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Abstract

Speckle noise is an inherent property of medical ultrasound imaging, and it generally tends to
reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging
modality. As a result, speckle noise reduction is an important prerequisite, whenever ultrasound
imaging is used for tissue characterization. Among the many methods that have been proposed to
perform this task, there exists a class of approaches that use a multiplicative model of speckled
image formation and take advantage of the logarithmical transformation in order to convert
multiplicative speckle noise into additive noise. The common assumption made in a dominant
number of such studies is that the samples of the additive noise are mutually uncorrelated and
obey a Gaussian distribution. The present study shows conceptually and experimentally that this
assumption is oversimplified and unnatural. Moreover, it may lead to inadequate performance of
the speckle reduction methods. The study introduces a simple preprocessing procedure, which
modifies the acquired radio-frequency images (without affecting the anatomical information they
contain), so that the noise in the log-transformation domain becomes very close in its behavior to a
white Gaussian noise. As a result, the preprocessing allows filtering methods based on assuming
the noise to be white and Gaussian, to perform in nearly optimal conditions. The study evaluates
performances of three different, nonlinear filters—wavelet denoising, total variation filtering, and
anisotropic diffusion—and demonstrates that, in all these cases, the proposed preprocessing
significantly improves the quality of resultant images. Our numerical tests include a series of
computer-simulated and in vivo experiments.

I. Introduction

Among the currently available medical imaging modalities, ultrasound imaging is
considered to be noninvasive, practically harmless to the human body, portable, accurate,
and cost effective. These features have made the ultrasound imaging the most prevalent
diagnostic tool in nearly all hospitals around the world. Unfortunately, the quality of medical
ultrasound (as defined by image resolution and contrast) is generally limited due to a
number of factors, which originate both from physical phenomena underlying the image
acquisition and imperfections of the imaging system design. Whereas the latter is remaining
a challenge for design engineers, the undesirable physical effects should be compensated by
using efficient signal processing tools. As a result, in the past few decades considerable
efforts in the field of ultrasound imaging have been directed at development of signal
processing techniques intended to combat the main foe of this imaging modality—speckle
noise.

Speckle noise is a phenomenon that accompanies all coherent imaging modalities in which
images are produced by interfering echoes of a transmitted waveform that emanate from
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heterogeneities of the studied objects. The superposition of acoustical echoes coming with
random phases and amplitudes tends to produce an intricate interference pattern, known as
speckle noise that scales from zero to a maximum, depending on whether the interference is
destructive or constructive. Demonstrating little relationship to the macroscopic properties
of studied biological tissues, speckle noise tends to obscure and mask diagnostically
important details, thereby distracting the diagnosis.

Although speckle noise is a random process, it is not devoid of information. The statistics of
the speckle, which generally depend on the microstructure of tissue parenchyma, can be
useful for differentiating between either different tissue compositions or types [1], [2].
However, there is no consensus on a unified way to interpret and use this information.
However, it is well-known that speckle noise tends to reduce the image contrast, obscure
and blur image details, thereby decreasing the quality and reliability of medical ultrasound.
As a result, image processing methods for suppressing the speckle noise (which for brevity,
will be referred to as despeckling methods) have proven useful for enhancing image quality
and increasing the diagnostic potential of medical ultrasound.

Comprehensive analysis of statistical properties of the speckle noise was given a major
impetus by the seminal paper of Goodman [3], in which the statistical mechanism of laser
speckle formation was first presented. Besides providing basic theoretical results, the study
advocates the necessity of rejecting speckle noise via linear filtering to improve the
perceptual quality of the images. The results of [3] were subsequently revised in [1], [4], and
[5] to account for the specificity of ultrasound imaging. It was recognized that the linear
filtering (as it was initially proposed in [3], [5]) is far from being an optimal tool to be used
for suppressing the speckle noise because it tends to suppress the noise at the expense of
overly smoothing the image details. To perform the filtering, while preserving the
anatomical content of the images, adaptive median filters were proposed in [6], [7] (for a
comparative analysis of the linear and median filtering, see also [8]). Although these filters
are capable of effectively suppressing the speckle pattern, they still seem to remove fine
details being actually filters with a low-pass characteristic.

The multiplicative nature of the speckle noise formation was explicitly used in [9] in which
the author proposes an algorithm that first converts the multiplicative speckle noise into an
additive noise by applying the logarithmic transformation to a speckled image.
Subsequently, Wiener filtering is used in order to reject the resultant additive noise,
followed by the exponential transformation. The structure of this algorithm is general in the
sense that it allows further modification by replacing the linear Wiener filter with other
filtering schemes. In particular, discovery of the wavelet transform [10] and fast wavelet
decomposition methods [11] had led to wavelet denoising [12], [13] as a powerful method of
recovering nonstationary signals. The application of wavelet denoising to the despeckling
problem in medical ultrasound imaging was reported in [14]–[16]. The methods, which are
based on a multiplicative model of the speckle noise and use the logarithmic transformation
to convert the multiplicative noise into an additive one, followed by wavelet denoising, are
referred to as the homomorphic wavelet despeckling (HWDS) methods.

Note that the HWDS methods were initially considered in the field of synthetic aperture
radar (SAR) imaging in which the first work on this subject seems to be [17]. Since then,
many of this type of methods have migrated from the field of SAR imaging to the field of
medical ultrasound imaging, using the similarity between the processes of producing the
SAR and ultrasound images. A comparative study between the HWDS method and several
standard speckle reduction methods, which are largely used by the SAR imaging
community, was presented in [18], demonstrating that the former is among the best for
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speckle removal. (As to the ultrasound imaging, an analogous conclusion was drawn in
[15].)

