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Abstract

Stability of a linear autonomous non-conservative system in the presence of potential, gyroscopic, dissipative, and non-conservative positional
forces is studied. The cases when the non-conservative system is close to a gyroscopic system or to a circulatory one are examined. It is
known that marginal stability of gyroscopic and circulatory systems can be destroyed or improved up to asymptotic stability due to action of
small non-conservative positional and velocity-dependent forces. The present paper shows that in both cases the boundary of the asymptotic
stability domain of the perturbed system possesses singularities such as “Dihedral angle” and “Whitney umbrella” that govern stabilization and
destabilization. In case of two degrees of freedom, approximations of the stability boundary near the singularities are found in terms of the
invariants of matrices of the system. As an example, the asymptotic stability domain of the modified Maxwell-Bloch equations is investigated
with an application to the stability problems of gyroscopic systems with stationary and rotating damping.
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1. Introduction

Consider an autonomous non-conservative system described
by a linear differential equation of second order

X+ (QG + D)k + (K + W)x =0, 1)

where dot denotes time differentiation, x € R™, and real matrix
K =KT corresponds to potential forces. Real matrices D=DT,
G = —GT, and N = —NT are related to dissipative (damp-
ing), gyroscopic, and non-conservative positional (circulatory)
forces with magnitudes controlled by scaling factors J, , and v,
respectively.

General non-conservative system (1) has two important
limiting cases corresponding to circulatory and gyroscopic
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systems. A circulatory system is obtained from (1) by neglecting
velocity-dependent forces

X+ K+ vyWN)x=0, (2)

while a gyroscopic one has no damping and non-conservative
positional forces

% + QGx + Kx = 0. 3)

Circulatory and gyroscopic systems (2) and (3) possess fun-
damental symmetries that are easily seen after transformation
of Eq. (1) to the Cauchy form y = Ay with

( —1QG I )
160DG + 10?G? - K —wWN oD - 10G/’

X
= 4
y (:‘c+%QGx)’ )

where I is the identity matrix.
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Indeed, in the absence of damping and gyroscopic forces
(0 = Q = 0) the matrix A changes as RAR = —A due to a
coordinate transformation with the matrix

-1 (I 0
R=R _(0 _1>- 5)

This means that the matrix A has a reversible symmetry, and
Eq. (2) describes a reversible dynamical system [1,2]. Due to
this property,

det(A — AI) = det(R(A — AI)R) = det(A + AI), 6)

and the eigenvalues of circulatory system (2) appear in pairs
(=4, 4). Consequently, the equilibrium of a circulatory system
is either unstable or all its eigenvalues lie on the imaginary axis
of the complex plane implying marginal stability if they are
semi-simple.

Without damping and non-conservative positional forces
(0 =v=0) the matrix A possesses the Hamiltonian symmetry
JAJ = AT, where J is a unit symplectic matrix [3]

(01
J=-J —<_1 O>. ™)

Asa consequence,

det(A — 2I) = det(J(A — DJ) = det(AT + I)
= det(A + I), 8)

which implies that if / is an eigenvalue of A then so is —4,
similarly to the reversible case. Therefore, gyroscopic system
(3) can be only marginally stable with its spectrum belonging
to the imaginary axis of the complex plane.

In the presence of all the four forces the Hamiltonian and
reversible symmetries are broken and the marginal stability is
generally destroyed. Instead, system (1) can be asymptotically
stable if its characteristic polynomial

P(}) = det(I)? + (QG + D)/ + K + vN) )

satisfies the criterion of Routh and Hurwitz. The most inter-
esting for many applications is the situation when system (1)
is close either to circulatory system (2) with §, Q<v (im-
perfect reversible system) or to gyroscopic system (3) with
0,v<Q (imperfect Hamiltonian system). Furthermore, the
effect of small damping and gyroscopic forces on the stability
of circulatory systems as well as the effect of small damping
and non-conservative positional forces on the stability of gyro-
scopic systems are regarded as paradoxical, since the stability
properties are extremely sensitive to the choice of the pertur-
bation, and the balance of forces resulting in the asymptotic
stability is not evident [4-48]. This characterization sounds
even more justified if to take into account the connection
of the destabilization paradox with the physical paradoxes
such as “tippe top inversion” and ‘rising egg phenomenon”
[36,37,44,47].

