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Abstract

The partially observable Markov decision process (POMDP) provides a principled general

framework for planning under uncertainty, but solving POMDPs optimally is computationally in-

tractable, due to the “curse of dimensionality” and the “curse of history”. To overcome these

challenges, we introduce the Determinized Sparse Partially Observable Tree (DESPOT), a sparse

approximation of the standard belief tree, for online planning under uncertainty. A DESPOT fo-

cuses online planning on a set of randomly sampled scenarios and compactly captures the “execu-

tion” of all policies under these scenarios. We show that the best policy obtained from a DESPOT

is near-optimal, with a regret bound that depends on the representation size of the optimal policy.

Leveraging this result, we give an anytime online planning algorithm, which searches a DESPOT

for a policy that optimizes a regularized objective function. Regularization balances the estimated

value of a policy under the sampled scenarios and the policy size, thus avoiding overfitting. The al-

gorithm demonstrates strong experimental results, compared with some of the best online POMDP

algorithms available. It has also been incorporated into an autonomous driving system for real-time

vehicle control. The source code for the algorithm is available online.

1. Introduction

The partially observable Markov decision process (POMDP) (Smallwood & Sondik, 1973) pro-

vides a principled general framework for planning in partially observable stochastic environments.

It has a wide range of applications ranging from robot control (Roy, Burgard, Fox, & Thrun, 1999),

resource management (Chadès, Carwardine, Martin, Nicol, Sabbadin, & Buffet, 2012) to medical

diagnosis (Hauskrecht & Fraser, 2000). However, solving POMDPs optimally is computationally

intractable (Papadimitriou & Tsitsiklis, 1987; Madani, Hanks, & Condon, 1999). Even approxi-

mating the optimal solution is difficult (Lusena, Goldsmith, & Mundhenk, 2001). There has been

substantial progress in the last decade (Pineau, Gordon, & Thrun, 2003; Smith & Simmons, 2004;

Poupart, 2005; Kurniawati, Hsu, & Lee, 2008; Silver & Veness, 2010; Bai, Hsu, Lee, & Ngo, 2011).

However, it remains a challenge today to scale up POMDP planning and tackle POMDPs with very

large state spaces and complex dynamics to achieve near real-time performance in practical appli-

cations (see, e.g., Figures 2 and 3).

Intuitively, POMDP planning faces two main difficulties. One is the “curse of dimensionality”.

A large state space is a well-known difficulty for planning: the number of states grows exponentially

with the number of state variables. Furthermore, in a partially observable environment, the agent

must reason in the space of beliefs, which are probability distributions over the states. If one naively

c©2017 AI Access Foundation. All rights reserved.
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Figure 1: Online POMDP planning performs lookahead search on a tree. (a) A standard belief tree

of height D = 2. It contains all action-observation histories. Each belief tree node represents a

belief. Each path represents an action-observation history. (b) A DESPOT (black), obtained under

2 sampled scenarios marked with blue and orange dots, is overlaid on the standard belief tree. A

DESPOT contains only the histories under the sampled scenarios. Each DESPOT node represents a

belief implicitly and contains a particle set that approximates the belief. The particle set consists of

a subset of sampled scenarios.

discretizes the belief space, the number of discrete beliefs then grows exponentially with the number

of states. The second difficulty is the “curse of history”: the number of action-observation histories

under consideration for POMDP planning grows exponentially with the planning horizon. Both

curses result in exponential growth of computational complexity and major barriers to large-scale

POMDP planning.

This paper presents a new anytime online algorithm1 for POMDP planning. Online POMDP

planning chooses one action at a time and interleaves planning and plan execution (Ross, Pineau,

Paquet, & Chaib-Draa, 2008). At each time step, the agent performs lookahead search on a belief

tree rooted at the current belief (Figure 1a) and executes immediately the best action found. To

attack the two curses, our algorithm exploits two basic ideas: sampling and anytime heuristic search,

described below.

To speed up lookahead search, we introduce the Determinized Sparse Partially Observable Tree

(DESPOT) as a sparse approximation to the standard belief tree. The construction of a DESPOT

leverages a set of randomly sampled scenarios. Intuitively, a scenario is a sequence of random

numbers that determinizes the execution of a policy under uncertainty and generates a unique tra-

jectory of states and observations given an action sequence. A DESPOT encodes the execution of

all policies under a fixed set of K sampled scenarios (Figure 1b). It alleviates the “curse of di-

mensionality” by sampling states from a belief and alleviates the “curse of history” by sampling

observations. A standard belief tree of height D contains all possible action-observation histories

and thus O(|A|D|Z|D) belief nodes, where |A| is the number of actions and |Z| is the number of

observations. In contrast, a corresponding DESPOT contains only histories under the K sampled

scenarios and thus O(|A|DK) belief nodes. A DESPOT is much sparser than a standard belief tree

when K is small but converges to the standard belief tree as K grows.

To approximate the standard belief tree well, the number of scenarios, K, required by a DESPOT

may be exponentially large in the worst case. The worst case, however, may be uncommon in prac-

1. The source code for the algorithm is available at http://bigbird.comp.nus.edu.sg/pmwiki/farm/

appl/.
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Figure 2: DESPOT running in real time on an autonomous golf-cart among many pedestrians.

tice. We give a competitive analysis that compares our computed policy against near optimal poli-

cies and show that K ∈ O(|π| ln(|π||A||Z|)) is sufficient to guarantee near-optimal performance

for the lookahead search, when a POMDP admits a near-optimal policy π with representation size

|π| (Theorem 3.2). Consequently, if a POMDP admits a compact near-optimal policy, it is sufficient

to use a DESPOT much smaller than a standard belief tree, significantly speeding up the lookahead

search. Our experimental results support this view in practice: K as small as 500 can work well for

some large POMDPs.

As a DESPOT is constructed from sampled scenarios, lookahead search may overfit the sampled

scenarios and find a biased policy. To achieve the desired performance bound, our algorithm uses

regularization, which balances the estimated value of a policy under the sampled scenarios and the

size of the policy. Experimental results show that when overfitting occurs, regularization is helpful

in practice.

To further improve the practical performance of lookahead search, we introduce an anytime

heuristic algorithm to search a DESPOT. The algorithm constructs a DESPOT incrementally un-

der the guidance of a heuristic. Whenever the maximum planning time is reached, it outputs the

action with the best regularized value based on the partially constructed DESPOT, thus endowing

the algorithm with the anytime characteristic. We show that if the search heuristic is admissible,

our algorithm eventually finds the optimal action, given sufficient time. We further show that if the

heuristic is not admissible, the performance of the algorithm degrades gracefully. Graceful degra-

dation is important, as it allows practitioners to use their intuition to design good heuristics that are

not necessarily admissible over the entire belief space.

Experiments show that the anytime DESPOT algorithm is successful on very large POMDPs

with up to 1056 states. The algorithm is also capable of handling complex dynamics. We im-

plemented it on a robot vehicle for intention-aware autonomous driving among many pedestrians

(Figure 2). It achieved real-time performance on this system (Bai, Cai, Ye, Hsu, & Lee, 2015).

In addition, the DESPOT algorithm is a core component of our autonomous mine detection strat-

egy that won the 2015 Humanitarian Robotics and Automation Technology Challenge (Madhavan,

Marques, Prestes, Maffei, Jorge, Gil, Dogru, Cabrita, Neuland, & Dasgupta, 2015) (Figure 3).

In the following, Section 2 reviews the background on POMDPs and related work. Section 3 de-

fines the DESPOT formally and presents the theoretical analysis to motivate the use of a regularized
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Figure 3: Robot mine detection in Humanitarian Robotics and Automation Technology Challenge

2015. Images used with permission of Lino Marques.

objective function for lookahead search. Section 4 presents the anytime online POMDP algorithm,

which searches a DESPOT for a near-optimal policy. Section 5 presents experiments that evaluate

our algorithm and compare it with the state of the art. Section 6 discusses the strengths and the

limitations of this work as well as opportunities for further work. We conclude with a summary in

Section 7.

2. Background

We review the basics of online POMDP planning and related works in this section.

2.1 Online POMDP Planning

A POMDP models an agent acting in a partially observable stochastic environment. It can be speci-

fied formally as a tuple (S,A,Z, T,O,R), where S is a set of states, A is a set of agent actions, and

Z is a set of observations. When the agent takes action a ∈ A in state s ∈ S, it moves to a new state

s′ ∈ S with probability T (s, a, s′) = p(s′|s, a) and receives observation z ∈ Z with probability

O(s′, a, z) = p(z|s′, a). It also receives a real-valued reward R(s, a).

A POMDP agent does not know the true state, but receives observations that provide partial

information on the state. The agent thus maintains a belief, represented as a probability distribution

over S. It starts with an initial belief b0. At time t, it updates the belief according to Bayes’ rule, by

incorporating information from the action at taken and the resulting observation ot:

bt(s
′) = ηO(s′, at, zt)

∑

s∈S

T (s, at, s
′)bt−1(s), (1)

where η is a normalizing constant. The belief bt = τ(bt−1, at, zt) = τ(τ(bt−2, at−1, zt−1), at, zt) =
· · · = τ(· · · τ(τ(b0, a1, b1), a2, b2), . . . , at, zt) is a sufficient statistic that contains all the informa-

tion from the history of actions and observations (a1, z1, a2, z2, . . . , at, zt).

A policy π : B 7→ A is a mapping from the belief space B to the action space A. It prescribes

an action π(b) ∈ A at the belief b ∈ B. For infinite-horizon POMDPs, the value of a policy π at a
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belief b is the expected total discounted reward that the agent receives by executing π:

Vπ(b) = E
( ∞∑

t=0

γtR
(
st, π(bt)

) ∣
∣ b0 = b

)

. (2)

The constant γ ∈ [0, 1) is a discount factor, which expresses preferences for immediate rewards

over future ones.

In online POMDP planning, the agent starts with an initial belief. At each time step, it searches

for an optimal action a∗ at the current belief b. The agent executes the action a∗ and receives a new

observation z. It updates the belief using (1). The process then repeats.

To search for an optimal action a∗, one way is to construct a belief tree (Figure 1a), with the

current belief b0 as the initial belief at the root of the tree. The agent performs lookahead search on

the tree for a policy π that maximizes the value Vπ(b0) at b0, and sets a∗ = π(b0). Each node of the

tree represents a belief. To simplify the notation, we use the same notation b to represent both the

node and the associated belief. A node branches into |A| action edges, and each action edge further

branches into |Z| observation edges. If a node and its child represent beliefs b and b′, respectively,

then b′ = τ(b, a, z) for some a ∈ A and z ∈ Z.

To obtain an approximately optimal policy, we may truncate the tree at a maximum depth D and

search for the optimal policy on the truncated tree. At each leaf node, we simulate a user-specified

default policy to obtain a lower-bound estimate on its optimal value. A default policy, for example,

can be a random policy or a heuristic. At each internal node b, we apply Bellman’s principle of

optimality:

V ∗(b) = max
a∈A

{∑

s∈S

b(s)R(s, a) + γ
∑

z∈Z

p(z|b, a)V ∗
(
τ(b, a, z)

)}

, (3)

which computes the maximum value of action branches and the average value of observation branches

weighted by the observation probabilities. We then perform a post-order traversal on the belief tree

and use (3) to compute recursively the maximum value at each node and obtain the best action at

the root node b0 for execution.

Suppose that at each internal node b in a belief tree, we retain only one action branch, which

represents the chosen action at b, and remove all other branches. This transforms a belief tree into a

policy tree. Each internal node b of a policy tree has a single out-going action edge, which specifies

the action at b. Each leaf node is associated with a default policy for execution at the node. Our

DESPOT algorithm uses this policy tree representation. We define the size of such a policy as the

number of internal policy tree nodes. A singleton policy tree thus has size 0.