Despite the impressive results of using the HWDS methods (as reported in [14]–[16]), the
present study demonstrates that the performance of such algorithms can be considerably
improved via an accurate analysis of statistical properties of the noise to be rejected, and
subsequent adjustment of the despeckling scheme. It is shown that the main drawback of the
above algorithms stems from considering the log-transformed noise to be white Gaussian
noise (WGN). The current study provides evidence that such an assumption is generally
oversimplified and leads to inadequate performance of the despeckling. The study shows
that, in the most typical practical setting, the noise is neither Gaussian nor white, and it is
likely to obey the Fisher-Tippett distribution, implying that the noise is spiky in nature. If
not properly treated, the spiky component of such a noise can be processed by a denoising
algorithm as a part of the useful signal that needs to be recovered. It allows a significant
portion of the noise to be preserved by denoising, thereby considerably decreasing the
efficiency of HWDS. Moreover, the present study indicates that the performance of HWDS
for ultrasound imaging does not depend on the refinement of a specific wavelet denoising
scheme used (that can be achieved via using either an ad hoc thresholding scheme [14] or
“fine-spun” statistical priors assumed for the signal's wavelet coefficients [16]), to the same
extent as it depends upon the degree to which the denoising scheme is adapted to the
particular noise model at hand. As a result, a modified HWDS algorithm is proposed here.
The modification is accomplished by adding to the standard HWDS structure a
preprocessing stage, which is intended to alter the noise statistics without changing the
anatomical content of the image.

The preprocessing consists of two steps. First, a radio-frequency (RF) image is subjected to
a spectrum equalization procedure intended to decorrelate the image samples. Second, the
log-transformed envelope image is passed through a nonlinear outlier-shrinkage procedure,
whose purpose is to suppress the spiky component of the log-transformed speckle noise. It is
shown that the preprocessing causes the noise to change in such a way that its behavior
becomes similar to that of a WGN model for which the performance of most wavelet
denoising schemes is guaranteed to be optimal. By means of comparing the despeckling
results, obtained in a series of in silico and in vivo experiments, the present study
demonstrates that the proposed preprocessing procedure results in a considerable
improvement of the quality of despeckled images.

In addition, similar results were obtained for two alternative homomorphic despeckling
methods derived from the above approach via replacing the wavelet denoising step by total-
variation filtering [19] and anisotropic diffusion [20]. Therefore, besides presenting a
method for improving the performance of HWDS approaches, the study also demonstrates
the applicability of some alternative filtering methods to the despeckling problem in medical
ultrasound imaging.

This paper is organized as follows. Section II analyzes the correlation properties of
ultrasound images and introduces a whitening procedure for reducing the correlation
between the image samples. Some basic properties of speckle noise, as well as the
multiplicative model of speckled image formation, are discussed in Section III. The outlier-
shrinkage procedure for suppressing a spiky component of the noise in the log-transform
domain is also presented in Section III. Section IV provides a brief overview of the
despeckling method proposed in the present study. Experimental results are summarized in
Section V, and Section VI concludes the paper.
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II. RF-Image Modeling and Equalization

A. Image Formation Model in Medical Ultrasound

In order to construct a decorrelation operator for ultra-sound images, an image formation
model should be specified first. Assuming linear wave propagation and weak scattering, the
back-scattered signal and the tissue reflectivity function1 are well-known to obey a simple
Fourier transform relationship with respect to each other [21]. In this case, an RF-image is
considered to be a result of the convolution of the point-spread function (PSF) of the
imaging system with the tissue reflectivity function. Denoting by g(n, m), f(n, m), and h(n,
m) the RF-image, the tissue reflectivity function, and the PSF, respectively, the convolution
model is formally given by:

(1)

where n and m denote the axial and lateral (or radial and angular, for B-scan sector images)
indices of the image samples. The term u(n, m) is added to describe measurement noises as
well as all the physical phenomena, which are not accounted for by the convolution model.

It should be noted that the convolution model only approximates the real signal-tissue
interaction. Although linear wave propagation is almost always the case, when a moderate
amount of acoustical energy is transmitted and tissues with significant attenuation are
interrogated, weak scattering generally is not a norm for biological tissues. For instance, in
the vicinity of organ boundaries, in which the reflections are typically strong, acoustical
reverberations can take place. The latter produce spurious reflectors, thus introducing an
error in the definition of the true reflectivity function. However, considering the fact that the
regions occupied by strong reflectors are not numerous in regular ultrasound images, the
convolution model is known to approximate very closely the real image formation process.
This fact has been widely used in numerous methods of ultrasound image reconstruction by
deconvolution [22], [23].

The model (1) assumes that the PSF is spatially invariant; an assumption which generally
does not hold in practice. Although the variability of the PSF along the lateral direction is
primarily due to the changes in the spatial-impulse response of the transducer aperture [24],
along the axial direction it also results from the frequency-dependent attenuation [25] and a
number of other factors (e.g., nonuniformity of transmission focus, phase aberrations, etc.).
Note that, in many cases, the lateral variability of the PSF can be safely neglected, as its
effect is largely reduced in modern scanners through dynamically apodizing the transducer
aperture. Along the axial direction, however, the PSF variability cannot be compensated by
similar means.

Perhaps the simplest way to overcome the problem of the PSF variability, while preserving
the translation invariance of the model, is to divide the whole image into a number of
(possibly overlapping) segments. If the PSF dependency on the spatial coordinate is
sufficiently smooth, one can reasonably assume, that each image segment is formed by
convolving the corresponding fragment of the reflectivity function with a local PSF. (Note
that such a segmentation can be thought of as an approximation of the spatial dependency of
the PSF by a piecewise constant function.) Consequently, the image segments can be
processed separately using the model (1) with corresponding local PSF, and, subsequently,
the entire image is recovered by combining together the local results obtained in this

1The tissue reflectivity function accounts for the heterogeneity of the tissue due to density and propagation velocity perturbations,
which give rise to the scattered signal. It describes overall reflections in a tissue via defining relative strengths of acoustic reflectors
and scatterers as a function of spatial coordinates.
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manner. In spite of its simplicity, the above method has proven sufficiently accurate [22],
[23], [26], and particularly useful in cases in which fast processing is desired (for more
discussions regarding this segmentation, see [26]). Without any loss of generality, the
discussion below is focused on an arbitrary image segment, which, with a slight abuse of
notation, also will be referred to as an RF-image.