Historically, the destabilization paradox appeared first in a
study of a gyroscopic system with dissipation by Thomson and
Tait, who found that the dissipative perturbation destroys the
gyroscopic stabilization so that the system is neither marginally

nor asymptotically stable [4]. The terminology dissipation-
induced instabilities has its roots in that classical work [20,47].
A similar effect of non-conservative positional forces on the
stability of gyroscopic systems has been established almost a
hundred years later by Lakhadanov and Karapetyan [11,12].
These ideas have been extensively developed, e.g., in the works
[10,16,18-24,36,37,44-48,51].

A more sophisticated form of the destabilization paradox
has been discovered by Ziegler on the example of a double
pendulum loaded by a follower force with the damping non-
uniformly distributed among the natural modes [7]. Without
dissipation, the Ziegler pendulum is a circulatory system and
it is marginally stable for the loads non-exceeding some crit-
ical value. Small dissipation makes the pendulum either un-
stable or asymptotically stable with the critical load, which
can be significantly lower than that of the undamped sys-
tem. This is caused by the singular nature of the new criti-
cal load, which is non-differentiable at the origin function of
the damping parameters, having no limit when the damping
coefficients uniformly tend to zero [8,9,19,26,51]. Numerous
other aspects of the destabilization paradox by small velocity-
dependent forces in circulatory systems, including more gen-
eral settings and non-linear effects, have been investigated, e.g.,
in [8,13-15,17,25,26,28,33,35,38—-43].

The destabilization paradox in Ziegler’s form has been re-
vealed recently by Crandall in his study of a gyroscopic pen-
dulum with stationary and rotating damping [22]. Contrary to
the Ziegler pendulum, the undamped gyropendulum is a gyro-
scopic system that is marginally stable when its spin exceeds
a critical value. Stationary damping corresponding to dissipa-
tive velocity-dependent force destroys the gyroscopic stabiliza-
tion in accordance with the theorem of Thomson and Tait [4].
However, the Crandall gyropendulum with stationary and ro-
tating damping, where the latter is related to non-conservative
positional force, can be asymptotically stable for the rotation
rates exceeding considerably the critical spin of the undamped
system.

The growing number of other physical and mechanical
examples demonstrating the destabilization paradox due to an
interplay of non-conservative effects, requires a unified treat-
ment of this phenomenon taking into account all types of forces
presented in Eq. (1), as reported recently by Krechetnikov and
Marsden [47].

The goal of the present paper is to find and analyze the
domain of asymptotic stability of system (1) in the space of
the parameters o, €2, and v with special attention to imperfect
reversible and Hamiltonian cases.

Below we show that the boundary of the asymptotic stabil-
ity domain of a circulatory system perturbed by small dissi-
pative and gyroscopic forces as well as that of a gyroscopic
system perturbed by weak dissipative and non-conservative po-
sitional forces possesses singularities such as “Dihedral angle”
and “Whitney umbrella” governing stabilization and destabi-
lization. In case of two degrees of freedom, we find approx-
imations of the stability boundary near the singularities and
obtain explicit estimates of the critical parameters in terms of
the invariants of matrices of the system. This allows us to get a
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unified picture of the domain of asymptotic stability that clari-
fies a role of various forces in the destabilization paradox and
helps with an establishment of connections with previously
known results. As an example, we investigate the asymptotic
stability domain of the modified Maxwell-Bloch equations with
an application to the stability problems of gyroscopic systems
with stationary and rotating damping.

2. A circulatory system with small velocity-dependent
forces

We begin the study of stability of system (1) with imperfect
reversible case (J, 2 <v). In spite of the fact that the similar
problem has been investigated recently by means of the per-
turbation theory of multiple eigenvalues for systems with ar-
bitrary many degrees of freedom and for distributed systems
[32,33,38—43], we restrict our subsequent considerations to m=
2 degrees of freedom. This allows us to catch significant details
remaining valid in the general case, and to solve the problem al-
most exactly, providing a reference necessary for the improve-
ment of the approximation techniques based on the analysis of
eigenvalues. System (1) with two degrees of freedom has also an
independent interest because it contains actual low-dimensional
models of dynamical systems such as disk brakes, space teth-
ers, and spinning tops [20,22,23,30,31,36,37,44,46,47].

