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Abstract

Ambient ionization mass spectrometric imaging of all parts of the seedling of Dysoxylum

binectariferum Hook. f (Meliaceae) was performed to reconstruct the molecular distribution

of rohitukine (Rh) and related compounds. The species accumulates Rh, a prominent

chromone alkaloid, in its seeds, fruits, and stem bark. Rh possesses anti-inflammatory, anti-

cancer, and immuno-modulatory properties. Desorption electrospray ionization mass spec-

trometry imaging (DESI MSI) and electrospray ionization (ESI) tandemmass spectrometry

(MS/MS) analysis detected Rh as well as its glycosylated, acetylated, oxidized, and meth-

oxylated analogues. Rh was predominantly distributed in the main roots, collar region of the

stem, and young leaves. In the stem and roots, Rh was primarily restricted to the cortex

region. The identities of the metabolites were assigned based on both the fragmentation

patterns and exact mass analyses. We discuss these results, with specific reference to the

possible pathways of Rh biosynthesis and translocation during seedling development in D.

binectariferum.

Introduction

Chromone alkaloids consist of a noreugenin chromone (5,7-dihydroxy-2-methylchromone)

component linked with a ring containing one or more nitrogen atoms [1–3]. These metabolites

are structurally diverse and are derived from the convergence of multiple biosynthetic path-

ways that are widely distributed in plant (Meliaceae and Rubiaceae) and animal kingdoms [2,

4–8]. The natural occurrence of rohitukine (Rh), a chromone alkaloid, is restricted to only five

plant species; Amoora rohituka [4], Dysoxylum binectariferum [5], D. acutangulum [7] (all

from the Meliaceae family), Schumanniophyton magnificum, and S. problematicum [1, 2]

(from the Rubiaceae family). Among these species, D. binectariferum accumulates the highest

amount of Rh (3–7% by dry weight in stem bark) [9, 10]. Recently, dysoline, a new regioisomer
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of Rh was reported from the stem bark of D. binectariferum [11]. Besides the plant sources,

endophytic fungi associated with A. rohituka and D. binectariferum have also been shown to

produce Rh in culture, independent of the host tissue [12–14]. The biosynthetic pathway of

chromone alkaloids in general, and Rh in particular, have not been elucidated [15], though the

occurrence of free noreugenin in the plant suggests that it might be formed prior to the conju-

gation with the nitrogen-containing moiety. The presence of trigonelline in chromone alkaloid

producing plants suggest that it could be a possible precursor for pyridine-related alkaloids [1,

2]. Recent studies have reported a pentaketide chromone synthase (PCS) that catalyzes the for-

mation of the noreugenin compound, 5,7-dihydroxy-2-methylchromone, from five malonyl-

CoA precursor units [16–19]. Studies have also reported that ornithine is an initial precursor

molecule for the biosynthesis of piperidine, nicotine, and tropane alkaloids [20]. The nitroge-

nous group derived from ornithine could be the origin of the nitrogen atom in chromone alka-

loid biosynthesis.

Pharmacologically, Rh has been reported to have anti-inflammatory, anti-fertility, anti-

implantation, anti-cancer, and anti-adipogenic activities besides having immuno-modulatory

properties [2, 4–8, 11, 21]. Two derivatives, namely, flavopiridol (also known as HMR 1275 or

alvocidib) and P-276-00 have been shown to competitively bind to the ATP binding pocket of

cyclin-dependent kinases (CDKs) and inhibiting their activity. Flavopiridol arrests the cell

cycle at both G1 and G2 phases and has been shown to be effective against breast and lung can-

cers and chronic lymphocytic leukemia [22, 23]. The compound has been approved as an

orphan drug for treatment of chronic lymphocytic leukaemia [8]. Flavopiridol has also been

shown to block human immuno-deficiency virus Tat trans-activation and viral replication

through inhibition of positive transcription elongation factor b (P-TEFb) [24, 25]. The deriva-

tive P-276-00 is in phase II clinical studies for advanced refractory neoplasms and multiple

myeloma [8].

In a recent study, we have examined the spatial and temporal distribution pattern of Rh and

related compounds in different parts of the seeds of D. binectariferum [26]. Rh (m/z 306.2)

accumulation increased from early seed development to seed maturity and was largely found in

the embryo and cotyledon. Besides Rh, we also reported the presence of Rh acetate (m/z 348.2),

and glycosylated Rh (m/z 468.2) in the seeds.