B. Decorrelation of Ultrasound Images

Let Pg(ω1, ω2), Pf(ω1, ω2), and Pu(ω1, ω2) denote the power spectral densities of the RF-
image, the tissue reflectivity function, and the additive noise, respectively. Also, let H(ω1,
ω2) denote the Fourier transform of the PSF. Then, provided that the samples of the
reflectivity function are independent of the noise, the following spectral relationship takes
place:

(2)

Due to the natural intricacy of most biological tissues and the fact that tissue heterogeneity is
generally formed by numerous small “independent” structures, the samples of the
reflectivity function can reasonably be assumed to be uncorrelated [22], [23]. In this case,

Pf(ω1, ω2) is a constant function with its amplitude equal to the variance  of f(n, m).
Moreover, in many cases of practical interest, the samples of the additive noise u(n, m) can
be reasonably assumed to be uncorrelated as well, so that the power spectral density Pu(ω1,
ω2) is constant and equal to the noise variance . The above assumptions allow simplifying
(2) to the following form:

(3)

One can see that the power spectral density of g(n, m) is nothing else, but the power
spectrum of the PSF plus the noise term, and, hence, the autocorrelation of the RF-image is
completely defined by the autocorrelation of the PSF. The latter is well-known to have a
non-negligible support. The spatial extent of the PSF along the lateral direction is defined by
a non-negligible width of the acoustical beam, and along the axial direction, it is defined by
the Q-factor of the ultrasound transducer. Non-negligibility of the correlation between the
speckle noise samples is further illustrated in Fig. 1. The upper subplot of the figure shows a
segment of a B-scan image of the liver of an adult volunteer with normal liver functions.
The segment has been cropped in such a way that it does not contain visible organ
structures, thereby presenting an almost homogeneous field of stationary speckle noise. In
this case, the autocorrelation of the image represents the correlation of the speckle noise
field. The axial and lateral profiles of the autocorrelation function are shown in the lower
two sub-plots of Fig. 1. The fact that the autocorrelation function has non-negligible support
along both axes indicates considerable correlation between the speckle noise samples.

The above considerations provide evidence that ultrasound speckle noise cannot be assumed
and, subsequently, dealt with as a white noise process; and its correlation properties must be
properly taken into account [27], [28]. Alternatively, one can try to find an operator that can
transform a received RF-image into another RF-image, whose samples correlate less than
those of the original. Following [29], we define this operator to be a linear filter l(n, m),
whose transfer function is given by:

(4)
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One easily can see that applying (4) to an RF-image, the power spectral density of which is
defined by (3), results in “flattening” the latter and, therefore, reduces the correlation

between the RF-image samples. The constant  can be thought of as a tunable
parameter of the decorrelation that controls amplification of the “out-of-band” frequencies
of g(n, m), which have been damped due to the band-limitedness of H(ω1, ω2). In order to
compute an optimal value of ε, the variances of the reflectivity function and of the noise
need to be estimated first, and this could be done using, for instance, the methods reported in
[30] and [31], respectively. In practice, however, we found it quite acceptable to set this
parameter empirically, so that its optimal value would result in maximal decorrelation while
avoiding any undesirable artifacts caused by “overamplification” of the high frequencies.

Although the decorrelation filter (4) has been defined for RF-images, it also is applicable to
demodulated, in-phase/quadrature (I/Q) images (i.e., the images whose absolute value is
what eventually viewed on the displays of most ultrasound systems). Due to the linearity of
the frequency demodulation process, the I/Q-image still can be modeled as a convolution
mixture of a complex reflectivity function with a complex PSF. Therefore, (4) can be used
for decorrelating the I/Q-images with |H(ω1, ω2)| being the amplitude of the Fourier
transform of the complex PSF. Moreover, as the demodulation is typically followed by an
anti-aliasing filtering and down-sampling, processing the I/Q-images is advantageous due to
reduction in both noise level and number of samples.

In order to implement the spectrum equalization using the filter (4), the power spectrum of
the PSF needs to be estimated first. In the current study, the estimation is performed using
the method of [26]. Below, a brief overview of this method is provided so as to render the
presentation self-contained.

C. Estimation of the PSF Spectrum

Let G(ω1, ω2), F(ω1, ω2), and H(ω1, ω2) denote the log-magnitude of the Fourier
transforms of the I/Q-image, the complex tissue reflectivity function, and the complex PSF,
respectively. Disregarding for the moment the noise term in (1), the convolution model
implies:

(5)

which suggests that H(ω1, ω2) could be estimated from G(ω1, ω2) by rejecting the “noise”
F(ω1, ω2). Thus, the problem of estimating the power spectrum of the PSF is basically a
filtering problem. However, before proposing a specific filtering method, the statistical
properties of the noise should be carefully analyzed.

It was demonstrated in [32] that, when samples of the reflectivity function behaves as a
WGN, the samples of F(ω1, ω2) are i.i.d. and obey the Fisher-Tippett distribution, whose
pdf is given by:

(6)

here, as before,  denotes the variance of the reflectivity function. Unfortunately, the above
statistical description cannot in general be applied to characterize the reflectivity function
corresponding to whole RF-image. Yet, it is rarely a problem to detect within a given RF-
image a smaller fragment, within which the reflectivity function behaves like a WGN. Such
detection can be done using, e.g., the Kolmogorov-Smirnov testing as proposed in [30].
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It is interesting to note that the Fisher-Tippett distribution possesses an approximant in the
form of a Gaussian pdf. The latter is obtained by replacing the inner exponent in (6) by the
first three terms of its series expansion, resulting in:

(7)

An interesting fact about the approximation above is that it has a constant variance of 0.25,
implying that the additive noise in (5) may be roughly viewed as WGN with a fixed
variance. Thus, from the viewpoint of filtering, the problem can now be stated as the
requirement to cancel “almost” WGN, whose variance never changes.

Unfortunately, the approximation (7) is acceptable only in close proximity of the mean value
of the original pdf (6). Moreover, as compared to the Gaussian, the pdf of the Fisher-Tippett
distribution is asymmetric (its skewness is equal to 12√6ζ/π3, where ζ is the Apery's
constant) and leptokurtic (its kurtosis is equal to 12/5). Fig. 2 exemplifies the pdf given by

(6) for the case  (upper subplot) and a realization of corresponding noise (lower
subplot). One can see that, although the right-hand side of the pdf has a form similar to that
of a Gaussian pdf, its left-hand side has a long, heavy tail. It implies that white noise
produced by the Fisher-Tippett distribution will be similar to WGN, except for a relatively
small number of relatively large-amplitude samples, which appear to project from the main
ensemble (see the lower subplot of Fig. 2). As a result, such a noise may be viewed as a
WGN contaminated by occasional transients or outliers.

The above considerations imply that the noise to be rejected is of spiky type. It is generally
known that spiky noise is difficult to deal with, and many methods, which exploit the
concept of L2-projections (e.g., wavelet denoising), often fail to reject such a noise in a
satisfactory manner. The main reason for this is the fact that the noise outliers are
recognized by such a filtering scheme as features of the signal to be recovered and, as a
result, are preserved.