2.2 Related Work

There are two main approaches to POMDP planning: offline policy computation and online search.

In offline planning, the agent computes beforehand a policy contingent upon all possible future out-

comes and executes the computed policy based on the observations received. One main advantage

of offline planning is fast policy execution, as the policy is precomputed. Early work on POMDP

planning often takes the offline approach. See, e.g., the work of Kaelbling, Littman, and Cassan-

dra (1998) and Zhang and Zhang (2001). Although offline planning algorithms have made major

progress in recent years (Pineau et al., 2003; Spaan & Vlassis, 2005; Smith & Simmons, 2005;

Kurniawati et al., 2008), they still face significant difficulty in scaling up to very large POMDPs, as

they must plan for all beliefs and future contingencies.
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Online planning interleaves planning with plan execution. At each time step, it plans locally

and chooses an optimal action for the current belief only, by performing lookahead search in the

neighborhood of the current belief. It then executes the chosen action immediately. Planning for the

current belief is computationally attractive. First, it is simpler to search for an optimal action at a

single belief than to do so for all beliefs, as offline policy computation does. Second, it allows us to

exploit local structure to reduce the search space size. One limitation of the online approach is the

constraint on planning time. As it interleaves planning and plan execution, the plan must be ready

for execution within short time in some applications.

A recent survey lists three main ideas for online planning via belief tree search (Ross et al.,

2008): heuristic search, branch-and-bound pruning, and Monte Carlo sampling. Heuristic search

employs a heuristic to guide the belief tree search (Ross & Chaib-Draa, 2007; Ross et al., 2008).

This idea dates back to the early work of Satia and Lave (1973) . Branch-and-bound pruning main-

tains upper and lower bounds on the value at each belief tree node and use them to prune suboptimal

subtrees and improve computational efficiency (Paquet, Tobin, & Chaib-Draa, 2005). This idea is

also present in earlier work on offline POMDP planning (Smith & Simmons, 2004). Monte Carlo

sampling explores only a randomly sampled subset of observation branches at each node of the

belief tree (Bertsekas & Castanon, 1999; Yoon, Fern, Givan, & Kambhampati, 2008; Kearns, Man-

sour, & Ng, 2002; Silver & Veness, 2010). Our DESPOT algorithm contains all three ideas, but is

most closely associated with Monte Carlo sampling. Below we examine some of the earlier Monte

Carlo sampling algorithms and DESPOT’s connection with them.

The rollout algorithm (Bertsekas & Castanon, 1999) is an early example of Monte Carlo sam-

pling for planning under uncertainty. It is originally designed for Markov decision processes (MDPs),

but can be easily adapted to solve POMDPs as well. It estimates the value of a default heuristic pol-

icy by performing K simulations and then chooses the best action by one-step lookahead search

over the estimated values. Although a one-step lookahead policy improves over the default policy,

it may be far from the optimum because of the very short, one-step search horizon.

Like the rollout algorithm, the hindsight optimization algorithm (HO) (Chong, Givan, & Chang,

2000; Yoon et al., 2008) is intended for MDPs, but can be adapted for POMDPs. While both HO

and DESPOT sample K scenarios for planning, HO builds one tree with O(|A|D) nodes for each

scenario, independent of others, and thus K trees in total. It searches each tree for an optimal plan

and averages the values of these K optimal plans to choose a best action. HO and related algorithms

have been quite successful in recent international probabilistic planning competitions. However, HO

plans for each scenario independently; it optimizes an upper bound on the value of a POMDP and

not the true value itself. In contrast, DESPOT captures all K scenarios in a single tree ofO(|A|DK)
nodes and hedges against all K scenarios simultaneously during the planning. It converges to the

true optimal value of the POMDP as K grows.

The work of Kearns, Mansour, and Ng (1999) and that of Ng and Jordan (2000) use sam-

pled scenarios as well, but for offline POMDP policy computation. They provide uniform conver-

gence bounds in terms of the complexity of the policy class under consideration, e.g., the Vapnik-

Chervonenkis dimension. In comparison, DESPOT uses sampled scenarios for online instead of

offline planning. Furthermore, our competitive analysis of DESPOT compares our computed policy

against an optimal policy and produces a bound that depends on the size of the optimal policy. The

bound benefits from the existence of a small near-optimal policy and naturally leads to a regularized

objective function for online planning; in contrast, the algorithms by Kearns et al. (1999) and Ng
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and Jordan (2000) do not exploit the existence of good small policies within the class of policies

under consideration.

The sparse sampling (SS) algorithm (Kearns et al., 2002) and the DESPOT algorithm both

construct sparse approximations to a belief tree. SS samples a constant number C of observation

branches for each action. A sparse sampling tree contains O(|A|DCD) nodes, while a DESPOT

contains O(|A|DK) nodes. Our analysis shows that K can be much smaller than CD when a

POMDP admits a small near-optimal policy (Theorem 3.2). In such cases, the DESPOT algorithm

is computationally more efficient.

POMCP (Silver & Veness, 2010) performs Monte Carlo tree search (MCTS) on a belief tree.

It combines optimistic action exploration and random observation sampling, and relies on the UCT

algorithm (Kocsis & Szepesvari, 2006) to trade off exploration and exploitation. POMCP is simple

to implement and is one of the best in terms of practical performance on large POMDPs. However,

it can be misguided by the upper confidence bound (UCB) heuristic of the UCT algorithm and be

overly greedy. Although it converges to an optimal action in the limit, its worst-case running time

is extremely poor: Ω(

D−1

︷ ︸︸ ︷

exp(exp(. . . exp(1) . . .))) (Coquelin & Munos, 2007).

Among the Monte Carlo sampling algorithms, one unique feature of DESPOT is the use of

regularization to avoid overfitting to sampled scenarios: it balances the estimated performance value

of a policy and the policy size during the online search, improving overall performance for suitable

tasks.

Another important issue for online POMDP planning is belief representation. Most online

POMDP algorithms, including the Monte Carlo sampling algorithms, explicitly represent the belief

as a probability distribution over the state space. This severely limits their scalability on POMDPs

with very large state spaces, because a single belief update can take time quadratic in the number of

states. Notable exceptions are POMCP and DESPOT. Both represent the belief as a set of sampled

states and do not perform belief update over the entire state space during the online search.

Online search and offline policy computation are complementary and can be combined, by using

approximate or partial policies computed offline as the default policies at the leaves of the search

tree for online planning (Bertsekas & Castanon, 1999; Gelly & Silver, 2007), or as macro-actions

to shorten the search horizon (He, Brunskill, & Roy, 2011).

This paper extends our earlier work (Somani, Ye, Hsu, & Lee, 2013). It provides an improved

anytime online planning algorithm, an analysis of this algorithm, and new experimental results.

3. Determinized Sparse Partially Observable Trees

A DESPOT is a sparse approximation of a standard belief tree. While a standard belief tree captures

the execution of all policies under all possible scenarios, a DESPOT captures the execution of all

policies under a set of randomly sampled scenarios (Figure 1b). A DESPOT contains all the action

branches, but only the observation branches encountered under the sampled scenarios.

We define DESPOT constructively by applying a deterministic simulative model to all pos-

sible action sequences under K sampled scenarios. A scenario is an abstract simulation trajec-

tory with some start state s0. Formally, a scenario for a belief b is an infinite random sequence

φ = (s0, φ1, φ2, . . .), in which the start state s0 is sampled according to b and each φi is a real num-

ber sampled independently and uniformly from the range [0, 1]. The deterministic simulative model

is a function g : S ×A×R 7→ S ×Z, such that if a random number φ is distributed uniformly over
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[0, 1], then (s′, z′) = g(s, a, φ) is distributed according to p(s′, z′|s, a) = T (s, a, s′)O(s′, a, z′).
When simulating this model for an action sequence (a1, a2, . . .) under a scenario (s0, φ1, φ2, . . .),
we get a simulation trajectory (s0, a1, s1, z1, a2, s2, z2, . . .), where (st, zt) = g(st−1, at, φt) for

t = 1, 2, . . . . The simulation trajectory traces out a path (a1, z1, a2, z2, . . .) from the root of the

standard belief tree. We add all the nodes and edges on this path to the DESPOT D being con-

structed. Each node b of D contains a set Φb of all scenarios that it encounters. We insert the

scenario (s0, φ0, φ1, . . .) into the set Φb0 at the root b0 and insert the scenario (st, φt+1, φt+2, . . .)
into the set Φbt at the belief node bt reached at the end of the subpath (a1, z1, a2, z2, . . . , at, zt),
for t = 1, 2, . . . . Repeating this process for every action sequence under every sampled scenario

completes the construction of D.

In summary, a DESPOT is a randomly sampled subtree of a standard belief tree. It is com-

pletely determined by the set of K random sequences sampled a priori, hence the name Deter-

minized Sparse Partially Observable Tree. Each DESPOT node b represents a belief and contains

a set Φb of scenarios. The start states of the scenarios in Φb form a particle set that represents b
approximately. While a standard belief tree of height D has O(|A|D|Z|D) nodes, a corresponding

DESPOT has O(|A|DK) nodes for |A| ≥ 2, because of reduced observation branching under the

sampled scenarios.

It is possible to search for near-optimal policies using a DESPOT instead of a standard belief

tree. The empirical value V̂π(b) of a policy π under the sampled scenarios encoded in a DESPOT

is the average total discounted reward obtained by simulating the policy under each scenario. For-

mally, let Vπ,φ be the total discounted reward of the trajectory obtained by simulating π under a

scenario φ ∈ Φb for some node b in a DESPOT, then

V̂π(b) =
∑

φ∈Φb

Vπ,φ

|Φb|
,

where |Φb| is the number of scenarios in Φb. Since V̂π(b) converges to Vπ(b) almost surely as

K → ∞, the problem of finding an optimal policy at b can be approximated as that of doing so

under the sampled scenarios. One concern, however, is overfitting: a policy optimized for finitely

many sampled scenarios may not be optimal in general, as many scenarios are not sampled. To

control overfitting, we regularize the empirical value of a policy by adding a term that penalizes

large policy size. We now provide theoretical analysis to justify this approach.

Our first result bounds the error of estimating the values of all policies derived from DESPOTs

of a given size. The result implies that a DESPOT constructed with a small number of scenarios

is sufficient for approximate policy evaluation. The second result shows that by optimizing this

bound, which is equivalent to maximizing a regularized value function, we obtain a policy that is

competitive with the best small policy.

Formally, a DESPOT policy π is a policy tree derived from a DESPOT D: π contains the same

root as the DESPOT D, but only one action branch at each internal node. To execute π, an agent

starts at the root of π. At each time step, it takes the action specified by the action edge at the

node. Upon receiving the resulting observation, it follows the corresponding observation edge to

the next node. The agent may encounter an observation not present in π, as π contains only the

observation branches under the sampled scenarios. In this case, the agent follows a default policy

from then on. Similarly, it follows the default policy when reaching a leaf node of π. Consider the

set Πb0,D,K , which contains all DESPOT policies derived from DESPOTs of height D, constructed
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with all possible K sampled scenarios for a belief b0. We now bound the error on the estimated

value of an arbitrary DESPOT policy in Πb0,D,K . To simplify the presentation, we assume without

loss of generality that all rewards are non-negative and are bounded by Rmax. For models with

bounded negative rewards, we can shift all rewards by a constant to make them non-negative. The

shift does not affect the optimal policy.