In this study, we examine the spatial distribution of Rh and related compounds in seedlings

of D. binectariferum using desorption electrospray ionization mass spectrometry imaging

(DESI MSI). In DESI MS, molecular masses are analyzed by transporting desorbed ions gener-

ated by spraying electrically charged solvent droplets at the sample of interest into the mass

spectrometer [27]. This is an ambient ionization technique and consequently many of the limi-

tations of conventional mass spectral analysis do not apply here. In recent years, the technique

has been used widely to spatially map the occurrence of a number of plant secondary metabo-

lites and infer the underlying mechanisms leading to spatial patterns as well as their adaptive

significance [28–33]. MALDI MS has been used to identify metabolites in glandular trichomes

from a wild tomato (Solanum habrochaites) leaf at a spatial resolution of around 50 μm [34].

More recently, mass spectrometric imaging have been used in conjunction with tissue specific

transcriptomic analysis to deduce the biosynthetic pathway; for example, in Flax (Linum usita-

tissimum) [35], Arabidopsis [36], and Podophyllum species [37, 38]. The increasing use of MS

imaging for spatial pattern analysis owes itself to its relative ease of use and its unique advan-

tage, especially when detecting relatively labile compounds that may lose their structural and

chemical characteristics upon extraction.

In the present study, using DESI MSI we have mapped the spatial distribution of Rh and

other related compounds in the seedlings of D. binectariferum. The identities of most of the

metabolites, including Rh were assigned based on both the fragmentation patterns and exact

Spatial Distribution of Metabolites

PLOS ONE | DOI:10.1371/journal.pone.0158099 June 30, 2016 2 / 14

Competing Interests: The authors have declared

that no competing interests exist.



mass analyses. We discuss these results, with specific reference to the possible pathways of Rh

biosynthesis and translocation.

Materials and Methods

Ethics statement
The fieldwork and collection of seed sample of D. binectariferum was carried out in the central

Western Ghats regions of Karnataka (Jog, 140 13’ 65” N, 740 48’ 35” E) with kind permission

from the Karnataka Forest Department, Bengaluru. Seed sampling was carried out under the

supervision of forest officers and used solely for scientific research. The sampling was non-

invasive with no impact on the natural growth or regeneration of D. binectariferum popula-

tions in the wild.

Plant material
D. binectariferum (diploid chromosome number 2n = 80) is a medium to large sized tree dis-

tributed in the tropical and subtropical regions of Eastern Himalayas, Khasi Hills, Western

Ghats of Peninsular India, and Sri Lanka. In the Western Ghats, D. binectariferum is distrib-

uted from Coorg to the Anamalais and Tinnevelly in the moist forest [39]. The plant is polli-

nated by insects [40] while the seeds are dispersed by birds (hornbills and imperial pigeons).

Seedling recruitment in the natural habitats is limited because of heavy predation of fruits by

rodents [41].

D. binectariferum seeds were collected from Jog (140 13’ 65”N, 740 48’ 35” E) located in the

central Western Ghats, India. From these seeds, seedlings were raised in polybags in the Forest

Nursery at the University of Agricultural Sciences, GKVK, Bengaluru and later transported to

the Indian Institute of Technology Madras campus at Chennai. Seedlings were maintained

under shade and were well watered. Root, shoot, leaves, and cotyledons of 10 month old seed-

lings were used for the imaging studies.

Extraction of Rh and HPLC analysis
10 months old seedlings (n = 3), about 25 cm in length (Fig 1A), were collected from the nurs-

ery and oven dried for 4 days at 70°C. Rh was extracted from different parts of the seedlings

(root, stem, and leaves) following earlier report [9]. Rh content (w/w) in the extracted samples

were analyzed using reverse-phase HPLC (Shimadzu, LC20AT, Japan), RP-18 column (4.6 X

250 mm, 5 μm) with UV absorbance at 254 nm [9, 26]. The solvent system comprised of aceto-

nitrile and 0.1% TFA as mobile phase. A gradient starting from 0%:100% to 100%:0% of aceto-

nitrile:0.1% TFA with a flow rate of 1000 μL/min was used. Sharp peak with highest peak

intensity was obtained at a mobile phase composition of 30% acetonitrile and 70% TFA (0.1%).

