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According to Rayleigh’s criterion, rotating flows are linearly stable when their specific angular momentum

increases radially outward. The celebrated magnetorotational instability opens a way to destabilize those flows, as

long as the angular velocity is decreasing outward. Using a local approximation we demonstrate that even flows

with very steep positive shear can be destabilized by azimuthal magnetic fields which are current free within the

fluid. We illustrate the transition of this instability to a rotationally enhanced kink-type instability in the case of

a homogeneous current in the fluid, and discuss the prospects for observing it in a magnetized Taylor-Couette

flow.
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From a purely hydrodynamic point of view, rotating flows

are stable as long as their angular momentum is increasing

radially outward [1]. Since this criterion applies to the

Keplerian rotation profiles which are typical for low-mass

accretion disks, the growth mechanism of central objects, such

as protostars and black holes, had been a conundrum for many

decades. Nowadays, magnetorotational instability (MRI) [2]

is considered the main candidate to explain the turbulence and

enhanced angular momentum in accretion disks. The standard

version of MRI (SMRI), with a vertical magnetic field Bz

applied to the rotating flow, requires both the rotation period

and the Alfvén crossing time to be shorter than the time scale

for magnetic diffusion [3]. This implies, for a disk of height H ,

that both the magnetic Reynolds number Rm = μ0σH 2� and

the Lundquist number S = μ0σHvA must be larger than one

(� is the angular velocity, μ0 is the magnetic permeability

constant, σ the conductivity, and vA := Bz/
√

μ0ρ is the

Alfvén velocity, with ρ denoting the density). While these

conditions are safely fulfilled in well-conducting parts of

accretion disks, the situation is less clear in the “dead zones”

of protoplanetary disks, in stellar interiors and liquid cores of

planets, because of the small value of the magnetic Prandtl

number Pm = ν/η [4], i.e., the ratio of viscosity ν to magnetic

diffusivity η := (μ0σ )−1.

This low Pm case is also the subject of intense theoretical

and experimental research initiated by Hollerbach and Rüdiger

[5]. Adding an azimuthal magnetic field Bφ to Bz, the authors

found a new version of MRI, now called helical MRI (HMRI).

It was proved to work also in the inductionless limit [6],

Pm = 0, and to be governed by the Reynolds number Re =
Rm Pm−1 and the Hartmann number Ha = S Pm−1/2, quite in

contrast to standard SMRI that is governed by Rm and S.

A somewhat sobering limitation of HMRI was identified

by Liu et al. [7] who used a local approximation [also called

the short-wavelength, Wentzel-Kramers-Brillouin (WKB), or

geometric optics approximation—see Ref. [8]] to find a

minimum steepness of the rotation profile �(r), expressed

by the Rossby number Ro := r(2�)−1∂�/∂r , of RoLLL =

*f.stefani@hzdr.de
†kirillov@mi.ras.ru

2(1−
√

2) ≈ −0.828. This lower Liu limit (LLL) implies that,

at least for Bφ(r) ∝ 1/r , HMRI does not extend to the

most relevant Keplerian case, characterized by RoKep = −3/4.

Surprisingly, in addition to the LLL, the authors also found

a second threshold of Ro, which we call the upper Liu limit

(ULL), at RoULL = 2(1+
√

2) ≈ +4.828. For Ro > RoULL one

expects a magnetic destabilization of those flows with strongly

increasing angular velocity that would be stable even with

respect to SMRI.

By relaxing the demand that the azimuthal field is current

free in the liquid, i.e., Bφ(r) ∝ 1/r , and allowing fields with

arbitrary radial dependence, we have recently shown [8,9] that

the LLL and the ULL are just the endpoints of one common

instability curve in a plane that is spanned by Ro and a corre-

sponding steepness of the azimuthal magnetic field, called the

magnetic Rossby number, Rb := r(2Bφ/r)−1∂(Bφ/r)/∂r . In

the limit of large Re and Ha, this curve acquires the closed and

simple form

Rb = −
1

8

(Ro + 2)2

Ro + 1
. (1)

A nonaxisymmetric “relative” of HMRI, the azimuthal MRI

(AMRI) [10], which appears for purely or dominantly Bφ , has

been shown to be governed by basically the same scaling

behavior, and the same Liu limits [11]. Actually, the key

parameter dependencies of HMRI and AMRI were confirmed

in various liquid metal experiments at the PROMISE facility

[12,13].

In the present Rapid Communication, we focus exclusively

on the case of positive Ro, i.e., on flows whose angular velocity

(not only the angular frequency) is increasing outward. From

a purely hydrodynamic point of view, such flows are linearly

stable (while nonlinear instabilities were actually observed

in experiments [14]). Flows with positive Ro are indeed

relevant for the equator-near strip (approximately between

±30◦) of the solar tachocline [15], which is, interestingly,

also the region of sunspot activity [16]. Up to now, the ULL at

RoULL = +4.828 has only been predicted in the framework of

various local approximations [7–9], while attempts to confirm

it in a one-dimensional (1D) modal stability code on the

basis of Taylor-Couette (TC) flows have failed so far [17].