Theorem 3.1 For any given constants τ, α ∈ (0, 1), any belief b0, and any positive integers D and

K, every DESPOT policy tree π ∈ Πb0,D,K satisfies

Vπ(b0) ≥
1− α

1 + α
V̂π(b0)−

Rmax

(1 + α)(1− γ)
·
ln(4/τ) + |π| ln

(
KD|A||Z|

)

αK
(4)

with probability at least 1− τ , where V̂π(b0) is the estimated value of π under a set of K scenarios

randomly sampled according to b0.

All proofs are presented in the appendix. Intuitively, the result says that all DESPOT policies in

Πb0,D,K satisfy the bound given in (4), with high probability. The bound holds for any constant

α ∈ (0, 1), which is a parameter that can be tuned to tighten the bound. A smaller α value reduces

the approximation error in the first term on the right-hand side of (4), but increases the additive error

in the second term. The additive error depends on the size of π. It also grows logarithmically with

|A| and |Z|. The estimation thus scales well with large action and observation spaces. We can make

this estimation error arbitrarily small by choosing a suitable number of sampled scenarios, K.

The next theorem states that we can obtain a near-optimal policy π̂ by maximizing the RHS of

(4), which accounts for both the estimated performance and the size of a policy.

Theorem 3.2 Let π be an arbitrary policy at a belief b0. Let ΠD be the set of policies derived from

a DESPOT D that has height D and is constructed with K scenarios sampled randomly according

to b0. For any given constants τ, α ∈ (0, 1), if

π̂ = argmax
π
′∈ΠD

{
1− α

1 + α
V̂π

′(b0)−
Rmax

(1 + α)(1− γ)
·
|π′| ln

(
KD|A||Z|

)

αK

}

, (5)

then

Vπ̂(b0) ≥
1−α
1+αVπ(b0)−

Rmax

(1+α)(1−γ)

(
ln(8/τ)+|π| ln

(
KD|A||Z|

)

αK + (1− α)
(√

2 ln(2/τ)
K + γD

))

with probability at least 1− τ .

Theorem 3.2 bounds the performance of π̂, the policy maximizing (5) in the DESPOT, in terms of

the performance of another policy π. Any policy can be used as the policy π for comparison in

the competitive analysis. Hence, the performance of π̂ can be compared to the performance of an

optimal policy. If the optimal policy has small representation size, the approximation error of π̂ is

correspondingly small. The performance of π̂ is also robust. If the optimal policy has large size, but

is well approximated by a small policy π of size |π|, then we can obtain π̂ with small approximation

error, by choosing K to be O(|π| ln(|π||A||Z|)). Since a DESPOT has size O(|A|DK), the choice

of K allows us to trade off computation cost and approximation accuracy.
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The objective function in (5) has the form

V̂π(b0)− λ|π| (6)

for some λ ≥ 0, similar to that of regularized utility functions in many machine learning algorithms.

This motivates the regularized objective function for our online planning algorithm described in the

next section.

4. Online Planning with DESPOTs

Following the standard online planning framework (Section 2.1), our algorithm iterates over two

main steps: action selection and belief update. For belief update, we use a standard particle filtering

method, sequential importance resampling (SIR) (Gordon, Salmond, & Smith, 1993).

We now present two action selection methods. In Section 4.1, we describe a conceptually simple

dynamic programming method that constructs a DESPOT fully before finding the optimal action.

For very large POMDPs, constructing the DESPOT fully is not practical. In Sections 4.2 to 4.4,

we describe an anytime DESPOT algorithm that performs anytime heuristic search. The anytime

algorithm constructs a DESPOT incrementally under the guidance of a heuristic and scales up to

very large POMDPs in practice. In Section 4.5, we show that the algorithm converges to an op-

timal policy when the heuristic is admissible and that the performance of the algorithm degrades

gracefully even when the heuristic is not admissible.

4.1 Dynamic Programming

We construct a fixed DESPOT D with K randomly sampled scenarios and want to derive from D a

policy that maximizes the regularized empirical value (6) under the sampled scenarios:

max
π∈ΠD

{

V̂π(b0)− λ|π|
}

,

where b0 is the current belief, at the root of D. Recall that a DESPOT policy is represented as a

policy tree. For each node b of π, we define the regularized weighted discounted utility (RWDU):

νπ(b) =
|Φb|

K
γ∆(b)V̂πb

(b)− λ|πb|, (7)

where |Φb| is the number of scenarios passing through node b, γ is the discount factor, ∆(b) is the

depth of b in the policy tree π, πb is the subtree rooted at b, and |πb| is the size of πb. The ratio

|Φb|/K is an empirical estimate of the probability of reaching b. Clearly, νπ(b0) = V̂π(b0)− λ|π|,
which we want to optimize.

For every node b of D, define ν∗(b) as the maximum RWDU of b over all policies in ΠD.

Assume that D has finite depth. We now present a dynamic programming procedure that computes

ν∗(b0) recursively from bottom up. At a leaf node b of D, we simulate a default policy π0 under the

sampled scenarios. According to our definition in Section 2.1, |π0| = 0. Thus,

ν∗(b) =
|Φb|

K
γ∆(b)V̂π0

(b). (8)
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At each internal node b, let τ(b, a, z) be the child of b following the action branch a and the obser-

vation branch z at b. Then,

ν∗(b) = max

{
|Φb|

K
γ∆(b)V̂π0

(b), max
a∈A

{

ρ(b, a) +
∑

z∈Zb,a

ν∗(τ(b, a, z))
}}

, (9)

where

ρ(b, a) =
1

K

∑

φ∈Φb

γ∆(b)R(sφ, a)− λ,

the state sφ is the start state of the scenario φ, and Zb,a is the set of observations following the action

branch a at the node b. The outer maximization in (9) chooses between executing the default policy

or expanding the subtree at b. As the RWDU contains a regularization term, the latter is beneficial

only if the subtree at b is relatively small. This effectively prevents expanding a large subtree, when

there are an insufficient number of sampled scenarios to estimate the value of a policy at b accurately.

The inner in (9) maximization chooses among the different actions available. When the algorithm

terminates, the maximizer at the root b0 of D gives the best action at b0.

If D has unbounded depth, it is sufficient to truncate D to a depth of ⌈Rmax/λ(1− γ)⌉+ 1 and

run the above algorithm, provided that λ > 0. The reason is that an optimal regularized policy π̂
cannot include the truncated nodes of D. Otherwise, π̂ has size at least ⌈Rmax/λ(1− γ)⌉ + 1 and

thus RWDU νπ̂(b0) < 0. Since the default policy π0 has RWDU νπ0
(b0) ≥ 0, π0 is then better than

π̂, a contradiction.

This dynamic programming algorithm runs in time linear in the number of nodes in D. We first

simulate the deterministic model to construct the tree, then do a bottom-up dynamic programming

to initialize V̂π0
(b), and finally compute ν∗(b) using Equation (9). Each step takes time linear in the

number of nodes in D given previous steps are done, and thus the total running time is O(|A|DK).

4.2 Anytime Heuristic Search

The bottom-up dynamic programming algorithm in the previous section constructs the full DESPOT

D in advance. This is generally not practical because there are exponentially many nodes. To scale

up, we now present an anytime forward search algorithm2 that avoids constructing the DESPOT

fully in advance. It selects the action by incrementally constructing a DESPOT D rooted at the

current belief b0, using heuristic search (Smith & Simmons, 2004; Kurniawati et al., 2008), and

approximating the optimal RWDU ν∗(b0). We describe the main components of the algorithm

below. The complete pseudocode is given in Appendix B.

To guide the heuristic search, we maintain a lower bound ℓ(b) and an upper bound µ(b) on the

optimal RWDU at each node b of D, so that ℓ(b) ≤ ν∗(b) ≤ µ(b). To prune the search tree, we

additionally maintain an upper bound U(b) on the empirical value V̂ ∗(b) of the optimal regularized

policy so that U(b) ≥ V̂ ∗(b) and compute an initial lower bound L0(b) with L0(b) ≤ V̂ ∗(b). In

particular, we use L0(b) = V̂π0
(b) for the default policy π0 at b.

2. This algorithm differs from an earlier version (Somani et al., 2013) in a subtle, but important way. The new algorithm

optimizes the RWDU directly by interleaving incremental DESPOT construction and backup. The earlier one per-

forms incremental DESPOT construction without regularization and then optimizes the RWDU over the constructed

DESPOT. As a result, the new algorithm is guaranteed to converge to an optimal regularized policy derived from the

full DESPOT, while the earlier one is not.

241



YE, SOMANI, HSU, & LEE

Algorithm 1 BUILDDESPOT(b0)

1: Sample randomly a set Φb0 of K scenarios from the current belief b0.

2: Create a new DESPOT D with a single node b0 as the root.

3: Initialize U(b0), L0(b0), µ(b0), and ℓ(b0).
4: ǫ(b0)← µ(b0)− ℓ(b0).
5: while ǫ(b0) > ǫ0 and the total running time is less than Tmax do

6: b← EXPLORE(D, b0).
7: BACKUP(D, b).
8: ǫ(b0)← µ(b0)− ℓ(b0).
9: return ℓ

Algorithm 2 EXPLORE(D, b)

1: while ∆(b) ≤ D, E(b) > 0, and PRUNE(D, b) = FALSE do

2: if b is a leaf node in D then

3: Expand b one level deeper. Insert each new child b′ of b into D. Initialize U(b′), L0(b
′),

µ(b′), and ℓ(b′).
4: a∗ ← argmaxa∈A µ(b, a).
5: z∗ ← argmaxz∈Zb,a∗

E(τ(b, a∗, z)).

6: b← τ(b, a∗, z∗).
7: if ∆(b) > D then

8: MAKEDEFAULT(b).
9: return b.

Algorithm 1 provides a high-level sketch of the algorithm. We construct and search a DESPOT

D incrementally, using K sampled scenarios (line 1). Initially, D contains only a single root node

with belief b0 and the associated initial upper and lower bounds (lines 2–3). The algorithm makes

a series of explorations to expand D and reduce the gap between the bounds µ(b0) and ℓ(b0) at the

root node b0 ofD. Each exploration follows a heuristic and traverses a promising path from the root

of D to add new nodes to D (line 6). Specifically, it keeps on choosing and expanding a promising

leaf node and adds its child nodes into D until current leaf node is not heuristically promising. The

algorithm then traces the path back to the root and performs backup on the upper and lower bounds

at each node along the way, using Bellman’s principle (line 7). The explorations continue, until

the gap between the bounds µ(b0) and ℓ(b0) reaches a target level ǫ0 ≥ 0 or the allocated online

planning time runs out (line 5).

4.2.1 FORWARD EXPLORATION

Let ǫ(b) = µ(b) − ℓ(b) denote the gap between the upper and lower RWDU bounds at a node

b. Each exploration aims to reduce the current gap ǫ(b0) at the root b0 to ξǫ(b0) for some given

constant 0 < ξ < 1 (Algorithm 2). An exploration starts at the root b0. At each node b along the

exploration path, we choose the action branch optimistically according to the upper bound µ(b):

a∗ = argmax
a∈A

µ(b, a) = argmax
a∈A

{

ρ(b, a) +
∑

z∈Zb,a

µ(b′)
}

, (10)
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Algorithm 3 MAKEDEFAULT(b)

U(b)← L0(b).
µ(b)← ℓ0(b).
ℓ(b)← ℓ0(b).

where b′ = τ(b, a, z) is the child of b following the action branch a and the observation branch z at

b. We then choose the observation branch z that leads to a child node b′ = τ(b, a∗, z) maximizing

the excess uncertainty E(b′) at b′:

z∗ = argmax
z∈Zb,a∗

E(b′) = argmax
z∈Zb,a∗

{

ǫ(b′)−
|Φb′ |

K
· ξ ǫ(b0)

}

. (11)

Intuitively, the excess uncertainty E(b′) measures the difference between the current gap at b′ and

the “expected” gap at b′ if the target gap ξ ǫ(b0) at b0 is satisfied. Our exploration strategy seeks to

reduce the excess uncertainty in a greedy manner. See Lemma 4.1 in Section 4.5, the work of Smith

and Simmons (2005) and the work of Kurniawati et al. (2008) for justifications of this strategy.