All samples were then analyzed in an isocratic mode using 30% acetonitrile:70% TFA (0.1%) as

mobile phase. A standard curve was constructed using various concentrations (0.125, 0.25, 0.5,

0.75, and 1 mg/mL) of Rh [9]. 20 μL of each of the standard concentrations were injected into

the HPLC and their respective retention times (Rt) and peak areas were recorded. The peak

area was plotted against the respective concentration and a regression analysis was carried out.

Using the regression equation, Rh content was calculated per 100 g dry weight basis. All esti-

mates were made over 3 replicate samples.

ESI MS analysis
Different sections of the root, shoot, leaves, and cotyledons (corresponding to regions that

were used for the imaging) were cut into small pieces and soaked in methanol for 12 hours.

Spatial Distribution of Metabolites
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The solution was filtered and centrifuged at 10000 rpm for 10 minutes. The supernatant was

analyzed by ESI MS/MS using Thermo Scientific LTQ XL (Thermo Scientific, San Jose, CA,

USA) mass spectrometer and exact mass was analyzed using Thermo Scientific Orbitrap Elite

(Thermo Scientific, San Jose, CA, USA) mass spectrometer. The data was acquired in positive

ion mode with a spray voltage of 5 kV. Collision induced dissociation (CID) was used for frag-

mentation of the ions during MS/MS measurements. The identities of the ions were established

based on both the fragmentation patterns and exact masses of the ions obtained and using

METLIN metabolite database [42]. The mass tolerance of ±3 ppm was used in the METLIN

database search. The MS/MS data was used to infer the compound identity by comparing the

fragment ionm/z with published literature and database. All the spectra are represented in the

profile mode.

Desorption electrospray ionization mass spectrometry imaging (DESI
MSI)
Using a surgical blade, seedlings (10 months old) were neatly cut to separate the root, stem,

and meristem. Longitudinal and cross sections of different plant parts were made according to

the experimental needs. Cross sections (about 2 mm thick) were made at every 1 cm interval

from the root tip to the shoot tip while longitudinal sections were made approximately at the

median axis of the root and stem. Cross section of the root (Fig 1B) was observed under FEI

Quanta 200 environmental scanning electron microscope (ESEM). The images clearly showed

the parts corresponding to the epidermis, endodermis, cortex, xylem, and phloem tissues (Fig

1C and 1D).

Fig 1. (a) 10 month old seedling of D. binectariferum, (b) Cross section of the root, (c) Scanning electron
microscope (SEM) image of cross section of the root, (d) Magnified SEM image of the root showing the xylem
and phloem, and (e) Leaf and its TLC imprint.

doi:10.1371/journal.pone.0158099.g001
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To get an imprint of the molecules present on the cut-end of the section on a flat surface, a

TLC plate (TLC Silica gel 60 F254, Merck KGaA, Germany) was pre-wetted with methanol and

kept on a heating mantle (~70°C). The cut sections (both cross and longitudinal sections) were

placed on the hot TLC plate and hand pressed for 10 seconds to get an imprint [26, 43]. Leaves

of 10 months old seedlings were imprinted on a TLC plate (Fig 1E) with 2 ton pressure for 15

to 30 seconds using a hydraulic pelletizer [32].

Imaging experiments were conducted using Thermo Scientific LTQ XL (Thermo Scientific,

San Jose, CA, USA) mass spectrometer with 2D DESI ion source (Omni Spray Ion Source)

from Prosolia, Inc., Indianapolis, IN, USA. The DESI source conditions were as follows; nebu-

lizing gas (dry nitrogen) pressure: 150 psi, spray angle: 60° to the sample surface, tip of spray to

sample surface distance: 1 mm, tip of spray to mass spectrometer inlet distance: 3 mm, spray

solvent: methanol, solvent flow rate: 5 μL/min, spray voltage: 5 kV, and ionization mode: posi-

tive (+ve). The image area was chosen according to the sample dimensions and the spatial reso-

lution used was 250 μm X 250 μm. Imaging 1 cm X 1 cm area of tissue sample took

approximately 30 min. Imaging time varied with the area of the tissue samples. For a seedling

of 25 cm in length, it took about 12 hours to completely image the whole seedling. Image files

(IMG File) were created using FireFly software from the acquired data and BioMAP software

were used to process the image files to create images. Normaliztion of the images were done for

the individual ions in a particular Figure. While processing the image files in BioMAP, separate

images could be generated with a difference of 0.083 inm/z. Them/z values obtained from Bio-

MAP image had been approximated to one decimal place. For example, in case of Rh (m/z

306.2, obtained from DESI MS data), we generated image in BioMAP atm/z 306.167 instead of

m/z 306.250, as the latter deviated more from the experimental value. In this process, we might

encounter a situation where, for a particular ion, images may actually represent several species,

as biological samples are complex mixtures. However, Orbitrap data excluded the possibility of

existence of other ions in close proximity to the ions of interest, although a singlem/z value

might represent different isomers.