In order to overcome the difficulty of rejecting the outliers, it was proposed in [32] to
“Gaussianize” the noise via estimating and subsequently subtracting its spiky component.
The latter can be estimated as robust residuals of G(n, m) computed according to:

(8)

here ΔG denotes difference between G and its median-filtered version, λ is a predefined
threshold, and the operator (x)+ returns x if x > 0 and zero otherwise. It was observed that, in
most cases, the robust residuals R correspond to the outliers of the spiky noise, when the
size of the median filter is set to be 3 × 3 (or 5 × 5) and the threshold λ is set to a level such
that 93–95% of the differences |ΔG| do not exceed the predefined threshold λ. In this case,
subtracting R from G results in suppressing the spiky component of the Fisher-Tippett noise.
Moreover, it was demonstrated in [32] that the noise contaminating the difference signal (G
– R) behaves very similarly to WGN, and the desired signal H remains practically
unchanged. Note that the above-described procedure of computing and subsequently
subtracting the robust residuals is known as outlier-shrinkage, and it was originally proposed
as a part of outlier-resistant wavelet denoising in [33].

Once the spiky component of F in (5) has been rejected, the signal (G – R) can be filtered in
order to estimate H. Following [26], [32] the latter is recovered using wavelet denoising
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[12]. This method was chosen due to its very nice characteristic of being capable of rejecting
WGN without oversmoothing the resulted estimates. In this paper, a separable wavelet
transform [11] based on the nearly symmetric wavelet [10] with six vanishing moments was
used to perform the denoising. The thresholding rule was chosen to be soft thresholding (see
[12] or the formal definition in the section that follows), with the threshold defined using the
theoretically predicted variance of the Gaussian approximation in (7), i.e., 0.25.

Having estimated the power spectrum of the PSF, the decorrelation filter (4) can be readily
computed and applied to acquired I/Q-images. Throughout the following sections it will be
tacitly assumed that the I/Q-images have been subjected to the decorrelation procedure, and,
consequently, samples of the corresponding envelope images are nearly uncorrelated.

III. Speckle Noise and Outlier Shrinkage

A. Generalized Model of Speckled Images

The most critical part of developing a method for recovering a signal from its noisy
measurement consists in choosing a reasonable (either statistical or analytical) description of
the physical phenomena underlying the data formation process. The extent to which the
chosen model succeeds to account for the observed physical effect often defines the
reliability of the reconstruction algorithm as well as the precision with which the signal is
recovered. Consequently, the availability of an accurate and reliable model of speckle noise
formation is a prerequisite for the development of a useful despeckling algorithm.

In ultrasound imaging, however, a universally agreed upon definition of such a model still
seems to be lacking. Nevertheless, a number of possible formulations, whose feasibility was
verified via their practical use, exist. A generalized model of the speckle imaging as
proposed in [9] and used, e.g., in [14], [16] is given by:

(9)

where g, f, u, and ξ stand for the observed envelope (not I/Q or RF) image, original image,
multiplicative and additive components of the speckle noise, respectively. Here the indices n
and m denote the axial and lateral indices of the image samples (or, alternatively, the angular
and range indices for sector images).

Despite its possible theoretical shortcomings [34], the model (9) has been successfully used
both in ultrasound and SAR imaging. Moreover, evidence exists that, when applied to
ultrasound images, only the multiplicative component u of the noise must be reckoned with,
and, hence, (9) can be considerably simplified by disregarding the additive noise term. This
leads to the following simplified model:

(10)

Note that there exists an alternative model, as proposed in [6] and used in [15], [35],
describing the speckle noise as an additive noise, with its amplitude proportional to square
root of the true image. However, this model was proposed to account for the speckle pattern,
as it appears “on screen,” i.e., after a sequence of standard processing steps performed by a
typical ultrasound scanner (e.g., nonlinear amplification, dynamic-range adjustment via log-
compression, etc.). Consequently, adopting (10) as the basic model, it is assumed that the
image g(n, m) is observed before the system processing is applied.

Homomorphic despeckling methods take advantage of the logarithmic transformation that,
when applied to both parts of (10), converts multiplicative noise into additive noise.
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Denoting the logarithms of g, f, and u by gl, fl, and ul, respectively, the measurement model
in the log-transform domain becomes:

(11)

At this stage, the problem of despeckling is reduced to the problem of rejecting an additive
noise, and a variety of noise suppression techniques could be invoked in order to perform
this task. However, before proposing a specific denoising method, it is instructive to take a
closer look at the properties of the noise term in (11). Note that most of the homomorphic
despeckling methods proposed so far simply assume the noise to be WGN. However, such
an assumption may be a serious limitation, as shown by the considerations that follow.

B. Statistics of Log-Transformed Speckle Noise

The mechanism of the speckle formation in ultrasound imaging is similar to the laser
imaging [3], and the statistical description of the speckle noise generally depends upon
tissue composition and type. For the case in which the resolution cell consists of a relatively
large number of independent scatterers (more than 10, normally), the image amplitude is
widely recognized as possessing a Rayleigh distribution [1]. However, when either the
number of scatterers is low or their spatial locations are not independent, the statistics are
likely to deviate from the Rayleigh model [36]. In order to account for the non-Rayleigh
scattering, a number of distributions have been proposed, including the K-distribution [37],
[38], the Nakagami distribution [39], the Weibull distribution [40], and Generalized Gamma
(GG) distribution [41], [42]. When a structure of specular reflectors, which produce the
coherent portion of backscattered energy, is superimposed on a background of relatively
weak diffuse scatterers, the resulted images seem to obey a Rician distribution [43].

For the reasons of space, it is not possible to address all of the above cases. Thus, in order to
keep the discussion as general as possible, the speckle noise u(n, m) in (10) is assumed to
obey the GG distribution, whose pdf is given by:

(12)

The GG distribution is especially attractive because it contains several distributions as
special cases, viz. Rayleigh (ν = 1, γ = 2), exponential (ν = 1, γ = 1), Nakagami (γ = 2),
Weibull (ν = 1), and log-normal (ν → ∞). Assuming the GG distribution implies that the
noise samples ul in (11) are distributed with pdf given by:

(13)

One can see that the distribution in (13) is of the two-exponential type, being very close in
form to the Fisher-Tippett distribution [44] as given by (6).2 Fig. 3 depicts a number of pdf
given by (13), computed for different parameters of the GG distribution, which were set
according to the experimental results of [42]. One can see that, for a fairly wide range of
parameters, the shape of the pdf in (13) resembles that of the Fisher-Tippett pdf, with all the

2In fact, the pdf in (13) attains the precise analytical form of the Fisher-Tippett pdf, when ν approaches 1 (the case of the Rayleigh
distributed speckle noise).
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implications discussed in Section II-C. In particular, it implies that the noise in (11) is likely
to be similar to a WGN contaminated by a relatively small number of outliers.