If the exploration encounters a leaf node b, we expand b by creating a child b′ of b for each

action a ∈ A and each observation encountered under a scenario φ ∈ Φb. For each new child b′,
we need to compute the initial bounds µ0(b

′), ℓ0(b
′), U0(b

′), and L0(b
′). The RWDU bounds µ0(b

′)
and ℓ0(b

′) can be expressed in terms of the empirical value bounds U0(b
′) and L0(b

′), respectively.

Applying the default policy π0 at b′ and using the definition of RWDU in (7), we have

ℓ0(b
′) = νπ0

(b′) =
|Φb′ |

K
γ∆(b′)L0(b

′),

as |π0| = 0. For the initial upper bound µ0(b
′), there are two cases. If the policy for maximizing

the RWDU at b′ is the default policy, then we can set µ0(b
′) = ℓ0(b

′). Otherwise, the optimal policy

has size at least 1, and it follows from (7) that µ0(b
′) =

|Φb′ |
K γ∆(b′)U0(b

′) − λ is an upper bound.

So we have

µ0(b
′) = max

{

ℓ0(b
′),
|Φb′ |

K
γ∆(b′)U0(b

′)− λ
}

.

There are various way to construct the initial empirical value bounds U0 and L0. We defer the

discussion to Sections 4.3 and 4.4.

Note that a node at a depth more than D executes the default policy, and the bounds are set

accordingly using the MAKEDEFAULT procedure (Algorithm 3). We explain the termination con-

ditions for exploration next.

4.2.2 TERMINATION OF EXPLORATION AND PRUNING

We terminate the exploration at a node b under three conditions (Algorithm 2, line 1). First, ∆(b) >
D, i.e., the maximum tree height is exceeded. Second, E(b) < 0, indicating that the expected gap

at b is reached and further exploration from b onwards may be unprofitable. Finally, b is blocked by

an ancestor node b′:
|Φb′ |

K
γ∆(b′)(U(b′)− L0(b

′)) ≤ λ · ℓ(b′, b), (12)

where ℓ(b′, b) is the number of nodes on the path from b′ to b. The intuition behind this last condition

is that there is insufficient number of sampled scenarios at the ancestor node b′. Further expanding b
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and thus enlarging the policy subtree at b′ may cause overfitting and reduce the regularized utility at

b′. We thus prune the search by applying the default policy at b and setting the bounds accordingly

by calling MAKEDEFAULT. More details are available in Lemma 4.2, which derives the condition

(12) and proves that pruning the search does not compromise the optimality of the algorithm.

The pruning process continues backwards from b towards the root of D (Algorithm 4). As the

bounds are updated, new nodes may satisfy the condition for pruning and are pruned away.

Algorithm 4 PRUNE(D, b)

1: BLOCKED ← FALSE.

2: for each node x on the path from b to the root of D do

3: if x is blocked by any ancestor node in D then

4: MAKEDEFAULT(x).

5: BACKUP(D, x).

6: BLOCKED ← TRUE.

7: else

8: break

9: return BLOCKED

4.2.3 BACKUP

When the exploration terminates, we trace the path back to the root and perform backup on the

bounds at each node b along the way, using Bellman’s principle (Algorithm 5):

µ(b) = max
{

ℓ0(b),max
a∈A

{

ρ(b, a) +
∑

z∈Zb,a

µ(b′)
}}

,

ℓ(b) = max
{

ℓ0(b),max
a∈A

{

ρ(b, a) +
∑

z∈Zb,a

ℓ(b′)
}}

,

U(b) = max
a∈A

{
1

|Φb|

∑

φ∈Φb

R(sφ, a) + γ
∑

z∈Zb,a

|Φb′ |

|Φb|
U(b′)

}

,

where b′ is a child of b with b′ = τ(b, a, z).

4.2.4 RUNNING TIME

Suppose that the anytime search algorithm invokes EXPLORE N times. EXPLORE traverses a path

from the root to a leaf node of a DESPOTD, visiting at most D+K−1 nodes along the way because

a path has at most D nodes, and at most K − 1 nodes not on the path can be added due to node

expansions (Algorithm 2). At each node, the following steps dominate the running time. Checking

the condition for pruning (line 1) takes timeO(D2) in total and thusO(D) per node. Adding a new

node to D and initializing the bounds (lines 3 and 8) take time O(I) (assuming I is an upper bound

of the cost). Choosing the action branch (line 4) takes timeO(|A|). Choosing the observation branch

(line 5) takes time min{|Z|,K} ∈ O(K), which is loose because only the sampled observation

branches are involved. Thus, the running time at each node is O(D + I + |A| +K), and the total

running time is O
(
N(D +K)(D + I + |A|+K)

)
.
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Algorithm 5 BACKUP(D, b)

1: for each node x on the path from b to the root of D do

2: Perform backup on µ(x), ℓ(x), and U(x).

The anytime search algorithm constructs a partial DESPOT with at most N(D+K) nodes, while

the dynamic programming algorithm (Section 4.1) constructs a DESPOT fully with O(|A|DK)
nodes. While the bounds are not directly comparable, N(D + K) is typically much smaller than

|A|DK in many practical settings. This is the main difference between the two algorithms. The

anytime search algorithm takes slightly more time at each node in order to prune the DESPOT. The

trade-off is overall beneficial for reduced DESPOT size.

4.3 Initial Upper Bounds

For illustration purposes, we discuss several methods for constructing the initial upper bound U0(b)
at a DESPOT node b. There are, of course, many alternatives. The flexibility in constructing upper

and lower bounds for improved performance is one strength of DESPOT.

The simplest one is the uninformed bound

U0(b) = Rmax/(1− γ). (13)

While this bound is loose, it is easy to compute and may yield good results when combined with

suitable lower bounds.

Hindsight optimization (Yoon et al., 2008) provides a principled method to construct an upper

bound algorithmically. Given a fixed scenario φ = (s0, φ1, φ2, . . .), computing an upper bound

on the total discounted reward achieved by any arbitrary policy is a deterministic planning problem.

When the state space is sufficiently small, we can solve it by dynamic programming on a trellis of D
time slices. Trellis nodes represent states, and edges represent actions at each time step. Let u(t, s)
be the maximum total reward on the scenario (st, φt+1, φt+2, . . . , φD) at state s ∈ S and time step

t. For all s ∈ S and t = 0, 1, . . . , D − 1, we set

u(D, s) = Rmax/(1− γ)

and

u(t, s) = max
a∈A

{
R(s, a) + γ u(t+ 1, s′)

}
,

where s′ is the new state given by the deterministic simulative model g(s, a, φt+1). Then u(0, s0)
gives the upper bound under φ = (s0, φ1, φ2, . . . ). We repeat this procedure for every φ ∈ Φb, and

set

U0(b) =
1

|Φb|

∑

φ∈Φb

u(0, sφ), (14)

where sφ is the start state of φ. For a set of K scenarios, this bound can be pre-computed in

O(K|S||A|D) time and stored, before online planning starts. To tighten this bound further, we

may exploit domain-specific knowledge or other techniques to initialize u(D, s) either exactly or

heuristically, instead of using the uninformed bound. If u(D, s) is a true upper bound on the total

discounted reward, then the resulting U0(b) is also a true upper bound.

Hindsight optimization may be too expensive to compute when the state space is large. Instead,

we may do approximate hindsight optimization, by constructing a domain-specific heuristic upper
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bound uH(s0) on the total discounted reward for each scenario φ = (s0, φ1, φ2, . . .) and then use

the average

U0(b) =
1

|Φb|

∑

φ∈Φb

uH(sφ) (15)

as an upper bound. This upper bound depends on the state only and is often simpler to compute.

Domain dependent knowledge can be used in constructing this bound – this is often crucial in prac-

tical problems. In addition, uH(sφ) need not be a true upper bound. An approximation suffices. Our

analysis in Section 4.5 shows that the DESPOT algorithm is robust against upper bound approxi-

mation error, and the performance of the algorithm degrades gracefully. We call this class of upper

bounds, approximate hindsight optimization.

A useful approximate hindsight optimization bound can be obtained by assuming that the states

are fully observable, converting the POMDP into a corresponding MDP, and solving for its optimal

value function VMDP. The expected value V (b) =
∑

s∈S b(s)VMDP(s) is an upper bound on the

optimal value V ∗(b) for the POMDP, and

U0(b) =
1

|Φb|

∑

φ∈Φb

VMDP(sφ) (16)

approximates V (b) by taking the average over the start states of the sampled scenarios. Like the

domain-specific heuristic bound, the MDP bound (16) is in general not a true upper bound of the

RWDU, but only an approximation, because the MDP is not restricted to the set of sampled scenar-

ios. It takes O(|S|2|A|D) time to solve the MDP using value iteration, but the running time can be

significantly faster for MDPs with sparse transitions.

4.4 Initial Lower Bounds and Default Policies

The DESPOT algorithm requires a default policy π0. The simplest default policy is a fixed-action

policy with the highest expected total discounted reward (Smith & Simmons, 2004). One can also

handcraft a better policy that chooses an action based on the past history of actions and observations

(Silver & Veness, 2010). However, it is often not easy to determine what the next action should be,

given the past history of actions and observations. As in the case of upper bounds, it is often more

intuitive to work with states rather than beliefs. We describe a class of methods that we call scenario-

based policies. In a scenario-based policy, we construct a mapping f : S 7→ A that specifies an

action at a given state. We then specify a function that maps a belief to a state Λ: B 7→ S and let the

default policy be π0(b) = f(Λ(b)). As an example, let Λ(b) be the mode of the distribution b (for a

DESPOT node, this is the most frequent start state under all scenarios in Φb). We then let f be an

optimal policy for the underlying MDP to obtain what we call the mode-MDP policy.

Scenario-based policies considerably ease the difficulty of constructing effective default poli-

cies. However, depending on the choice of Λ, they may not satisfy Theorem 3.1, which assumes

that the value of a default policy on one scenario is independent of the value of the policy on another

scenario. In particular, the mode-MDP policy violates this assumption and may overfit to the sam-

pled scenarios. However, in practice, we expect the benefit of being able to construct good default

policies to usually outweigh the concerns of overfitting with the default policy.

Given a default policy π0, we obtain the initial lower bound L0(b) at a DESPOT node b by

simulating π0 for a finite number of steps under each scenario Φb and calculating the average total

discounted reward.
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4.5 Analysis

The dynamic programming algorithm builds a full DESPOT D. The anytime forward search algo-

rithm builds a DESPOT incrementally and terminates with a partial DESPOTD′, which is a subtree

of D. The main objective of the analysis is to show that the optimal regularized policy π̂ derived

from D′ converges to the optimal regularized policy in D. Furthermore, the performance of the

anytime algorithm degrades gracefully even when the upper bound U0 is not strictly admissible.

We start with some lemmas to justify the choices made in the anytime algorithm. Lemma 4.1

says that the excess uncertainty at a node b is bounded by the sum of excess uncertainty over its

children under the action branch a∗ that has the highest upper bound µ(b, a∗). This provides a

greedy means to reduce excess uncertainty by recursively exploring the action branch a∗ and the

observation branch with the highest excess uncertainty, justifying (10) and (11) as the action and

observation selection criteria.

Lemma 4.1 For any DESPOT node b, if E(b) > 0 and a∗ = argmaxa∈A µ(b, a), then

E(b) ≤
∑

z∈Zb,a∗

E(b′),

where b′ = τ(b, a∗, z) is a child of b.