2.1. Stability of a circulatory system

Stability of system (1) is determined by its characteristic
polynomial (9), which in case of two degrees of freedom has a
convenient form provided by the Leverrier—Barnett algorithm
[49]

P2, 0,v,Q) = +0uDl + (rK + 6> detD + Q%) 22
+ (0(trKtrD — tr KD) + 2Qv) A
+ detK + 2, (10)

where without loss of generality we assume that the matrices
G and N are equal to the 2 x 2 unit symplectic matrix.

In the absence of damping and gyroscopic forces (6 =Q=0)
system (1) is circulatory, and the characteristic polynomial (10)
has four roots —Ay, —A_, A_, and /4, where

xi:\/—%trKi%\/(trK)2—4(detK+v2>~ (1D

Depending on the properties of the real symmetric matrix K
and the magnitude v of the non-conservative positional force,
the eigenvalues (11) can be real, complex or purely imaginary
implying instability or marginal stability in accordance with the
following statement.

Proposition 1. /ftr K > 0 and det K<O0, circulatory system (2)
with two degrees of freedom is stable for vﬁ << v%, unstable
by divergence for v? gvﬁ, and unstable by flutter for v? >v%,

where the critical values vq and v¢ are

0<V/—detK =: vg <vp := 1/ (rK)? — 4 detK. (12)
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Fig. 1. Stability diagrams and trajectories of the eigenvalues for the increasing
parameter v >0 drawn for the circulatory system (2) with tr K >0 and
detK <0 (a) and tr K> 0 and det K >0 (b).

If r K> 0 and detK > 0, the circulatory system is stable for
v < vtz- and unstable by flutter for v* > v%.

If r K<O0, the system is unstable.

The proof is a simple consequence of formula (11), reversible
symmetry, and the fact that time dependence of solutions of
Eq. (2) is given by exp(4r) for simple eigenvalues A, with an
additional—polynomial in +—prefactor (secular terms) in case
of multiple eigenvalues with the Jordan block. The solutions
monotonously grow for positive real A implying static insta-
bility (divergence), oscillate with an increasing amplitude for
complex A with positive real part (flutter), and remain bounded
when A is semi-simple and purely imaginary (stability). It is
interesting to note that for a matrix K having two equal eigen-
values, the circulatory system (2) is unstable because v¢ = 0,
which is the statement of the Merkin theorem for circulatory
systems with two degrees of freedom [10,47].

Stability diagrams and motion of eigenvalues in the complex
plane for v increasing from zero are presented in Fig. 1 . When
tr K> 0 and det K < 0 there are two real and two purely imag-
inary eigenvalues at v=0, and the system is statically unstable,
see Fig. 1(a). With the increase of v both the imaginary and real



74 O.N. Kirillov / International Journal of Non-Linear Mechanics 42 (2007) 71-87

eigenvalues are moving to the origin, until at v=v4 the real pair
merges and originates a double zero eigenvalue with the Jordan
block. At v=v4 the system is unstable because of the linear time
dependence of a solution corresponding to A = 0. The further
increase of v yields splitting of the double zero eigenvalue into
two purely imaginary eigenvalues. The imaginary eigenvalues
of the same sign are then moving towards each other until at
v = vr they originate a pair of double eigenvalues +iws with
the Jordan block, where

o = /LK. (13)

At v = vy the system is unstable by flutter due to secular terms
in its solutions. For v > v¢ the flutter instability is caused by
two of the four complex eigenvalues lying on the branches of
a hyperbolic curve

Im /> — Re 1* = w?. (14)

The critical values vq and v of the magnitude of the non-
conservative positional force, constitute the boundaries between
the divergence and stability domains and between the stability
and flutter domains, respectively. For tr K > 0 and det K=0 the
divergence domain shrinks to a point v¢ =0 and for tr K > 0 and
det K > 0 there exist only stability and flutter domains as shown
in Fig. 1(b). Obviously, the described picture is the same for
negative v with v = —vq and v = —vr indicating the boundaries
of the divergence and flutter domains.