Results and Discussion

Metabolite identification via ESI MS/MS and exact mass measurement
ESI MS analysis of the seedlings showed molecular signatures in the range ofm/z 140–1000 (S1

Table). These masses included those of Rh, its related compounds and several unknowns. For

the purpose of this paper, we restrict our further analysis to only the chromone alkaloids and

their possible precursors. The ions were subjected to fragmentation using CID during ESI MS/

MS analysis (Fig 2 and S1 Table). Considering the fragmentation patterns and the exact masses

of the ions, probable chemical formulae and structures of the chromone alkaloids and their

precursors were arrived at using the METLIN metabolite database (Fig 2) [42]. A list ofm/z

values of the parent and fragment ions, their probable chemical formulae, and structures are

given in S1 Table.

Rh and related chromone alkaloids. The parent molecule Rh (m/z 306.2) fragmented

into daughter ions atm/z 288.0, 245.0, and 222.0 (Fig 2B) similar to the daughter ions obtained

from a standard (Fig 2A). The peak atm/z 288.0 is due to the neutral loss of H2O from the

piperidine ring andm/z 245.0 is due to further fragmentation of the ring. The peak atm/z

222.0 is due to the fragmentation of the chromone ring [14, 44].

Rh-N-oxide (m/z 322.2) was recovered from leaves. Fragmentation of this molecule yielded

three ions atm/z 304.3, 276.2, and 238.0. The peak atm/z 304.3 is due to the neutral loss of

H2O from the piperidine ring andm/z 276.2 is due to further fragmentation of the piperidine

ring. The peak atm/z 238.0 is due to the fragmentation of the chromone ring (Fig 2C) [14].

Spatial Distribution of Metabolites
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Beside these, we also obtained an ion atm/z 338.2 from leaves, which is most likely, a meth-

oxylated analouge of Rh. The MS/MS fragmentation ofm/z 338.2 yieldedm/z 306.2 which

could be accounted for by the neutral loss of methanol (CH3OH) (Fig 2D and 2E). The ion at

m/z 306.2 upon further fragmentation yielded three major ions atm/z 288.0, 245.0, and 222.0

similar to that of Rh. The peak atm/z 288.0 is due to the neutral loss of H2O from the piperi-

dine ring andm/z 245.0 is due to further fragmentation of the ring (Fig 2E). Two other chro-

mone alkaloids, namely, Rh acetate (m/z 348.2) (Fig 2F), and glycosylated Rh (m/z 468.2) were

also recovered from the seedlings (Fig 2G and 2H).

Two other ions,m/z 328.2 and 610.9, were predicted to be sodiated Rh and protonated

dimer of Rh, respectively. Their exact masses,m/z 328.1155 and 611.2598, indicated probable

chemical formulae of C16H19NO5Na and C32H39N2O10, respectively (S1 Table) [26]. A sum-

mary of the fragmentations obtained is presented in S1 Table.

Probable precursors of chromone alkaloids. Besides Rh and its analogues, a few small

molecules withm/z 174.1 and 198.2 were observed in the seedlings of D. binectariferum. Frag-

mentation patterns of these ions are shown in Fig 2I and 2J. Exactm/z of these compounds

measured by Orbitrap at 174.1236 and 198.1235 indicated that they could be indospicine

(C7H15N3O2) and hercynine (C9H15N3O2), respectively (S1 Table). Interestingly, both of these

molecules are reported in KEGG metabolic pathway database to serve as precursors (acyl

group in the cyclization) in the biosynthesis of piperidine and pyridine alkaloids and also in

the biosynthesis of various fatty acids. It is likely that these molecules may also be involved in

the biosynthesis of chromone alkaloids in seedlings of D. binectariferum.