This lemma generalizes a similar result in (Smith & Simmons, 2004) by taking regularization into

account.

Lemma 4.2 justifies PRUNE, which prunes the search when a node is blocked by any of its

ancestors.

Lemma 4.2 Let b′ be an ancestor of b in a DESPOT D and ℓ(b′, b) be the number of nodes on the

path from b′ to b. If
|Φb′ |

K
γ∆(b′)(U(b′)− L0(b

′)) ≤ λ · ℓ(b′, b),

then b cannot be a belief node in an optimal regularized policy derived from D.

We proceed to analyze the performance of the optimal regularized policy π̂ derived from the

partial DESPOT constructed. The action output by the anytime DESPOT algorithm is the action

π̂(b0), because the initialization and the computation of the lower bound ℓ via the backup equations

are exactly that for finding an optimal regularized policy value in the partial DESPOT.

We now state the main results in the next two theorems. Both assume that the initial upper

bound U0 is δ-approximate:

U0(b) ≥ V̂ ∗(b)− δ,

for every DESPOT node b. If the initial upper bound is 0-approximate, that is, it is indeed an upper

bound for V̂ ∗(b), then we say the heuristic is admissible. First, consider the case in which the

maximum online planning time per step Tmax is bounded.

Theorem 4.1 Suppose that Tmax is bounded and that the anytime DESPOT algorithm terminates

with a partial DESPOT D′ that has gap ǫ(b0) between the upper and lower bounds at the root b0.

The optimal regularized policy π̂ derived from D′ satisfies

νπ̂(b0) ≥ ν∗(b0)− ǫ(b0)− δ,

where ν∗(b0) is the value of an optimal regularized policy derived from the full DESPOT D at b0.
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Since ǫ(b0) decreases monotonically as Tmax grows, the above result shows that the performance of

π̂ approaches that of an optimal regularized policy as the running time increases. Furthermore, the

error in initial upper bound approximation affects the final result by at most δ. Next we consider

unbounded maximum planning time Tmax. The objective here is to show that despite unbounded

Tmax, the anytime algorithm terminates in finite time with a near-optimal or optimal regularized

policy.

Theorem 4.2 Suppose that Tmax is unbounded and ǫ0 is the target gap between the upper and

lower bound at the root of the partial DESPOT constructed by the anytime DESPOT algorithm. Let

ν∗(b0) be the value of an optimal regularized policy derived from the full DESPOT D at b0.

(1) If ǫ0 > 0, then the algorithm terminates in finite time with a near-optimal regularized policy

π̂ satisfying

νπ̂(b0) ≥ ν∗(b0)− ǫ0 − δ.

(2) If ǫ0 = 0, δ = 0, and the regularization constant λ > 0, then the algorithm terminates in

finite time with an optimal regularized policy π̂, i.e., νπ̂(b0) = ν∗(b0).

In the case ǫ0 > 0, the algorithm aims for an approximately optimal regularized policy. Compared

with Theorem 4.1, here the maximum planning time limit Tmax is removed, and the algorithm

achieves the target gap ǫ0 exactly, after sufficient computation time. In the case ǫ0 = 0, the algorithm

aims for an optimal regularized policy. Two additional conditions are required to guarantee finite-

time termination and optimality. Clearly one is a true upper bound with no approximation error, i.e.,

δ = 0. The other is a strictly positive regularization constant. This assumption implies that there is

a finite optimal regularized policy, and thus allows the algorithm to terminate in finite time.

5. Experiments

We now compare the anytime DESPOT algorithm with three state-of-the-art POMDP algorithms

(Section 5.1). We also study the effects of regularization (Section 5.2) and initial bounds (Sec-

tion 5.3) on the performance of our algorithm.

5.1 Performance Comparison

We compare DESPOT with SARSOP (Kurniawati et al., 2008), AEMS2 (Ross & Chaib-Draa, 2007;

Ross et al., 2008), and POMCP (Silver & Veness, 2010). SARSOP is one of the fastest off-line

POMDP algorithms. While it cannot compete with online algorithms on scalability, it often pro-

vides better results on POMDPs of moderate size and helps to calibrate the performance of online

algorithms. AEMS2 is an early successful online POMDP algorithm. Again it is not designed to

scale to very large state and observation spaces and is used here as calibration on moderate sized

problems. POMCP scales up extremely well in practice (Silver & Veness, 2010) and allows us to

calibrate the performance of DESPOT on very large problems.

We implemented DESPOT and AEMS2 ourselves. We used the authors’ implementation of

POMCP (Silver & Veness, 2010), but improved the implementation to support a very large number

of observations and strictly adhere to the time limit for online planning. We used the APPL package

for SARSOP (Kurniawati et al., 2008). All algorithms were implemented in C++.
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Table 1: Performance comparison. We report the average total discounted reward achieved. For

Pocman, we follow (Silver & Veness, 2010) and report the average total reward without discounting.

A dash “–” indicates that an algorithm fails to run successfully on a domain, because the state

space or the observation space is too large, and memory limit was exceeded. For AEMS2 and

POMCP, our experimental results sometimes differ from those reported in earlier work, possibly

due to differences in experimental settings and platforms. We thus report both, with the results in

earlier work (Ross et al., 2008; Silver & Veness, 2010) in parentheses.

Tag Laser Tag RS(7,8) RS(11,11) RS(15,15) Pocman Bridge Crossing

|S| 870 4,830 12,544 247,808 7,372,800 ∼ 1056 10

|A| 5 5 13 16 20 4 3

|Z| 30 ∼ 1.5× 106 3 3 3 1,024 1

SARSOP −6.03± 0.12 – 21.47± 0.04 21.56± 0.11 – – −7.40± 0.0
AEMS2 −6.41± 0.28 – 20.89± 0.30 – – – −7.40± 0.0

(−6.19± 0.15) (21.37± 0.22)

POMCP −7.14± 0.28 −19.58± 0.06 16.80± 0.30 18.10± 0.36 12.23± 0.32 294.16± 4.06 −20.00± 0.0
(20.71± 0.21) (20.01± 0.23) (15.32± 0.28)

DESPOT −6.23± 0.26 −8.45± 0.26 20.93± 0.30 21.75± 0.30 18.64± 0.28 317.78± 4.20 −7.40± 0.0

For each algorithm, we tuned the key parameters on each domain through offline training,

using a data set distinct from the online test data set, as we expect this to be the common us-

age mode for online planning. Specifically, the regularization parameter λ for DESPOT was se-

lected offline from the set {0, 0.01, 0.1, 1, 10} by running the algorithm with a training set distinct

from the online test set. Similarly, the exploration constant c of POMCP was chosen from the set

{1, 10, 100, 1000, 10000} for the best performance. Other parameters of the algorithms are set to

reasonable values independent of the domain being considered. Specifically, we chose ξ = 0.95 as

in SARSOP (Kurniawati et al., 2008). We chose D = 90 for DESPOT because γD ≈ 0.01 when

γ = 0.95, which is the typical discount factor used. We chose K = 500, but a smaller value may

work as well.

All the algorithms were evaluated on the same experimental platform. The online POMDP

algorithms were given exactly 1 second per step to choose an action.

The test domains range in size from small to extremely large. The results are reported in Table 1.

In summary, SARSOP and AEMS2 have good performance on the smaller domains, but cannot scale

up. POMCP scales up to very large domains, but has poor performance on some domains. DESPOT

has strong overall performance. On the smaller domains, it matches with SARSOP and AEMS2 in

performance. On the large domains, it matches and sometimes outperforms POMCP. The details on

each domain are described below.

5.1.1 TAG

Tag is a standard POMDP benchmark introduced by Pineau et al. (2003). A robot and a target

operate in a grid with 29 possible positions (Figure 4a). The robot’s goal is to find and tag the

target that intentionally runs away. They start at random initial positions. The robot knows its own

position, but can observe the target’s position only if they are in the same grid cell. The robot can

either stay in the same position or move to the four adjacent positions, paying a cost of −1 for each

move. It can also attempt to tag the target. It is rewarded +10, if the attempt is successful, and
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(a) (b)

(c) (d)

Figure 4: Four test domains. (a) Tag. A robot chases an unobserved target that runs away. (b) Laser

Tag. A robot chases a target in a 7 × 11 grid environment populated with obstacles. The robot

is equipped with a laser range finder for self-localization. (c) Rock Sample. A robot rover senses

rocks to identify “good” ones and samples them. Upon completion, it exits the east boundary. (d)

The original Pacman game.

is penalized −10 otherwise. To complete the task successfully, a good policy exploits the target’s

dynamics to “push” it against a corner of the environment.

For DESPOT, we use the hindsight optimization bound for the initial upper bound U0 and ini-

tialize hindsight optimization by setting U(D, s) to be the optimal MDP value (Section 4.3). We

use the mode-MDP policy for the default policy π0 (Section 4.4).

POMCP cannot use the mode-MDP policy, as it requires default policies that depend on the

history only. We use the Tag implementation that comes as part of the authors’ POMCP package,

but improved its default policy. The original default policy tags when both the robot and the target

lie in a corner. Otherwise the robot randomly chooses an action that avoids doubling back or going

into the walls. The improved policy tags whenever the agent and the target lie in the same grid

cell, otherwise avoids doubling back or going into the walls, yielding better results based on our

experiments.

On this moderate-size domain, SARSOP achieves the best result. AEMS2 and DESPOT have

comparable performance. POMCP’s performance is much weaker, partly because of the limitation

on its default policy.
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5.1.2 LASER TAG

Theorem 3.1 suggests that DESPOT may perform well even when the observation space is large,

provided that a small good policy exists. We now consider Laser Tag, an expanded version of Tag

with a large observation space. In Laser Tag, the robot moves in a 7 × 11 rectangular grid with

obstacles placed randomly in eight grid cells (Figure 4b). The robot’s and target’s behaviors remain

the same as before. However, the robot does not know its own position exactly and is distributed

uniformly over the grid initially. To localize, it is equipped with a laser range finder that measures

the distances in eight directions. The side length of each cell is 1. The laser reading in each

direction is generated from a normal distribution centered at the true distance of the robot to the

nearest obstacle in that direction, with a standard deviation of 2.5. The readings are rounded to

the nearest integers. So an observation comprises a set of eight integers, and the total number of

observations is roughly 1.5× 106.

DESPOT uses a domain-specific method, which we call Shortest Path (SP) for the upper bound.

For every possible initial target position, we compute an upper bound by assuming that the target

stays stationary and that the robot follows a shortest path to tag the target. We then take the average

over the sampled scenarios. DESPOT’s default policy is similar to the one used by POMCP in Tag,

but it uses the most likely robot position to choose actions that avoid doubling back and running

into walls. So it is not a scenario-based policy but a hybrid policy that makes use of both the belief

and the history.

As the robot does not know its exact location, it is more difficult for POMCP’s default policy

to avoid going into walls and doubling back. Hence, we only implemented the action of tagging

whenever the robot and target are in the same location, and did not implement wall and doubling

back avoidance.

With the very large observation space, we are not able to successfully run SARSOP and AEMS2.

DESPOT achieves substantially better result than POMCP on this task.

5.1.3 ROCK SAMPLE

Next we consider Rock Sample, a well-established benchmark with a large state space (Smith &

Simmons, 2004). In RS(n, k), a robot rover moves on an n × n grid containing k rocks, each of

which may be good or bad (Figure 4c). The robot’s goal is to visit and sample the good rocks,

and exit the east boundary upon completion. At each step, the robot may move to an adjacent

cell, sense a rock, or sample a rock. Sampling gives a reward of +10 if the rock is good and −10
otherwise. Moving and sensing have reward 0. Moving or sampling do not produce any observation,

or equivalently, null observation is produced. Sensing a rock produces an observation, GOOD or

BAD, with probability of being correct decreasing exponentially with the robot’s distance from the

rock. To obtain high total reward, the robot navigates the environment and senses rocks to identify

the good ones; at the same time, it exploits the information gained to visit and sample the good

rocks.