Hence, the questions arise: Is the magnetically triggered flow
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instability for Ro > RoULL a real phenomenon (which would

fundamentally modify the stability criteria for rotating flows

in general), or just an artifact of the local approximation, and

is there any chance to observe it in a TC experiment?

In order to tackle these problems we restrict our attention

here to nonaxisymmetric instabilities, which are the relevant

ones for pure Bφ , and further assume Pm = 0. Under these

assumptions, we had recently [8] derived the closed equation

Re2 =
1

4

[(1 + Ha2 n2)2 − 4 Ha2 Rb(1 + Ha2 n2) − 4 Ha4 n2][1 + Ha2(n2 − 2 Rb)]2

Ha4 Ro2 n2 − {[1 + Ha2(n2 − 2 Rb)]2 − 4 Ha4 n2}[Ro + 1]
(2)

for the marginal curves of the instability, where the following

definitions for Re, Ha, and the modified azimuthal wave

number n are used:

Re =
α

|k|2
�(r)

ν
, (3)

Ha =
α

|k|2
Bφ(r)

r(μ0ρην)1/2
, (4)

n = m/α, (5)

with α = kz/|k| and |k|2 = k2
r + k2

z defined as functions of the

axial and radial wave numbers kr and kz.

Because of its comparably simple form, and the absence of

the ratio β of azimuthal to axial magnetic field (which would

play a decisive role for HMRI), Eq. (2) allows one to easily

visualize the transition from a shear-driven instability of the

AMRI type to the current-driven, kink-type Tayler instability

(TI) [18], when going over from Rb = −1 to Rb = 0.

Let us start with the current-free case, Rb = −1. Figure 1(a)

shows, for varying values of Ro and the particular case n = 1.4,

the marginal curves in the Ha-Re plane. We see that the critical

Re increases steeply for Ro below 6, which reflects the fact

that we approach RoULL = 4.828 from above. We ask now

for the dominant wave numbers, as illustrated in Fig. 1(b)

for the particular value Ro = 5.5. Evidently, the minimal

values of Re and Ha (the “knee” of the curve) appear for

n ∼ 1.4, which represents a rather “benign” combination of

wave numbers with kr ∼ kz, so that neither the axial nor the

radial wavelength of the perturbations diverge. From this point

of view, there seems to be no contradiction with the underlying

short-wavelength approximation.

While for Rb = −1 the only energy source of the instability

is the shear of the rotating flow, we move now in the direction

of Rb = 0 which corresponds to a constant current density in

the fluid, for which the kink-type TI [18] is expected to occur.

For the particular choice n = 1.2, this transition is illustrated

in Fig. 2, where we have intensionally chosen, for all Rb, the

same scales for Re and Ha. For Rb = −0.6 we observe the

appearance of a crossing with the abscissa, i.e., a point where

the instability draws all its energy from the electrical current

instead of the shear. Actually, the lowest value where this can

occur is Rb = n2/4 − 1 = −0.64 [8].

For Rb = 0 the instability is characterized in more detail

in Fig. 3. Very similar to the results of Ref. [19], we observe

in Fig. 3(a) that for Ro > 0 the curves move to the left with

increasing Re (i.e., the flow supports the kink-type instability)

and converge to well-defined values of Ha when Re goes to

infinity. The dependence on the wave-number ratio α is quite

interesting. Figure 3(b) shows that the mode with n = 1 (i.e.,

with kr = 0), which is still dominant at Re = 0, is replaced by

modes with higher values of n for increasing Re. The limits

of the critical Ha for Re = 0 and Re → ∞ can be determined

by setting to zero, in Eq. (2), the nominator or denominator,

respectively, which leads (for Rb = 0) to

HaRe=0 = 1/
√

n(2 − n), (6)

HaRe→∞ =

√
(Ro + 1) +

√
(Ro + 1)(Ro + 2)/n

Ro2 + (Ro + 1)(4 − n2)
. (7)
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FIG. 1. (Color online) Marginal curves for Rb = −1. (a) Depen-

dence on Ro for n = 1.4. (b) Dependence on n for Ro = 5.5. The

inset shows the dependence of the minimum value (with respect to

Ha) of the critical Re on n. The arrow points to the optimum n ≈ 1.35

that leads to the lowest critical Re.
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FIG. 2. (Color online) Marginal curves for n = 1.2 and various

values of Rb, in dependence on Ro. From top to bottom, the instability

changes its character from a (magnetically triggered) shear-driven

instability to a (rotationally influenced) current-driven TI. For n =
1.2, TI appears first for Rb = n2/4 − 1 = −0.64.

In the limit Ro → ∞ the limit values of Ha converge slowly

to zero according to Ha(Re,Ro)→∞ ≃ n−1/2 Ro−1/4.
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FIG. 3. (Color online) Marginal curves for Rb = 0. (a) Depen-

dence on Ro for n = 1.0. (b) Dependence on n for Ro = 5.