In order to overcome the nontrivial problem of rejecting the spiky noise ul, it is possible to
make it be more amenable to filtering methods, which are based on the assumption that the
noise is WGN, using the same outlier-shrinkage procedure introduced in Section II-C in
connection with the PSF spectrum estimation. Specifically, we propose to subtract from gl(n,
m) its robust residuals [computed according to (8)], before a filter is applied to gl(n, m) to
reject ul(n, m). Together with the decorrelation procedure of Section II, the
“Gaussianization” of the log-transformed speckle noise ul(n, m) using the robust-shrinkage
forms the core idea of the modified homomorphic despeckling, the overall structure of
which is summarized below.

C. Modified Homomorphic Despeckling

The overall block-diagram of the proposed processing scheme is depicted in Fig. 4. It
suggests that the logarithm of the absolute value of a decorrelated I/Q-image is passed
through the outlier-shrinkage stage before it is subjected to a certain noise-reduction
procedure. Note that the term denoising is used here as a substitute for arbitrary filtering. It
is important to emphasize that the homomorphic despeckling methods proposed so far do
not perform the decorrelation and the outlier-shrinkage of the log-envelope image, and thus
their performance could be described by the block-diagram similar to that in Fig. 4, but
devoid of the above preprocessing stages.

Before proceeding to the discussion on possible filtering approaches and demonstrating
some experimental results, it would be instructive to assess the effect of the proposed
preprocessing via an example. The leftmost sub-plot of Fig. 5 shows the original envelope
image of a human (right) kidney acquired by a VIVID3 (GE Medical Ultrasound, Inc., Tirat
Carmel, Israel) commercial ultra-sound scanner. Note that the image was acquired using a
curved array transducer and, hence, a scan conversion procedure should have preceded the
visualization to preserve morphological consistency of the image. However, the scan
conversion stage was omitted here (and, thus, the image is shown in the “angle-depth”
coordinate system), as it could have altered the image correlation properties, which are
central for purposes of the example. The middle subplot of Fig. 5 shows the standard
envelope image after applying the log-transformation. Note that such an image would be
considered as an input to the denoising stage by most of the existing homomorphic
despeckling algorithms. The rightmost subplot of Fig. 5 shows the log-envelope3 of the
same image after it is passed through all stages of the block-diagram in Fig. 4. One can see
that, although the standard and the preprocessed log-envelopes are similar from the
viewpoint of anatomical structures they present, the speckle pattern of the preprocessed
image is much finer than that of the standard image, implying significant loss of the
correlation between the image samples. This fact is further verified via comparing the
autocorrelation functions of the standard and of the preprocessed log-envelopes, which are
shown on subplots A and B of Fig. 6, respectively. Note that the autocorrelation functions
were computed using homogenous (“structure-free”) regions of the images to exclude the
effect of inter-pixel dependencies produced by the structured image content. One can see
that the autocorrelation of the preprocessed log-envelope decays in a much faster rate, as
compared to the autocorrelation of the standard log-envelope. This fact indicates
considerable loss of the correlation between the samples of the preprocessed image.

3The term “log-envelope” here and hereof is used as a shorthand substitute for “logarithmically transformed envelope image”.
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Moreover, one can see that the preprocessed log-envelope possesses considerably better
contrast as against the standard log-envelope. As prior to the visualization, the values of
both log-envelopes were normalized to lie within the same range (viz. [0, 1]), it is
reasonable to assume that the contrast improvement has been caused by suppression of the
noise outliers. In order to confirm this assumption, the histograms of both log-envelopes
were computed and compared. The histogram of the standard log-envelope is shown on
subplot C of Fig. 6. One can see that this histogram agrees well with the theoretical model of
(13). Furthermore, its heavy left tail implies that the standard log-envelope is contaminated
by a noise having a spiky behavior. However, the histogram of the preprocessed log-
envelope, which is shown on subplot D of Fig. 6, is shaped more like a Gaussian pdf,
thereby indicating that the spiky component of the noise has been effectively rejected. The
implications of these results are demonstrated via the reconstruction examples given below.

IV. Filtering Methods

The original impetus for the present study was the desire to improve performance of HWDS
via introducing the preprocessing method described above. However, in addition to wavelet
denoising, there exist a number of alternative filtering methods that may result in
reconstructions of comparable quality. In this section, a number of alternative despeckling
approaches are presented, which are obtained via substituting different filters at the
“denoising” stage of the block-diagram in Fig. 4.

A. Wavelet Denoising by Soft-Thresholding

In [12], a very simple thresholding procedure for the recovery of functions from noisy data
was proposed. It consists of three steps: the signal is transformed into an orthogonal domain,
using a discrete wavelet transform producing empirical wavelet coefficients. The empirical
wavelet coefficients are subjected to nonlinear soft-thresholding ηt(y) = sign(y) (|y| – t), with

a threshold , where σ is the standard deviation of the white noise and n is the
data length. The thresholded wavelet coefficients are inversely transformed, supplying an
estimation of the true signal. The above scheme is known as wavelet denoising, and the
thresholding rule is known as the uniform soft thresholding.

The three-step reconstruction procedure mentioned above was shown to minimize the
estimation error (which, in this case, achieves almost the minimax error for a magnitude of
important smoothness classes) subject to an additional constraint requiring that the estimate
is at least as smooth as the function to be recovered. As a result, denoised images generally
are much less oversmoothed, in comparison with the images denoised by, e.g., linear
filtering. Note that uniform soft thresholding is not the only way to suppress the wavelet
coefficients of the noise, and a multitude of various methods have been proposed based, for
example, on principles of Bayesian estimation and detection theory [45]. In most cases,
these methods were shown to outperform the soft-thresholding. However, because the
purpose of this paper is not really concerned with comparing various thresholding schemes,
the original approach of [12] is used here. The noise variance needed for definition of the
threshold was estimated by assuming, that most empirical wavelet coefficients at the finest
level of the decomposition are induced by the noise, and, thus, the median absolute deviation
of wavelet coefficients at this level accurately reflects the noise size [12].