For upper bounds, DESPOT uses the MDP upper bound, which is a true upper bound in this

case. For default policy, it uses a simple fixed-action default policy that always moves to the east.

POMCP uses the default policy described in (Silver & Veness, 2010). The robot travels from

rock location to rock location. At each rock location, the robot samples the rock if there are more

GOOD observations there than BAD observations. If all remaining rocks have a greater number of

BAD observations, the robot moves to the east boundary and exits.
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On the smallest domain RS(7, 8), the offline algorithm SARSOP obtains the best result overall.

Among the three online algorithms, DESPOT has the best result. On RS(11, 11), DESPOT matches

SARSOP in performance and is better than POMCP. On the largest instance RS(15, 15), SARSOP

and AEMS2 cannot be completed successfully. It is also interesting to note that although the default

policy for DESPOT is weaker than that of POMCP, DESPOT still achieves better results.

5.1.4 POCMAN

Pocman (Silver & Veness, 2010) is a partially observable variant of the popular video game Pacman

(Figure 4d). In Pocman, an agent and four ghosts move in a 17 × 19 maze populated with food

pellets. Each agent move incurs a cost of −1. Each food pellet provides a reward of +10. If

the agent is captured by a ghost, the game terminates with a penalty of −100. In addition, there

are four power pills. Within the next 15 time steps after eating a power pill, the agent can eat a

ghost encountered and receives a reward of +25. A ghost chases the agent if the agent is within

a Manhattan distance of 5, but runs away if the agent possesses a power pill. The agent does not

know the exact ghost locations, but receives information on whether it sees a ghost in each of the

cardinal directions, on whether it hears a ghost within a Manhattan distance of 2, on whether it feels

a wall in each of the four cardinal directions, and on whether it smells food pellets in adjacent or

diagonally adjacent cells. Pocman has an extremely large state space of roughly 1056 states.

For DESPOT, we compute an approximate hindsight optimization bound at a DESPOT node

b by summing the following quantities for each scenario in Φb and taking the average over all

scenarios: the reward for eating each pellet discounted by its distance from pocman, the reward for

clearing the level discounted by the maximum distance to a pellet, the default per-step reward of

−1 for a number of steps equal to the maximum distance to a pellet, the penalty for eating a ghost

discounted by the distance to the closest ghost being chased if any, the penalty for dying discounted

by the average distance to the ghosts, and half the penalty for hitting a wall if the agent tries to

double back along its direction of movement. Under the default policy, when the agent detects a

ghost, it chases a ghost if it possess a power pill and runs away from the ghost otherwise. When the

agent does not detect any ghost, it makes a random move that avoids doubling back or going into

walls. Due to the large scale of this domain, we used K = 100 scenarios in the experiments in order

to stay within the allocated 1 second online planning time. For this problem, POMCP uses the same

default policy as DESPOT.

On this large-scale domain, DESPOT has slightly better performance than POMCP, while SAR-

SOP and AEMS2 cannot run successfully.

5.1.5 BRIDGE CROSSING

The experiments above indicate that both POMCP and DESPOT can handle very large POMDPs.

However, the UCT search strategy (Kocsis & Szepesvari, 2006) which POMCP depends on has very

poor worst-case behavior (Coquelin & Munos, 2007). We designed Bridge Crossing, a very simple

domain, to illustrate this.

In Bridge Crossing, a person attempts to cross a narrow bridge over a mountain pass in the

dark. He starts out at one end of bridge, but is uncertain of his exact initial position because of the

darkness. At any time, he may call for rescue and terminate the attempt. In the POMDP model, the

man has 10 discretized positions x ∈ {0, 1, . . . , 9} along the bridge, with the person at the end of

x = 0. He is uncertain about his initial position, with a maximum error of 1. He can move forward
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Table 2: Performance of DESPOT, with and without regularization. The table reports the average

total discounted reward achieved. For Pocman, it reports the total undiscounted reward without

discounting.

Tag Laser Tag RS(7,8) RS(11,11) RS(15,15) Pocman Bridge Crossing

|Z| 30 ∼ 1.5× 106 3 3 3 1,024 1

λ 0.01 0.01 0.0 0.0 0.0 0.1 0.0

Regularized −6.23± 0.26 −8.45± 0.26 20.93± 0.30 21.75± 0.30 18.64± 0.28 317.78± 4.20 −7.40± 0.0

Unregularized −6.48± 0.26 −9.95± 0.26 20.90± 0.30 21.75± 0.30 18.15± 0.29 269.64± 4.33 −7.40± 0.0

or backward, with cost −1. However, moving forward at x = 9 has cost 0, indicating successful

crossing. For simplicity, we assume no movement noise. The person can call for rescue, with cost

−x− 20, where x is his current position. The person has no observations while in the middle of the

bridge. His attempt terminates when he successfully crosses the bridge or calls for rescue.

DESPOT uses the uninformed upper bound and the trivial default policy of calling for rescue

immediately. POMCP uses the same default policy.

This is an open-loop planning problem. A policy is simply a sequence of actions, as there are

no observations. There are 3 possible actions at each step, and thus when considering policies of

length at most 10, there are at most 31 + 32 + . . . + 310 < 311 policies. A simple breadth-first

enumeration of these policies is sufficient to identify the optimal one: keep moving forward for

a maximum of 10 steps. Indeed, both SARSOP and AEMS2 obtain this optimal policy, as does

DESPOT. While the initial upper bound and the default policy for DESPOT are uninformed, the

backup operations improve the bounds and guide the search towards the right direction to close the

gap between the upper and lower bounds. In contrast, POMCP’s performance on this domain is

poor, because it is misled by its default policy and has an extremely poor convergence rate for cases

such as this. While the optimal policy is to move forward all the way, the Monte Carlo simulations

employed by POMCP suggests doing exactly the opposite at each step—move backward and call

for rescue—because calling for rescue early near the starting point incurs lower cost. Increasing the

exploration constant c may somewhat alleviate this difficulty, but does not resolve it substantively.

5.2 Benefits of Regularization

We now study the effect of regularization on the performance of DESPOT. If a POMDP has a large

number of observations, the size of the corresponding belief tree and the optimal policy may be large

as well. Overfitting to the sampled scenarios is thus more likely to occur, and we would expect that

regularization may help. Indeed, Table 2 shows that Tag, Rock Sample, and Bridge Crossing, which

all have a small or moderate number of observations, do not benefit much from regularization. The

remaining two, Laser Tag and Pocman, which have a large number of observations, benefit more

significantly from regularization.

To understand better the underlying cause, we designed another simple domain, Adventurer,

with a variable number of observations. An adventurer explores an ancient ruin modeled as a 1× 5
grid. He is initially located in the leftmost cell. The treasure is located in the rightmost cell, with

value uniformly distributed over a finite set X . If the adventurer reaches the rightmost cell and stays

there for one step to dig up the treasure, he receives the value of the treasure as the reward. The

adventurer can drive left, drive right, or stay in the same place. Each move may severely damage
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his vehicle with probability 0.5, because of the rough terrain. The damage incurs a cost of −10 and

terminates the adventure. The adventurer has a noisy sensor that reports the value of the treasure

at each time step. The sensor reading is accurate with probability 0.7, and the noise is evenly

distributed over other possible values in X . At each time step, the adventurer must decide, based

on the sensor readings received so far, whether to drive on in hope of getting the treasure or to stay

put and protect his vehicle. With a discount factor of 0.95, the optimal policy is in fact to stay in the

same place.

We studied two settings empirically: X = {101, 150} and X = {101, 102, . . . , 150}, which

result in 2 and 50 observations, respectively. For each setting, we constructed 1,000 full DESPOTs

from K = 500 randomly sampled scenarios. We compute the optimal action without regularization

for each DESPOT. In the first setting with 2 observations, the computed action is always to stay in

the same place. This is indeed optimal. In the second setting with 50 observations, about half of the

computed actions are to move right. This is suboptimal. Why did this happen?

Recall that the sampled scenarios are split among the observation branches. With 2 observations,

each observation branch has 250 scenarios on average, after the first step. This is sufficient to

represent the uncertainty well. With 50 observations, each observation branch has only about 5
scenarios on average. Because of the sampling variance, the algorithm easily underestimates the

probability and the expected cost of damage to the vehicle. In other words, it overfits to the sampled

scenarios. Overfitting thus occurs much more often with a large number of observations.

Regularization helps to alleviate overfitting. For the second setting, we ran the algorithm with

and without regularization. Without regularization, the average total discounted reward is −6.06±
0.24. With regularization, the average total discounted reward is 0± 0, which is optimal.

5.3 Effect of Initial Bounds

Both DESPOT and POMCP rely on Monte Carlo simulation as a key algorithmic technique. They

differ in two main aspects. One is their search strategies. We have seen in Section 5.1 that POMCP’s

search strategy is more greedy, while DESPOT’s search strategy is more robust. Another difference

is their default policies. While POMCP requires history-based default policies, DESPOT provides

greater flexibility. Here we look into the benefits of this flexibility and also illustrate several addi-

tional techniques for constructing effective default policies and initial upper bounds. The benefits of

cleverly-crafted default policies and initial upper bounds are domain-dependent. We examine three

domains — Tag, Laser Tag, and Pocman — to give some intuition. Tag and Laser Tag are closely

related for easy comparison, and both Laser Tag and Pocman are large-scale domains. The results

for Tag, Laser Tag, and Pocman are shown on Tables 3 and 4.

For Tag and Laser Tag, we considered the following default policies for both problems.

• NORTH is a domain-specific, fixed-action policy that always moves the robot to the adjacent

grid cell to the north at every time step.

• HIST is the improved history-based policy used by POMCP in the Tag experiment (Sec-

tion 5.1.1).

• HYBRID is the hybrid policy used by DESPOT in the Laser Tag experiment (Section 5.1.2).

• The mode-MDP policy is the scenario-based policy described in Section 4.4 and used by

DESPOT in the Tag experiment (Section 5.1.1). It first estimates the most likely state and

then applies the optimal MDP policy accordingly.
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Table 3: Comparison of different initial upper and default policies on Tag and Laser Tag. The table

reports the average total discounted rewards of the default policies (column 2) and of DESPOT

when used with different combinations of initial upper and default policies (columns 3–8).

Default Policy Initial Upper Bound

UI MDP SP HO-UI HO-MDP HO-SP

Tag

NORTH -19.80 ± 0.00 -15.29 ± 0.35 -6.27 ± 0.26 -6.31 ± 0.26 -6.39 ± 0.27 -6.49 ± 0.26 -6.45 ± 0.26

HIST -14.95 ± 0.41 -8.29 ± 0.28 -7.36 ± 0.26 -7.25 ± 0.26 -7.34 ± 0.26 -7.41 ± 0.26 -7.41 ± 0.26

MODE-MDP -9.31 ± 0.29 -6.29 ± 0.27 -6.27 ± 0.26 -6.24 ± 0.27 -6.28 ± 0.26 -6.23 ± 0.26 -6.32 ± 0.26

MODE-SP -12.57 ± 0.34 -6.53 ± 0.27 -6.51 ± 0.27 -6.38 ± 0.26 -6.52 ± 0.27 -6.56 ± 0.27 -6.55 ± 0.26

Laser Tag

NORTH -19.80 ± 0.00 -15.80 ± 0.35 -11.18 ± 0.28 -10.35 ± 0.26 -10.91 ± 0.27 -10.91 ± 0.27 -10.91 ± 0.27

HYBRID -19.77 ± 0.27 -8.76 ± 0.25 -8.59 ± 0.26 -8.45 ± 0.26 -8.52 ± 0.25 -8.66 ± 0.26 -8.54 ± 0.26

MODE-MDP -9.97 ± 0.25 -9.83 ± 0.25 -9.84 ± 0.25 -9.83 ± 0.25 -9.83 ± 0.25 -9.83 ± 0.25 -9.83 ± 0.25

MODE-SP -10.07 ± 0.26 -9.63 ± 0.25 -9.63 ± 0.25 -9.63 ± 0.25 -9.63 ± 0.25 -9.63 ± 0.25 -9.63 ± 0.25

Table 4: Comparison of different initial upper and default policies on Pocman. The table reports the

average total undiscounted rewards of the default policies (column 2) and of DESPOT when used

with different combinations of initial upper and default policies (columns 3–4).