Rh quantification via HPLC
Among the chromone alkaloids, Rh was predominant in all tissues examined. Rh content was

highest in the main roots (0.43±0.02%), followed by leaves (0.31±0.01%), stem (0.21±0.06%),

and was least in lateral roots (0.14±0.03%) and twigs (0.14±0.05%) (Fig 2K).

Spatial distribution of metabolites in the seedlings of D. binectariferum
Based on the identities of the various ions assigned in the previous section, the spatial distribu-

tion patterns of the different ions in the seedlings (S1 Table) were analyzed using DESI MSI.

In cotyledons. DESI MS analysis of the cross and longitudinal sections of the cotyledon

showed a few prominent metabolites (indospicine, Rh, sodiated Rh, Rh acetate, glycosylated

Rh, and Rh dimer). All these, except indospicine are related to Rh. Though Rh (m/z 306.2) was

uniformly distributed, the intensity was higher in the outer part of the cotyledon. This was also

reflected in the distribution of acetylated Rh (m/z 348.2). The peak atm/z 915.4, possibly a tri-

mer of Rh, reported in the seeds of D. binectariferum [26], was not recovered from the cotyle-

don (Fig 3).

In root and shoot. Electron microscopic observation of cross section of the root clearly

showed different parts corresponding to the epidermis, endodermis, cortex, xylem, and phloem

tissues (Fig 1C and 1D). These observations helped in better visualization and description of

the localization of metabolites in the tissue parts. DESI MS images of both the cross and longi-

tudinal sections of the seedlings showed distinct stratification of the various ions in different

parts of the seedlings. By far, the intensities of many of the ions were highest in the roots

Fig 2. ESI MS/MS fragmentation patterns of (a) standard Rh, (b) plant Rh, (c) Rh-N-oxide, (d, e)
methoxylated Rh, (f) Rh acetate, (g, h) glycosylated Rh, (i) indospicine, and (j) hercynine. Insets in images
show the schemes of mass fragmentation of the respective metabolites. (k) Rohitukine content (% w/w) in
different parts of 10 month old seedlings of D. binectariferum.

doi:10.1371/journal.pone.0158099.g002
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upwards to the collar region, representing the transition from the root to the shoot (Fig 4).

Indospicine, hercynine, Rh, sodiated Rh, Rh dimer, and Rh trimer were present in all parts of

the root and shoot while Rh acetate and glycosylated Rh were mostly present in the root and

early development of shoot (Fig 4). Representative DESI MS spectra from a TLC imprint of

cross sectioned root of D. binectariferum seedling are shown in S1 Fig.

Both longitudinal and cross section analyses indicated distinct tissue specific distribution of

molecular ions. For example, indospicine, Rh, sodiated Rh, Rh dimer, and Rh trimer were

found in cortex and endodermis, Rh acetate and glycosylated Rh in xylem and phloem regions,

hercynine in endodermis, xylem, and phloem regions (Fig 4).

In leaves. Except Rh acetate, all other ions found in the root and stem were also present in

the leaves (Fig 5). Many of the molecules detected in the leaves may be synthesized or accumu-

lated in the leaves in response to various abiotic and biotic stresses. There was a distinct spatial

pattern of the ions. For example, indospicine, Rh dimer, and Rh trimer were present in the

midrib and veins, hercynine in leaf margin, Rh-N-oxide and glycosylated Rh in the leaf blade

(Fig 5).

Our study showed that Rh, one of the prominent chromone alkaloids in D. binectariferum

seedlings, was predominantly distributed in the roots and leaves compared to the stem and

twigs. Within the root itself, the distribution was restricted to the main roots and less in the sec-

ondary roots (Fig 6). In stems, Rh intensity was high in the collar region separating the root

from the shoot (Fig 4). Finally, among the leaves, younger apical leaves were more densely

packed with Rh than the older distal leaves (Fig 6).

In a recent study, we examined the spatial and temporal distribution of Rh and related com-

pounds in the seeds of D. binectariferum during different seed developmental stages [26]. We

showed that Rh was predominantly localized to the cotyledonary tissues with very little in the

seed coat. Presumably such high levels of Rh in the cotyledonary tissues might act as a reservoir

for translocation to the growing axis of the plant during seed germination.