B. Total Variation Filter

Let J(n, m) denote a noise-contaminated version of the original image I(n, m). Also, let Dx
and Dy denote the approximations to the first order partial derivative operators. Then, for a
predefined λ > 0, a discrete version of the total variation filter, as originally specified in
[19], recovers I(n, m) by solving:
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(14)

where ∥•∥F stands for the Frobenius matrix norm. The filter (14) is now considered to be
among the most successful methods for image restoration and edge enhancement. It is
mainly because of its capability of filtering out the noise without blurring the most universal
and crucial features of images: edges. Because of the specific form of the regularizing
(second) term of the functional in (14), the total-variation filter is especially useful for
recovering piecewise constant signals.

Further, note that the regularization parameter λ controls the balance between noise removal
and smoothing. Too large a value for λ tends to yield a smooth solution of poor fidelity to
the data, and too small a value provides results that could be insufficiently smooth. In this
paper, the optimal value for λ was set experimentally to achieve the most visually pleasing
result.

The total-variation filter was implemented by solving the minimization problem (14) using
the conjugate gradient algorithm [46]. In order to overcome the problem of
nondifferentiability of E(I), a small positive number (usually of the order 10–4) was added
under the square root of the second term in (14), and, subsequently, the resultant functional
was minimized. Note that the total-variation filter also can be implemented as a signal-
dependent filter, as described in [47] [such a formulation stems from an explicit
discretization of the Euler-Lagrange equation corresponding to continuous version of (14)].

C. Anisotropic Diffusion

Another approach to the filtering problem takes advantage of the locality and anisotropy of
certain partial differential equations. Among all differential operators, the diffusion class is
the most widely applied in current image analysis. Because linear homogeneous diffusion
may smooth out noise successfully only at the expense of overly blurring out significant
sharp details of images (e.g., edges), anisotropic diffusion has attracted much attention [48].
It was found that operators of this class are capable of smoothing images without blurring
the boundaries between their homogeneous regions. One choice is to use the following
affine invariant anisotropic smoothing filter [20]:

(15)

here I(x, y, t) represents the image to be filtered, which is now considered to be a function of
two spatial coordinates x and y, as well as of time t. It can be shown, that the above equation
involving only the first and second order spatial derivatives of the image I defines the affine
geometric heat flow, under which the level sets of I undergo affine curve shortening.
Moreover, such a diffusion process has the desirable characteristics of preserving edges
while exhibiting numerical stability and straightforward computation [20]. The time
discretization step and the number of iterations were used as parameters of the nonlinear
smoothing, and they were adjusted to achieve the best possible visual results.

V. Experimental Results

A. In Silico Experiments

Simulation studies are usually the first validation step used to examine the performance of
an estimation method in a quantitative way. In the current study, two-dimensional (2-D) RF-
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images were simulated according to the model of (1) using the PSF that was measured by
imaging a point-target (viz., a thin steel wire in a water tank) using a single-element, 3.5
MHz-transducer (Pana-metrics V383, Waltham, MA) for both transmission and reception.
The lateral scanning of the target was carried out mechanically with a lateral resolution of
0.4 mm, and the acquired RF-lines were sampled at a rate of 25 MHz.

The tissue reflectivity functions were generated as 2-D WGN fields weighted by the
amplitude profile shown on the left subplot of Fig. 7. Note that the resulted reflectivity
functions had been “designed” to mimic a fragment of homogeneous tissue containing four
round regions with relatively low reflectivity (e.g., cysts or blood vessels). In this case, the
despeckling is expected to reconstruct the original tissue profile, i.e., the piecewise constant
function shown on the left subplot of Fig. 7. An example of the simulated (original)
envelope image is shown on the right subplot of Fig. 7.

The despeckling was first performed using the wavelet denoising as a method for canceling
the additive noise term in (11). As before, this approach is referred to as HWDS. Each RF-
image was processed twice, viz. with and without the decorrelation and the outlier-shrinkage
stages, as depicted in the block-diagram in Fig. 4. In the first case, the processing is referred
to below as modified, whereas in the second case as standard. The wavelet denoising was
implemented using the WaveLab® package (Department of Statistics, Stanford University)
of D. Donoho (http://www-stat.stanford.edu/~wavelab/). Four-level wavelet decomposition
based on nearly symmetric wavelets of I. Daubechies [10] with six vanishing moments was
used to this end.

The next set of results was obtained using the total-variation filter (14) at the denoising stage
of the despeckling. The corresponding despeckling method is referred to below as the total
variation despeckling (TVDS) (both standard and modified, by analogy to the previous
case). The regularization parameter λ of TVDS was set to be 1.2.

Finally, the denoising was performed using the standard and modified versions of the
anisotropic diffusion despeckling (ADDS) algorithm that was obtained by using the
anisotropic diffusion filter of Section IV-C at the denoising stage. Diffusion filtering in the
ADDS approach was implemented using 50 iterations with the time discretization step of
0.1.

A representative result is demonstrated in Fig. 8 in which subplots A1, A2, and A3 show the
reconstructions obtained by the standard versions of the HWDS, TVDS, and ADDS
algorithms, respectively, whereas the corresponding images in the right column (i.e.,
subplots B1–B3) were obtained using their modified versions. One can see that, in the case
of the standard despeckling, all the recovered images poorly represent the homogeneity
structure of the underlying “tissue”, and they are hardly more informative than the standard
envelope image shown in Fig. 7. However, the modified despeckling provides useful
reconstructions, representing the original homogeneity structure in a considerably better
way.

The difference in performances of the standard and modified despeckling algorithms can be
further accentuated by comparing the intensity values of the despeckled images taken along
a line segment, with corresponding true homogeneity profile. The upper subplot of Fig. 9
shows the intensity values of an original envelope image taken along the line passing
through the center of the upper “cyst” in the axial direction (solid line) together with the
corresponding true homogeneity profile (dotted line). However, subplots A1–A3 show the
same intensity profile obtained after processing the image using the standard versions of the
HWDS, TVDS, and ADDS algorithms, respectively. The corresponding intensity profiles in
the right column (i.e., subplots B1–B3) were obtained using the modified versions of the
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algorithms. The composition of Fig. 10 is identical to that of Fig. 9 with the only difference
being that the line segment here passes through the center of the upper “cyst” in the lateral
direction. One can see that in all the cases, the modified despeckling succeeds in recovering
the true homogeneity profiles almost perfectly; but in the case of the standard despeckling,
the reconstructed profiles barely resemble the true ones.