Default Policy Initial Upper Bound

UI AHO

NORTH −1253.91± 24.03 −82.09± 1.72 −8.04± 3.54
RANDOM −72.68± 1.42 284.70± 4.45 202.21± 4.71
REACTIVE 80.93± 5.40 315.62± 4.16 317.78± 4.20

• MODE-SP is a variant of the MODE-MDP policy. Instead of the optimal MDP policy, it

applies a handcrafted domain-specific policy, which takes the action that moves the robot

towards the target along a shortest path in the most likely state.

Next, consider the initial upper bounds. UI is the uninformed upper bound (13). MDP is the MDP

upper bound (16). SP is the domain-specific bound used in Laser Tag (Section 5.1.2). We can

use any of these three bounds, UI, MDP, or SP, to initialize U(D, s) and obtain a corresponding

hindsight optimization bound.

For Pocman, we considered three default policies. NORTH is the policy of always moving to cell

to the north. RANDOM is the policy which moves randomly to a legal adjacent cell. REACTIVE

is the policy described in Section 5.1.4. We also considered two initial upper bounds. UI is the

uninformed upper bound (13). AHO is the approximate hindsight optimization bound described in

Section 5.1.4.

The results in Tables 3 and 4 offer several observations. First, DESPOT’s online search con-

siderably improves the default policy that it starts with, regardless of the specific default policy

and upper bound used. This indicates the importance of online search. Second, while some initial

upper bounds are approximate, they nevertheless yield very good results, even compared with true

upper bounds. This is illustrated by the approximate MDP bounds for Tag and Laser Tag as well
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as the approximate hindsight optimization bound for Pocman. Third, the simple uninformed upper

bound can sometimes yield good results, when paired with suitable default policies. Finally, these

observations are consistent across domains of different sizes, e.g., Tag and Laser Tag.

In these examples, default policies seem to have much more impact than initial upper bounds

do. It is also interesting to note that for LaserTag, HYBRID is one of the worst-performing default

policies, but leads to the best performance ultimately. So a stronger default policy does not always

lead to better performance. There are other factors that may affect the performance, and flexibility

in constructing both the upper bounds and initial policies can be useful.

6. Discussion

One key idea of DESPOT is to use a set of randomly sampled scenarios as an approximate represen-

tation of uncertainty and plan over the sampled scenarios. This works well if there exists a compact,

near-optimal policy. The basic idea extends beyond POMDP planning and applies to other planning

tasks under uncertainty, e.g., MDP planning and belief-space MDP planning.

The search strategy of the anytime DESPOT algorithm has several desirable properties. It is

asymptotically sound and complete (Theorem 4.2). It is robust against imperfect heuristics (Theo-

rem 4.2). It is also flexible and allows easy incorporation of domain knowledge. However, there are

many alternatives, e.g., the UCT strategy used in POMCP. While UCT has very poor performance

in the worst case, it is simpler to implement, an important practical consideration. Further, it avoids

the overhead of computing the upper and lower bounds during the search and thus could be more

efficient in some cases. In practice, there is trade-off between simplicity and robustness.

Large observation spaces may cause DESPOT to overfit to the sampled scenarios (see Sec-

tion 5.2) and pose a major challenge. Unfortunately, this may happen with many common sensors,

such as cameras and laser range finders. Regularization alleviates the difficulty. We are currently in-

vestigating several other approaches: structure the observation space hierarchically and importance

sampling.

The default policy plays an important role in DESPOT. A good default policy reduces the size

of the optimal policy. It also helps guide the heuristic search in the anytime search algorithm. In

practice, we want the default policy to incorporate as much domain knowledge as possible for good

performance. Another interesting direction is to learn the default policy during the search.

7. Conclusions

This paper presents DESPOT, a new approach to online POMDP planning. The main underlying

idea is to plan according to a set of sampled scenarios while avoiding overfitting to the samples.

Theoretical analysis shows that a DESPOT compactly captures the “execution” of all policies under

the sampled scenarios and yields a near-optimal policy, provided that there is a small near-optimal

policy. The analysis provides the justification for our overall planning approach based on sampled

scenarios and the need for regularization. Experimental results indicate strong performance of the

anytime DESPOT algorithm in practice. On moderately-sized POMDPs, DESPOT is competitive

with SARSOP and AEMS2, but it scales up much better. On large-scale POMDPs with up to 1056

states, DESPOT matches and sometimes outperforms POMCP.
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Appendix A. Proofs

Proof of Theorem 3.1

We will need the following lemma from (Haussler, 1992, p. 103) Lemma 9, part (2).

Lemma A.1 (Haussler’s bound) Let Z1, . . . , Zn be i.i.d random variables with range 0 ≤ Zi ≤M ,

E(Zi) = µ, and µ̂ = 1
n

∑n
i=1 Zi, 1 ≤ i ≤ n. Assume ν > 0 and 0 < α < 1. Then

Pr (dν(µ̂, µ) > α) < 2e−α2νn/M

where dν(r, s) =
|r−s|
ν+r+s . As a consequence,

Pr

(

µ <
1− α

1 + α
µ̂−

α

1 + α
ν

)

< 2e−α2νn/M .

Let Πi be the class of policy trees in Πb0,D,K and having size i. The next lemma bounds the

size of Πi.

Lemma A.2 |Πi| ≤ ii−2(|A||Z|)i.

Proof. Let Π′
i be the class of rooted ordered trees of size i. A policy tree in Πi is obtained from

some tree in Π′
i by assigning one of the |A| possible action labels to each node, and one of at most

|Z| possible labels to each edge, thus |Πi| ≤ |A|
i · |Z|i−1. |Π′

i|. To bound |Π′
i|, note that it is not

more than the number of all trees with i labeled nodes, because the in-order labeling of a tree in Π′
i

corresponds to a labeled tree. By Cayley’s formula (1889), the number of trees with i labeled nodes

is ii−2, thus |Π′
i| ≤ i(i−2). Therefore |Πi| ≤ ii−2 · |A|i · |Z|i−1 ≤ ii−2(|A||Z|)i. �

In the following, we often abbreviate Vπ(b0) and V̂π(b0) as Vπ and V̂π respectively, since we

will only consider the true and empirical values for a fixed but arbitrary b0. Our proof follows a line

of reasoning similar to that of Wang, Won, Hsu, and Lee (2012).

Theorem 3.1 For any τ, α ∈ (0, 1), any belief b0, and any positive integers D and K, with proba-

bility at least 1− τ , every DESPOT policy tree π ∈ Πb0,D,K satisfies

Vπ(b0) ≥
1− α

1 + α
V̂π(b0)−

Rmax

(1 + α)(1− γ)
·
ln(4/τ) + |π| ln

(
KD|A||Z|

)

αK
,

where the random variable V̂π(b0) is the estimated value of π under the set of K scenarios randomly

sampled according to b0.
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Proof. Consider an arbitrary policy tree π ∈ Πb0,D,K . We know that for a random scenario φ for the

belief b0, executing the policy π w.r.t. φ gives us a sequence of states and observations distributed

according to the distributions P (s′|s, a) and P (z|s, a). Therefore, for π, its true value Vπ equals

E (Vπ,φ), where the expectation is over the distribution of scenarios. On the other hand, since

V̂π = 1
K

∑K
k=1 Vπ,φk

, and the scenarios φ1,φ2, . . . ,φK are independently sampled, Lemma A.1

gives

Pr

(

Vπ <
1− α

1 + α
V̂π −

α

1 + α
ǫ|π|

)

< 2e−α2ǫ|π|K/M (17)

where M = (Rmax)/(1− γ), and ǫ|π| is chosen such that

2e−α2ǫ|π|K/M = τ/(2|π|2|Π|π||). (18)

By the union bound, we have

Pr

(

∃π ∈ Πb0,D,K such that Vπ <
1− α

1 + α
V̂π −

α

1 + α
ǫ|π|

)

≤

∞∑

i=1

∑

π∈Πi

Pr

(

Vπ <
1− α

1 + α
V̂π −

α

1 + α
ǫ|π|

)

.

By the choice of ǫi’s and Inequality (17), the right hand side of the above inequality is bounded

by
∑∞

i=1 |Πi| · [τ/(2i
2|Πi|)] = π

2τ/12 < τ , where the well-known identity
∑∞

i=1 1/i
2 = π

2/6 is

used. Hence,

Pr

(

∃π ∈ Πb0,D,K

[

Vπ <
1− α

1 + α
V̂π −

α

1 + α
ǫ|π|

])

< τ. (19)

Equivalently, with probability 1− τ , every π ∈ Πb0,D,K satisfies

Vπ ≥
1− α

1 + α
V̂π −

α

1 + α
ǫ|π|. (20)

To complete the proof, we now give an upper bound on ǫ|π|. From Equation (18), we can solve

for ǫ|π| to get ǫi = Rmax

α(1−γ) ·
ln(4/τ)+ln(i2|Πi|)

αK . For any π in Πb0,D,K , its size is at most KD, and

i2|Πi| ≤ (i|A||Z|)i ≤ (KD|A||Z|)i by Lemma A.2. Thus we have

ǫ|π| ≤
Rmax

α(1− γ)
·
ln(4/τ) + |π| ln(KD|A||Z|)

αK
.

Combining this with Inequality (20), we get

Vπ ≥
1− α

1 + α
V̂π −

Rmax

(1 + α)(1− γ)
·
ln(4/τ) + |π| ln(KD|A||Z|)

αK
.

This completes the proof. �
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Proof of Theorem 3.2

We need the following lemma for proving Theorem 3.2.

Lemma A.3 For a fixed policy π and any τ ∈ (0, 1), with probability at least 1− τ .

V̂π ≥ Vπ −
Rmax

1− γ

√

2 ln(1/τ)

K

Proof. Let π be a policy and Vπ and V̂π as mentioned. Hoeffding’s inequality (1963) gives us

Pr
(

V̂π ≥ Vπ − ǫ
)

≥ 1− e−Kǫ2/(2M2),

where M = Rmax/(1− γ).
Let τ = e−Kǫ2/(2M2) and solve for ǫ, then we get

Pr

(

V̂π ≥ Vπ −
Rmax

1− γ

√

2 ln(1/τ)

K

)

≥ 1− τ.

�

Theorem 3.2 Let π be an arbitrary policy at a belief b0. Let ΠD be the set of policies derived from

a DESPOT D that has height D and is constructed from K scenarios sampled randomly according

to b0. For any τ, α ∈ (0, 1), if

π̂ = argmax
π′∈ΠD

{
1− α

1 + α
V̂π′(b0)−

Rmax

(1 + α)(1− γ)
·
|π′| ln

(
KD|A||Z|

)

αK

}

,

then

Vπ̂(b0) ≥
1−α
1+αVπ(b0)−

Rmax

(1+α)(1−γ)

(
ln(8/τ)+|π| ln

(
KD|A||Z|

)

αK + (1− α)
(√

2 ln(2/τ)
K + γD

))

,

with probability at least 1− τ .

