain

their integrity (Flitney et al. 2009; Sivaramak-

rishnan et al. 2009).
To understand how phosphorylation affects

keratin reorganization, select phosphomutants

of KRT8 andKRT18were characterized for their
network mechanical properties using rheology

and electron microscopy. Phosphokeratin-con-

taining networks showed reduced intraconnec-
tivity and resulted in mechanically weaker and

more deformable networks in vitro. This ap-

peared to result from the formation of shorter
mutant filaments (Deek et al. 2016). In cultured

cells, hyperphosphorylation alters the stretch

response of keratins, affecting predominantly

the peripheral keratin network (Fois et al.
2013). A set of studies has investigated bio-

physical and physiological consequences of

hyperphosphorylation on normal and mutant
keratins. The bioactive lipid sphingosylphos-

phorylcholine (SPC) activates JNK and Erk ki-

nases,mediating keratin reorganization through
phosphorylation of KRT8 at Ser431 and KRT18

at Ser52 in pancreatic tumor cells. The resulting

perinuclear keratin reorganization affects the
viscoelasticity ofmetastatic cancer cells and pro-

motes tumor invasion (Beil et al. 2003). Me-

chanically stretching of keratinocytes expressing
EBS-like keratin mutations triggered a progres-

sive disassembly of desmosomes and weakened

intercellular adhesion (Russell et al. 2004; Hom-
berg et al. 2015). Thus, keratin reorganization

on posttranslational modifications might con-

tribute to the invasive properties of metastatic
tumor cells and to altered adhesion in skin dis-

orders (Beil et al. 2003; Russell et al. 2004; Hom-

berg et al. 2015; Loschke et al. 2016).

Intrinsic Keratin Properties and Associated
Proteins as Determinants of Network
Organization and Stress Resilience

The organization of cytoskeletal networks de-
pends on their intrinsic properties and their

associated proteins, and determines the com-

prehensive array of functions that they perform
(Fletcher and Mullins 2010). Bundling of indi-

vidual filaments into fibers, an intrinsic keratin

property (Lee and Coulombe 2009), is seen in
most epithelia, evident in the epidermis and in

hair follicles, whereas simple epithelia show less

dense arrays. Here, an interesting contributor to
IF organization lies in their capacity to form

disulfide bonds. With the exception of KRT8,

KRT18, and KRT19, all other human and
mouse keratins containvariable numbers of cys-

teine residues. Following the observation that a

subset of keratins becomes disulfide-cross-
linked on terminal differentiation in vivo, ho-

motypic disulfide bonds involving threeCys res-

idues in KRT14 and one in K10 were identified
in cultured keratinocytes and mouse epidermis,

in addition to interkeratin disulfide-bonded
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KRT5/14 species (Lee et al. 2012; Feng andCou-
lombe 2015; Bunick andMilstone, 2016). Avail-
able data point to multiple roles of disulfide-

bonding on keratin assembly, dynamics, and

network organization. Intriguingly, disulfide
bonding of K14 coincided with formation of

networks enriched in the nuclear periphery, a

region reactive to mechanical cues (Feng and
Coulombe 2015; Wallrath et al. 2016). Disulfide

bonding may also alter bending and buckling of

keratin networks, which occur on compressive
intracellular forces (Nolting et al. 2014). Finally,

disulfide bonds in keratins not only alter keratin

organization and dynamics on mechanical sig-
nals but could tie them to the highly dynamic

cellular redox network controlled by the antiox-

idant transcription factor Nrf2 (Schafer et al.
2012).

In addition to posttranslational modifica-

tions, the small heat shock protein Hsp27 and
proteins of the plakin and S100 families regulate

keratin assembly, bundling, and network orga-

nization (Windoffer et al. 2011; Kayser et al.
2013; Bouameur et al. 2014; Lesniak and Grac-

zyk-Jarzynka 2015). Plectin is a plakin protein

that links keratin bundling to MAPK signaling.
In contrast to prediction, genetic deletion of

plectin rendered cells more susceptible to me-

chanical stress, despite an increase in keratin
bundling (Osmanagic-Myers et al. 2006). The

latter is consistent with unaltered mechani-

cal properties of plectin knockdown cells as
assessed by indentation analyses using AFM

and by displacement analyses of cytoplasmic

superparamagnetic beads using magnetic twee-
zers (Moch et al. 2016). To investigate the trans-

mission of forces to the nucleus, which is crucial

for nuclear function, a recent study examined
plectin’s role in controlling nuclearmorphology

via keratins. On plectin knockdown, actomyo-

sin-dependent nuclear deformation occurred,
whereas direct interactions between keratins

and the nuclear envelope were not required. In-

stead, plectin down-regulation reduced KIF
density in the nuclear perimeter (Almeida