For the quantitative assessment, a number of performance measures were used to compare
the despeckling methods. The first measure was the normalized mean-squared error
(NMSE). Denoting by Iorg and Iest the original image to be recovered and its estimate,
respectively, the NMSE can be defined as:

(16)

where ∥•∥F stands for the Frobenius matrix norm. It is worthwhile noting that both NMSE
and its reciprocal (that is also known as the signal-to-MSE ratio [18]) are commonly used in
the coherent imaging in which the standard definition of the signal-to-noise ratio might be
inadequate, because of the multiplicative nature of speckle noise.

Additionally, in order to evaluate the degree of contamination of the images by speckle
noise, the conventional speckle-SNR was used, which is defined as a ratio of the mean to the
standard deviation of speckled images. Note that, in the case of fully developed (Rayleigh
distributed) speckle noise, this ratio is known to be approximately equal to 1.91 [1]. After
applying a speckle reduction algorithm, the ratio is expected to increase.

The last measure was indented to assess the ability of despeckling methods to preserve sharp
details of the images. If ΔIorg and ΔIest denote approximations of the Laplacians of the
original image and its estimate, respectively, then this performance measure is given by
[15]:

(17)

where 〈•, •〉 denote the standard inner product. The closer the index β is to 1, the better is the
ability of despeckling to preserve the image edges.

Table I summarizes the quantitative results obtained in the simulation study. Note that the
expectations in [16] and [17] were estimated by corresponding sample means based on
results of 100 independent trials. One can see that the proposed preprocessing results in
reducing the NMSE by the factor of 1.76, 1.71, and 1.53 in the case of HMDS, TVDS, and
ADDS, respectively. In addition, the images, which were despeckled using the proposed
preprocessing procedure, have the speckle-SNR that is, on average, two times higher than
that of the images despeckled without the preprocessing. Analyzing the β index indicates
that the preprocessed images better represent the edges of the original scene.

B. In Vivo Experiments

In vivo data were acquired next in order to evaluate the performance of the despeckling
methods. A set of RF-images was recorded from adult volunteers using the VIVID3 scanner.
The scanning was performed using linear transducer array with a central frequency in the
vicinity of 3.5 MHz. A set of 10 different images of the carotid arteries of the volunteers was
used for evaluating the algorithms. The images were acquired with a single transmission
focal point, localized in the center of the field of view. All the RF-images were composed of
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256 RF-lines, each of 1024 points in length. The sampling rate and resolution were 20 MHz
and 16 bits, respectively. Each image was divided into three quasi-stationary segments along
the axial direction, according to the methodology of Section II-A. Parameters of the
despeckling algorithms were chosen to be the same as in the simulation study of the
preceding subsection.

An example of the (original) longitudinal view of a fragment of the carotid artery is shown
in the upper subplot of Fig. 114. However, the right column of subplots of the figure shows
this image after applying to it the standard versions of the (from top to bottom) HWDS,
TVDS, and ADDS algorithms. The corresponding images in the left column were obtained
using the modified versions of these algorithms. Comparing the images, it seems that each
despeckling method does a reasonable job of enhancing the structure of interest. However,
the modified methods seem to provide much more noiseless results as compared to their
standard versions, while preserving all the fine structures in each case. Moreover, the
modified methods better represent homogeneous regions of the underlying tissue that appear
here more uniform. Additionally, one can see that most of the edge-like structures (e.g., the
intima of the carotid artery) are better represented in the case of modified solutions, which
have obviously better contrast, thereby better representing the overall structure of the tissue.

The difference from method to method lies in the nature of the smoothing. For example, in
the case of the total variation filtering one gets a more piecewise constant effect compared to
a wavelet-based de-noising as expected from standard theorems in the literature (see [49]
and the references therein)5. Because in each case the modified methods bring out the
desired structure clearly, we suppose it is a problem-dependent matter, which smoothing
methodology should be chosen. Generally, one can see that all anatomical structures in the
images processed using the modified despeckling appear considerably less noisy than in the
“standard” images.

The ability of different despeckling methods to recover the homogeneous areas of tissue can
be further appreciated via analyzing the results shown in Fig. 12, whose composition is
analogous to that of Fig. 11. The subplots of Fig. 12 demonstrate a fragment of a human
bladder imaged using the VIVID-3 scanner with a curved array transducer. Although each
kind of despeckling has its own “fashion” to reject the speckle noise (with the “burnishing,”
“fragmentizing,” and the “worm-effect” peculiar to HDWS, TVDS, and ADDS,
respectively), one can see that, in all the cases, the modified processing provides much
smoother estimates, without overly smoothing their morphological structures (e.g., the organ
boundaries, blood vessels, etc.).

Unfortunately, in the in vivo case, quantitatively assessing the performance of the
despeckling methods is problematic because of the absence of corresponding original
images. As a result, only two performance measures were used here for comparison. The
first measure was the speckle-SNR defined in the preceding subsection, and the second
measure was defined as a ratio of the number of pixels of the image autocorrelation
function, which exceed 75% of its maximum value to the total number of pixels. Note that
the latter measure (denoted below by α) is typically used in order to evaluate the resolution
in ultrasound imaging [23].

The quantitative results obtained during the in vivo study are summarized in Table II. One
can see the significant improvement in the speckle-SNR after applying the proposed

4Note that all images in the figure were normalized and subsequently compressed for visualization in 8-bit resolution, so that they
have the same dynamic range.
5Note that in order to suppress the “Gibbs-like” artifacts, which frequently take place in the case of denoising using undecimated
wavelet transforms, the cycle-spinning scheme of [50] was used here.
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preprocessing, implying that the preprocessed images are superior in representing the
homogeneous structure of the studied tissues. At the same time, the resolution of despeckled
images is considerably worse in comparison with that of the nonprocessed images. Yet, the
immediate conclusion that despeckling tends to deteriorate the resolution would not be quite
right. It is because of the fact that a relatively low correlation within speckled images is
primarily due to their noisy nature. Having been subjected to a despeckling procedure, the
ultrasound images become considerably less noisy; and, as a result, their autocorrelation
functions begin to represent the correlation within the original image rather than the
correlation between the noise samples. Therefore, the measure α in Table II is likely to
represent the degree of speckle noise contamination, with higher values of α corresponding
to more clear images.