In the following, we compare our WKB results with

recent findings [19] obtained for a TC flow with inner and

outer radii ri and ro rotating with the angular velocities �i

and �o, respectively. The corresponding ratios are defined

as η̂ = ri/ro, and μ̂ = �o/�i . For this TC configuration,

the following modified definitions of the Reynolds and

Hartmann number were used: R̂e = �ori(ro − ri)/ν, Ĥa =
Bφ(ri)[ri(ro − ri)]

1/2/(μ0ρνη)1/2. The nontrivial point is now

how to translate the μ̂ of a TC flow, characterized by �(r) =
a + b/r2, to the Ro of a flow with �(r) ∼ r2 Ro. An often

used correspondence, based on equalizing the corresponding

angular velocities at ri and ro [20], leads to

Ro∗ ≃ −1/2 logη̂ μ̂, (8)

while an alternative, more shear-oriented version leads to

Ro∗∗ ≃
1

2

(1 + η̂)(μ̂ − 1)

(1 − η̂)(μ̂ + 1)
. (9)

Actually, for comparably small (positive or negative) values of

Ro, the differences are not very significant, but they increase

for steeper profiles. This is a key point for the adequateness of

TC flows to “emulate” steep power function flows. In Ref. [19],

the destabilizing effect of positive shear had been studied for

TC flows (with Rb = 0 only), both for a wide gap with η̂ = 0.5

as well as a narrow gap with η̂ = 0.95. In either case, for
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FIG. 4. (Color online) Marginal curve for Rb = 0 and n = 1.41,

as scaled according to Ref. [19]. The solid lines correspond to the

translation of μ̂ to Ro∗∗, and the dashed lines to Ro∗.

large values of μ̂, the critical Ha converged to some nonzero

constant, which is not compatible with the translation to Ro∗

since the latter should lead to a zero critical Ha (according to

Ha(Re,Ro)→∞ ≃ n−1/2 Ro−1/4—see above). It turns out that the

translation to Ro∗∗ is physically more adequate.

With the reasonable choice kz = kr = π/(ri − ro) we

obtain the translations R̂e = π225/2μ̂η̂/[(1 + μ̂)(1 − η̂)]Re

and Ĥa = π2(1 + η̂)2/[(2η̂)1/2(1 − η̂)3/2]Ha. For η̂ = 0.95

this amounts to R̂e = 1061/(1 + 1/μ̂)Re and Ĥa = 2435 Ha.

Figure 4 shows the corresponding WKB results, both for

assuming a translation to Ro∗ (dashed lines) and to Ro∗∗ (solid

lines). For R̂e = 0 our result Ĥa = 2670 agrees reasonably

well with the exact value Ĥa = 3060 of the modal stability

analysis [19]. What is more, the typical bend of the marginal

curve to the left for increasing R̂e, and the limit values of Ĥa

for large R̂e, are also confirmed. Yet, subtle differences show

up for the two ways of translation: The use of Ro∗∗ confirms

the existence of a finite limit value for the critical Ĥa, as typical

for TC flows, while the use of Ro∗ would ultimately lead to a

zero limit value.

This encouraging consistency of the local approximation

and the modal stability analysis, evidenced for Rb = 0, brings

us back to the point whether, for Rb = −1, the ULL can

be confirmed in a TC experiment. Assuming Ro∗∗ as more

physical than Ro∗, in the limit μ̂ → ∞ we obtain Ro∗∗
μ̂→∞ =

1/2(1 + η̂)/(1 − η̂). This means, in turn, that to emulate

some Ro in a TC flow, η̂ has to fulfill the relation η̂ =
(2 Ro − 1)/(2 Ro + 1). With a view on the ULL, this implies

that for Ro = 6, say, a minimum value of η̂ = 11/13 = 0.846

is needed. For TC flows with wider gaps, such as η̂ = 1/2, the

necessary shear could simply not be realized.

What are, then, the prospects for a corresponding experi-

ment? Evidently, we need a rather narrow gap flow. Let us stick,

for a first estimate, to the safe value η̂ = 0.95, and take the

typical values Ro = 6, Ha = 2, and Re = 12 as read off from

Fig. 1(a). This translates to μ̂ = 1.89, R̂e = 8324, and Ĥa =
4870. For a prospective TC experiment with Na at 150 ◦C, with

ρ = 910 kg/m3, ν = 5.94 × 10−7 m2/s, σ = 9 × 106 S/m,

and an outer diameter of ro = 0.25 m, this would amount to a

rather moderate rotation frequency of �o/(2π ) = 0.26 Hz,

yet a huge magnetic field Bφ(ri) = 0.69 T that requires a

central current of I = 8.6 × 105 A. Exhausting the shear

resources, by choosing μ̂ → ∞ and η̂ = 0.85 ≈ 11/13, those

values would drop to R̂e = 3796, Ĥa = 892, or, physically, to

�o/(2π ) = 0.044 Hz, Bφ(ri) = 77 mT, and I = 8.2 × 104 A.

Any real TC experiment, however, would need more detailed

simulations with a 1D marginal stability code to confirm and

optimize the parameters.

This work was supported by Helmholtz Association in the

frame of the Helmholtz Alliance LIMTECH. F.S. gratefully

acknowledges fruitful discussions with Günther Rüdiger.
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M. Gellert, and G. Rüdiger, Phys. Rev. Lett. 108, 244501 (2012).
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