et al. 2015). Possibly, plectin acts as a mechano-

sensor as it contains a cryptic SH3domain in the
fifth spectrin repeat of its plakin domain. Fol-

lowing mechanical stress, unfolding of spectrin

domains may uncover the hidden SH3 domain

(Osmani and Labouesse 2015).
Very little is known about the interaction of

keratins with actin and actomyosin, which is

crucial during morphogenesis, cell polarity,
cell migration, and invasion. In a study aimed

to normalize mutation-disrupted keratin net-

works in hepatocytes, the multikinase inhibitor
PKC412 was found to perform this function by

enhancing nonmuscle myosin heavy chain-IIA

(NMHC-IIA) interaction with KRT8 and KRT
18 through inhibiting NMHC-IIA phosphory-

lation (Kwan et al. 2015). Solo (ARHGEF40) is a

RhoA-targeting guanine nucleotide exchange
factor (GEF) involved incyclical stretch-induced

human endothelial cell reorientation and con-

vergent extension cell movement in zebrafish
gastrula and binds to KRT8/18 IF. Knockdown
of Solo suppresses tensile force–induced stress

fiber reinforcement and RhoA activation. Thus,
the interplay between Solo andKRT8/18 plays a
crucial role in tensile force–induced RhoA acti-

vation and consequent actin cytoskeletal rein-
forcement (Fujiwara et al. 2016).

CONCLUDING REMARKS

Desmosomes as Mechanosensors?

As mentioned above, AJs are considered as the

mechanosensing unit in intercellular force

transduction and distribution in multicellular
tissues. It remains an open question whether or

not desmosomes can function as mechanosen-

sors. Although desmosomes are composed of
structurally related sets of proteins, including

cadherin and armadillo family members, a di-

rect homologue of the key mechanosensor in
AJs, a-catenin is lacking. Instead, desmosomes

contain the cytoskeletal linker protein DSPwith

an important role in lateral clustering of cadher-
ins and in linking KIFs to the junction. Its ami-

no-terminal domain interacts with PG/JUP
and PKPs, and is essential for DSP clustering
and determining desmosome size. This domain

contains spectrin repeats homologous to the

spectrin repeats found in the related plakin fam-
ily protein, plectin (Choi andWeis 2011). Spec-

trin repeat domains undergo only moderate
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bending under mechanical stress, but repeats

were shown to unfold individually at low pull-
ing forces (Rief et al. 1999). Thus, it is possible

that the DSP-amino-terminal spectrin repeat

domain undergoes force-induced unfolding of
individual spectrin repeats leading to confor-

mational changes that might alter DSP–protein

interactions. In such a scenario, DSP would act
directly as a mechanosensor. Interestingly, sev-

eral disease-causing mutations cluster in this

region and are potentially linked to structural
destabilization (Ortega et al. 2016). A central,

a-helical domain of DSP forms coiled coils

leading to homodimerization. In contrast to
the spectrin repeat domain, coiled-coils bend

easily but are rather resistant to stretching (Ada-

movic et al. 2008). The carboxy-terminal do-
main of DSP interacts with keratins and consists

of three plakin repeat domains. Whereas the

first plakin repeat domains are linked by just
four amino acids, plakin repeat domains 2 and

3 are separated by a 154 amino acid linker (Kang

et al. 2016). Decoupling of the plakin domains
suggests that the hinge region might be extend-

ed and strained in an initial step, before the

amino-terminal spectrin repeats undergo
force-induced conformational changes (Ortega

et al. 2016). Therefore, the plakin domain may

work as a molecular shock absorber that dissi-
pates elastic energy when cells are subjected to

external forces (Ortega et al. 2016).

Desmosomes in Mechanotransduction

As mentioned before, the Hippo mediators
YAP/TAZmay be involved in regulating desmo-

somes via the transcription factor Tead4 (Liu et

al. 2016). Recently, desmosome mutations in
AC were linked to modulation of Hippo/YAP
signaling, suggesting that there might be a feed-

back/feedforward mechanism (Chen et al.
2014). In AC, levels of phospho-YAP were in-

creased compared with normal human hearts,

and phospho-YAP was recruited to the junc-
tions. In agreement, RNA sequencing, quanti-

tative polymerase chain reaction, and reporter

assays all showed suppressed TEAD activity in
HL-1myocytes with a PKP2 knockdown (Chen

et al. 2014). We suppose that this mechanism is

conserved in epithelial cells and between PKP

isoforms because themajority of published YAP
targets from mouse keratinocytes (Liu et al.

2016) appeared down-regulated in PKP1 KO

keratinocytes (our own unpublished results).
Taken together, these data indicate that desmo-

somes might regulate YAP/TAZ signaling. Be-

cause YAP and PG/JUP were coimmunopreci-
pitated from human heart protein extracts,

desmosomes could function along with a-cat-

enin to recruit YAP to cell–cell contacts and
limit its transcriptional activity.
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