Proof. By Theorem 1, with probability at least 1− τ/2,

Vπ̂ ≥
1− α

1 + α
V̂π̂ −

Rmax

(1 + α)(1− γ)

[
ln(8/τ) + |π̂| ln(KD|A||Z|)

αK

]

.

Suppose the above inequality holds on a random set of K scenarios. Note that there is a π′ ∈
Πb0,D,K which is a subtree of π and has the same trajectories on these scenarios up to depth D. By

the choice of π̂, it follows that the following hold on the same scenarios

Vπ̂ ≥
1− α

1 + α
V̂π′ −

Rmax

(1 + α)(1− γ)

[
ln(8/τ) + |π′| ln(KD|A||Z|)

αK

]

.

In addition, |π| ≥ |π′|, and V̂π′ ≥ V̂π − γD(Rmax)/(1 − γ) since π′ and π only differ from depth

D onwards, under the chosen scenarios. It follows that for these scenarios, we have

Vπ̂ ≥
1− α

1 + α

(

V̂π − γD
Rmax

1− γ

)

−
Rmax

(1 + α)(1− γ)

[
ln(8/τ) + |π| ln(KD|A||Z|)

αK

]

. (21)
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Hence, the above inequality holds with probability at least 1− τ/2.

By Lemma A.3, with probability at least 1− τ/2, we have

V̂π ≥ Vπ −
Rmax

1− γ

√

2 ln(2/τ)

K
. (22)

By the union bound, with probability at least 1 − τ , both Inequality (21) and Inequality (22)

hold, which imply the inequality in the theorem holds. This completes the proof. �

Proof of Theorem 4.1 and Theorem 4.2

Lemma 4.1 For any DESPOT node b, if E(b) > 0 and a∗ = argmaxa∈A µ(b, a), then

E(b) ≤
∑

z∈Zb,a∗

E(b′),

where b′ = τ(b, a∗, z) is a child of b.

Proof. Let CH(b, a∗) be all the set of all b′ of the form b′ = τ(b, a, z) for some z ∈ Zb,a∗ , that is,

the set of children nodes of b in the DESPOT tree. If E(b) > 0, then µ(b) − ℓ(b) > 0, and thus

µ(b) 6= ℓ0(b). Hence we have

µ(b) = µ(b, a∗) = ρ(b, a∗) +
∑

b′∈CH(b,a∗)

µ(b′), and

ℓ(b) ≥ ℓ(b, a∗) ≥ ρ(b, a∗) +
∑

b′∈CH(b,a∗)

ℓ(b′),

Subtracting the first equation by the second inequality, we have

µ(b)− ℓ(b) ≤
∑

b′∈CH(b,a∗)

[µ(b′)− ℓ(b′)].

Note that
|Φb|

K
· ξ · ǫ(b0) =

∑

b′∈CH(b,a∗)

|Φb′ |

K
· ξ · ǫ(b0).

We have

∑

b′∈CH(b,a∗)

[µ(b′)− ℓ(b′)−
|Φb′ |

K
· ξ · ǫ(b0)] ≥ µ(b)− ℓ(b)−

|Φb|

K
· ξǫ(b0).

That is, E(b) ≤
∑

b′∈CH(b,a∗)E(b′). �

Lemma 4.2 Let b′ be an ancestor of b in a DESPOT D and ℓ(b′, b) be the number of nodes on the

path from b′ to b. If
|Φb′ |

K
γ∆(b′)(U(b′)− L0(b

′)) ≤ λ · ℓ(b′, b),

then b cannot be a belief node in an optimal regularized policy derived from D.
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Proof. If b is included in the policy π maximizing the regularized utility, then for any node b′ on the

path from b to the root, the subtree πb′ under b′ satisfies

|Φb′ |

K
γ∆(b′)U(b′)− λ|πb′ |

≥
|Φb′ |

K
γ∆(b′)V̂πb′

(b′)− λ|πb′ | (since U(b′) > V̂πb′
(b′))

>
|Φb′ |

K
γ∆(b′)L0(b

′), (since b′ is not pruned)

which implies
|Φb′ |

K
γ∆(b′)U(b′)− λ|πb′ | >

|Φb′ |

K
γ∆(b′)L0(b

′).

Rearranging the terms in the above inequality, we have

|Φb′ |

K
γ∆(b′)[U(b′)− L0(b

′)] > λ|πb′ |.

We have ℓ(b′, b) ≤ |πb′ | as b is not pruned and thus πb′ need to include all nodes from b′ to b. Hence,

|Φb′ |

K
γ∆(b′)[U(b′)− L0(b

′)] > λ · ℓ(b′, b).

�

Theorem 4.1 Suppose that Tmax is bounded and that the anytime DESPOT algorithm terminates

with a partial DESPOT D′ that has gap ǫ(b0) between the upper and lower bounds at the root b0.

The optimal regularized policy π̂ derived from D′ satisfies

νπ̂(b0) ≥ ν∗(b0)− ǫ(b0)− δ,

where ν∗(b0) is the value of an optimal regularized policy derived from the full DESPOT D at b0.

Proof. Let U ′
0(b) = U0(b)+ δ, then U ′

0 is an exact upper bound. Let µ′
0 be the corresponding initial

upper bound, and µ′ be the corresponding upper bound on ν∗(b). Then µ′
0 is a valid initial upper

bound for ν∗(b) and the backup equations ensure that µ′(b) is a valid upper bound for ν∗(b). On

the other hand, it can be easily shown by induction that µ(b) + γ∆(b) |Φb|
K δ ≥ µ′(b). As a special

case for b = b0, we have µ(b) + δ ≥ µ′(b0). Hence, when the algorithm terminates, we also have

µ(b0) + δ ≥ µ′(b0) ≥ ν∗(b0). Equivalently, νπ̂ = ℓ(b0) ≥ ν∗(b0) − (µ(b0) − ℓ(b0)) − δ =
ν∗(b0) − ǫ(b0) − δ. The first equality holds because the initialization and the computation of the

lower bound ℓ via the backup equations are exactly that for finding an optimal regularized policy

value in the partial DESPOT. �

Theorem 4.2 Suppose that Tmax is unbounded and ǫ0 is the target gap between the upper and lower

bound at the root of the partial DESPOT constructed by the anytime DESPOT algorithm. Let ν∗(b0)
be the value of an optimal policy derived from the full DESPOT D at b0.

(1) If ǫ0 > 0, then the algorithm terminates in finite time with a near-optimal policy π̂ satisfying

νπ̂(b0) ≥ ν∗(b0)− ǫ0 − δ.
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(2) If ǫ0 = 0, δ = 0, and the regularization constant λ > 0, then the algorithm terminates in

finite time with an optimal policy π̂, i.e., νπ̂(b0) = ν∗(b0).

Proof. (1) It suffices to show that eventually µ(b0) − ℓ(b0) ≤ ǫ0, which then implies νπ̂(b0) ≥

ν∗(b0)− ǫ0 − δ by Theorem 4.1.

We first show that only nodes within certain depth d0 will ever be expanded. In particular, we

can choose any d0 > 0 such that ξǫ0 > γd0Rmax/(1 − γ). For any node b beyond depth d0, we

have ǫ(b) ≤ γ∆(b) |Φb|
K

Rmax

1−γ ≤ γd0 |Φb|
K

Rmax

1−γ < |Φb|
K · ξ · ǫ0. Since ǫ(b0) > ǫ0 before the algorithm

terminates, we have E(b) = ǫ(b) − |Φb|
K · ξ · ǫ(b0) < ǫ(b) − |Φb|

K · ξ · ǫ0 < 0, and b will not be

expanded during the search.

On the other hand, the forward search heuristic guarantees that each exploration closes the gap

of at least one node or expands at least one node. To see this, note that an exploration terminates

when its depth exceeds the limit D, or when a node is pruned, or when it encounters a node b with

E(b) < 0. In the first two cases, the gap for the last node is closed. We show that for the last

case, the exploration must have expanded at least one node. By Lemma 4.1, if E(b) > 0, then the

next chosen node b′ satisfies E(b′) > 0, otherwise the upper bound for E(b) will be at most 0, a

contradiction. Since the root b0 has positive E, thus the exploration will follow a path with nodes

with positive E to reach a leaf node, and then expand it. Termination may then happen as the next

chosen node has negative E.

Since each node can be expanded or closed at most once, but only nodes within depth d0 can be

considered, thus after finitely many steps ǫ(b0) = µ(b0)− ℓ(b0) ≤ ǫ0, and the search terminates.

(2) Following the proof of (1), when ǫ = 0, before µ(b0) = ℓ(b0), each exploration either closes

the gap of at least one node, or expands at least one leaf node. However, both can only be done

finitely many times because the Prune procedure ensures only nodes within a depth of ⌈ Rmax

λ(1−γ)⌉+1
can be expanded, and the gap of each such node can only be closed once only. Thus the search

will terminate in finite time with µ(b0) = ℓ(b0). Since the upper bound is a true one, we have

νπ̂(b0) = ℓ(b0) = ν∗(b0), and thus π̂ is an optimal regularized policy derived from the infinite

horizon DESPOT. �

262



DESPOT: ONLINE POMDP PLANNING WITH REGULARIZATION

Appendix B. Pseudocode for Anytime DESPOT

Algorithm 6 Anytime DESPOT

Input

β : Initial belief.

ǫ0 : The target gap between µ(b0) and ℓ(b0).

ξ : The rate of target gap reduction.

K : The number of sampled scenarios.

D : The maximum depth of the DESPOT.

λ : Regularization constant.

Tmax : The maximum online planning time per

step.

1: Initialize b← β.

2: loop

3: ℓ← BUILDDESPOT(b).

4: a∗ ← maxa∈A ℓ(b, a).
5: if L0(b) > ℓ(b, a∗) then

6: a∗ ← π0(b)
7: Execute a∗.

8: Receive observation z.

9: b← τ(b, a∗, z).

BUILDDESPOT(b0)

1: Sample randomly a set Φb0 of K scenarios

from the current belief b0.

2: Create a new DESPOT D with a single

node b as the root.

3: Initialize U(b0), L0(b0), µ(b0), and ℓ(b0).
4: ǫ(b0)← µ(b0)− ℓ(b0).
5: while ǫ(b0) > ǫ0 and the total running

time is less than Tmax do

6: b← EXPLORE(D, b).
7: BACKUP(D, b).
8: ǫ(b0)← µ(b0)− ℓ(b0).
9: return ℓ

EXPLORE(D, b)

1: while ∆(b) ≤ D, E(b) > 0, and

PRUNE(D, b) = FALSE do

2: if b is a leaf node in D then

3: Expand b one level deeper. Insert

each new child b′ of b into D, and ini-

tialize U(b′), L0(b
′), µ(b′), and ℓ(b′).

4: a∗ ← argmaxa∈A µ(b, a).
5: z∗ ← argmaxz∈Zb,a∗

E(τ(b, a∗, z)).

6: b← τ(b, a∗, z∗).
7: if ∆(b) > D then

8: MAKEDEFAULT(b).
9: return b.

PRUNE(D, b)

1: BLOCKED ← FALSE.

2: for each node x on the path from b to the

root of D do

3: if x is blocked by any ancestor node in

D then

4: MAKEDEFAULT(n);

5: BACKUP(D, n).

6: BLOCKED ← TRUE.

7: else

8: break

9: return BLOCKED

MAKEDEFAULT(b)

1: U(b)← L0(b).
2: µ(b)← ℓ0(b).
3: ℓ(b)← ℓ0(b).

BACKUP(D, b)

1: for each node x on the path from b to the

root of D do

2: Perform backup on µ(x), ℓ(x), and

U(x).
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