While there is no unequivocal evidence, it appears that Rh could be synthesized both in the

roots as well as in the growing shoot apices of the plant. Within the root or stem, Rh was clearly

restricted to the cortex region in and around the phloem tissues indicating that it could be

actively translocated through the phloem tissues from their sites of production in the plant (Fig

6). Additional support that there could be active transport of the metabolite comes from our

finding of glycosylated Rh in different parts of the seedlings. Glycosylation of secondary metab-

olites has been reported in many instances [45–47]. Glycosylation leads to both stabilization

Fig 3. DESI MS images of (a) longitudinal and (b) cross section of cotyledons of D. binectariferum. Scale bars correspond to 5 mm and apply to all the
images of a row. Intensity normalization of the images was done separately for all the individual metabolites.

doi:10.1371/journal.pone.0158099.g003
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and translocation of secondary metabolites through secondary transporters such as the ABC

transporters. Furthermore, the glycosylation could also help in the storage of potentially toxic

compound Rh until it is required upon to serve as a deterrent to pests [48, 49]. Though the

functional significance of Rh in plants is not known, it has been shown to possess a variety of

interesting pharmacological properties such as its ability to inhibit cyclin-dependent kinases

CDKs [11]. It is likely that, this activity of Rh could serve as a defense for the plant against her-

bivore and hence explains the higher accumulation of Rh in the younger growing shoot apices.

The biosynthesis of Rh is not yet elucidated. However, based on the constituent chemical

moieties of the compound, it is suggested that it may comprise of the shikimic acid pathway to

produce the flavonoids or the pentaketide pathway to produce chromone with a nitrogenous

group derived from L-ornithine or other amino acids (Fig 7) [16, 20]. The biosynthesis of

Fig 4. DESI MS images showing the distribution of Rh and other related compounds in different cross
sections of root and shoot of a 10 months old seedling of D. binectariferum. Scale bars correspond to 2
mm and apply to all the images of a row. Intensity normalization of the images was done separately for all the
individual metabolites.

doi:10.1371/journal.pone.0158099.g004
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chromone alkaloid is hypothesized to follow either of the two major steps; a) involving noreu-

genin or b) involving a flavone compound (Fig 7) [3]. ESI MS and DESI MS data revealed that,

besides Rh, a few other related chromone alkaloids, such as Rh-N-oxide, Rh acetate, glycosy-

lated Rh, etc. were present in different parts of the plant. The detection of these chromone com-

pounds strongly suggests the possibility of the involvement of the noreugenin pathway in the

production of Rh in D. binectariferum.

Fig 5. DESI MS images showing the distribution of Rh and other related compounds in the imprinted
leaf of a 10 months old seedling of D. binectariferum. Scale bar corresponds to 5 mm applies to all the
images.

doi:10.1371/journal.pone.0158099.g005

Fig 6. Reconstruction of spatial distribution of Rh obtained from DESI MS imaging of different parts of
a 10 months old seedling ofD. binectariferum.

doi:10.1371/journal.pone.0158099.g006
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In the recent past, a number of studies have used several imaging techniques including

MALDI MS and DESI MS to unravel the spatial patterns in the distribution of plant secondary

metabolites [28–33]. Understanding the spatial patterns could also lead to deciphering the

underlying gene expression related to the pathway genes [34, 36]. In our study, younger leaves

found to have higher levels of Rh compared to older leaves (Fig 7). It would be interesting to

study the comparative transcriptomic profile of young and old leaves and unravel critical genes

that are either expressed (in young leaves) or repressed (in older leaves).

Fig 7. Schematic representation of possible biosynthetic pathway of Rh inD. binectariferum.

doi:10.1371/journal.pone.0158099.g007
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Conclusions

In conclusion, our results provide a spatially explicit distribution of metabolites in the seedlings

of a tropical tree, D. binectariferum, with specific reference to a not-so-common group of

metabolites, the chromone alkaloids. The mass spectrometric images provide a direct visualiza-

tion of the localization of metabolites in the various parts of the seedlings. Considering a reso-

lution of 250 μm, the images provide a sufficiently higher resolution display of the metabolites

at a whole seedling level. Combination of these display data with transcriptomic data would

provide a powerful way to unravel the genetic basis of the differences in the metabolite profiles.

Currently work is underway in our laboratory to address this issue.

Supporting Information

S1 Fig. Representative DESI MS spectra and images of metabolites from the TLC imprint
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