VI. Discussion and Conclusions

A new method for improving the performance of homomorphic despeckling methods has
been presented. The fundamental idea underpinning this class of speckle reduction
techniques consists in using the log-transformation in order to convert multiplicative speckle
noise into an additive noise process, followed by suppressing the latter using certain filtering
procedures. The present study has demonstrated conceptually and experimentally that
assuming the additive noise to be a WGN (as it is done in most cases) can lead to inadequate
performance for a number of despeckling algorithms of this kind.

Consequently, a simple preprocessing procedure was proposed in the present study. Its
distinctive feature lies in the fact that it does not modify the structure of a specific filtering
method, but rather alters the noise in such a way that it becomes very similar in behavior to
WGN. Because a number of powerful filtering methods exist, which are based on assuming
the noise to be a WGN, the proposed “noise-correction” procedure allows them to perform
under nearly optimal conditions.

The proposed preprocessing procedure can be viewed as an “add-on” for existing
homomorphic despeckling schemes. It consists of two simple stages: a received I/Q-image is
passed through a spectral equalization stage that is intended to reduce the correlation
between the image samples; the log-envelope of the decorrelated I/Q image is subjected to
the outlier-shrinkage process suppressing the spiky component of the additive noise. After
that, any filtering can be applied for the noise rejection. Although only three denoising
methods have been examined in the present study, it is believed that the proposed
preprocessing may be beneficial for many other filtering methods as well.

The performance of three homomorphic despeckling methods, as defined by three different
denoising techniques (viz. wavelet denoising, total-variation filtering, and anisotropic
diffusion filtering) was examined in the current study. In all the cases, the despeckling
results obtained with and without the preprocessing were compared. It was shown in a series
of computer-simulated and in vivo experiments that in all the cases, the proposed
preprocessing results in remarkable improvement in the quality of resulted despeckled
images. Compared to the standard despeckling approaches, the results obtained using the
proposed preprocessing procedure are shown to be significantly less noisy, and to have
higher contrast, thereby better representing the anatomical structures of interrogated tissue
(see the results summarized in Tables I and II).

As the primary purpose of the study is to present a method for enhancing the performances
of currently existing homomorphic despeckling techniques, no comparison with more
classical speckle reduction methods (e.g., median filtering) was done. Such comparison can
be found in virtually all the studies on homomorphic despeckling, which recognizes the
latter to be among the best “performers”.
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Note that no attempt was made to compare the results obtained by different despeckling
methods. Such a comparison, including evaluation of these methods from a different number
of viewpoints (e.g., computational efficiency, reliability of recovering different anatomical
structures, and different tissue morphologies) well deserves a future study.
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Fig. 1.
(Upper plot) Fragment of ultrasound image of a human liver. (Lower left plot) Axial profile
of the image autocorrelation function. (Lower right plot) Lateral profile of the image
autocorrelation function.
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Fig. 2.

(Upper plot) The Fisher-Tippett pdf as given by (6) for the case . (Lower plot) A
realization of the corresponding “noise”.
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Fig. 3.
Examples of the pdf function as given by (13) for different parameters of the corresponding
GG distribution.
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Fig. 4.
Block diagram of the proposed modified homomorphic despecking algorithm (note that at
the “denoising” stage of the block diagram an arbitrary filter can be substituted).
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Fig. 5.
(Left panel) Standard envelope image of a human kidney. (Center panel) Standard envelope
image after the log-transformation. (Right panel) The same log-transformed envelope image
after applying the decorrelation and the outlier shrinkage according to the block diagram of
Fig. 4.
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Fig. 6.
(Subplot A) Autocorrelation function of the standard log-envelope. (Subplot B)
Autocorrelation function of the preprocessed log-envelope. (Subplot C) Histogram of the
standard log-envelope. (Subplot D) Histogram of the preprocessed log envelope.
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Fig. 7.
(Left subplot) Amplitude profile modulating the WGN samples of simulated reflectivity
functions in silico experiments. (Right Subplot) Example of a simulated (original) envelope
image.
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Fig. 8.
(Subplots A1–A3) Images despeckled using the standard versions of the [from top to
bottom] HWDS, TVDS, and ADDS algorithms. (Subplots B1–B3) images despeckled using
the modified versions of the [from top to bottom] HWDS, TVDS, and ADDS algorithms.
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Fig. 9.
(Upper subplot) Intensity values of an original envelope image taken along the line segment
passing through the center of the largest “cyst” in the axial direction (solid line) versus the
corresponding true homogeneity profile (dotted line). (Left column of subplots) Intensity
values of the image taken along the same line segment after applying the standard versions
of the HWDS (A1), TVDS (A2), and ADDS (A3) algorithms. (Right column of subplots)
Intensity values of the image after applying the modified versions of the HWDS (B1),
TVDS (B2), and ADDS (B3) algorithms.
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Fig. 10.
(Upper subplot) Intensity values of a nonprocessed envelope image taken along the line
segment passing through the center of the largest “cyst” in the lateral direction (solid line)
versus the corresponding true homogeneity profile (dotted line). (Left column of subplots)
Intensity values of the image taken along the same line segment after applying the standard
versions of the HWDS (A1), TVDS (A2), and ADDS (A3) algorithms. (Right column of
subplots) Intensity values of the image after applying the modified versions of the HWDS
(B1), TVDS (B2), and ADDS (B3) algorithms.
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Fig. 11.
(Upper image) Ordinal envelope image of a fragment of a carotid artery. (Left column of
images) The image despeckled using the standard versions of the [from top to bottom]
HWDS, TVDS, and ADDS algorithms. (Right column of images) The same image after
despeckling using the modified versions of the [from top to bottom] HWDS, TVDS, and
ADDS algorithms.
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Fig. 12.
(Upper image) Ordinal envelope image of a fragment of a urinary bladder. (Left column of
images) The image despeckled using the standard versions of the [from top to bottom]
HWDS, TVDS, and ADDS algorithms. (Right column of images) The same image after
despeckling using the modified versions of the [from top to bottom] HWDS, TVDS, and
ADDS algorithms.
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