2.2. The influence of small damping and gyroscopic forces on
the stability of a circulatory system

The one-dimensional domain of marginal stability of circu-
latory system (2) given by Proposition 1 is blowing up into a
three-dimensional domain of asymptotic stability of system (1)
in the space of the parameters J, 2, and v. To find the domain of
asymptotic stability we apply the criterion of Routh and Hur-
witz in the form of Liénard and Chipart to the characteristic
polynomial (10)

otrD >0, (15)
trK + 6% det D + Q% > 0, (16)
det K+ >0, 17)
0, Q,v)>0, (18)
where

0 = 0uDrK + 62 det D+Q%*) (d(r K tr D — tr KD) + 2Qv)
—(0trD)*(detK +v?)—(S(tr K tr D — tr KD)
+20Qv)2. (19)

Despite the explicit form, inequalities (15)—(18) do not pos-
sess an obvious interpretation. An alternative way is to use the
qualitative theory of Arnold and then a perturbative approach
utilizing smallness of parameters 6 and €. For this purpose

ab c |
AN

Fig. 2. Singularities dihedral angle (a), trihedral angle (b), and deadlock
of an edge (or a half of the Whitney umbrella (c)) of the boundary of the
asymptotic stability domain of a real three parameter matrix family.

we remind that the stability problem for initial system (1) is
equivalent to a stability problem for the first-order system, with
the real 2m x 2m matrix A defined by expression (4).

As it has been established by Arnold [3], the boundary of the
asymptotic stability domain of a multiparameter family of real
matrices is not a smooth surface. Generically it possesses sin-
gularities corresponding to multiple eigenvalues with zero real
part. In particular, for real matrices depending on three param-
eters, two different pairs of simple purely imaginary eigenval-
ues originate a singularity of the stability boundary, which is
shaped as a dihedral angle in the parameter space, Fig. 2 (a).
A double zero eigenvalue with the Jordan block and a pair of
simple purely imaginary eigenvalues are responsible for the ap-
pearance of a trihedral angle, Fig. 2(b). A pair of double purely
imaginary eigenvalues with the Jordan block corresponds to the
singularity deadlock of an edge, which is a half of the Whitney
umbrella surface [3], see Fig. 2(c).

Considering the asymptotic stability domain of system (1) in
the space of the parameters , v and 2 we know that the v-axis
is related to the unperturbed circulatory system (2). The parts
of this axis belonging to the stability domain of system (2) and
corresponding to two different pairs of simple purely imaginary
eigenvalues, form edges of the dihedral angles on the surfaces
that bound the asymptotic stability domain of system (1). At the
points +v¢ of the v-axis, corresponding to the stability—flutter
boundary of system (2) there exists a pair of double purely
imaginary eigenvalues with the Jordan block. Qualitatively, the
asymptotic stability domain of system (1) in the space (J, v, Q)
near the v-axis looks like a dihedral angle which becomes more
acute while approaching the points £v¢. At these points the
angle shrinks forming the deadlock of an edge. In case when
the stability domain of the unperturbed circulatory system has
a common boundary with the divergence domain, as shown in
Fig. 1(a), the boundary of the asymptotic stability domain of the
perturbed system (1) possesses the trihedral angle singularity
at v =+vq.

In the following, we improve the qualitative picture combin-
ing the direct analysis of the stability conditions (15)—(18) with
a perturbation technique in the vicinity of the singularities lo-
cated on the v-axis. We find exact first-order approximations
of the asymptotic stability domain, obtain an estimate of the
critical value of the parameter v as a function of ¢ and €2, and
show that this expression is reduced to a canonical equation of
the surface with the Whitney umbrella singularity.
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Note that the function Q(J, v, Q) defined by Eq. (19) is a
quadratic polynomial with respect to v. Solving the quadratic
equation we write the stability condition (18) in the form

v—v)(v—vi) <0, (20)

where

vE@G, Q) =

2y

Qb+ Q*b2 + ac 5
a 9’

and
a(d, Q) =4Q% + 5*(rD)?,
b(0, Q) = QuD-—tuKuD+ 20w KD+ 52tdeetD,

c(d, Q=(tr K tr D—tr KD)(tr KD + 67 tr D det D+Q? tr D)
— detK(tr D)>. (22)

Analyzing conditions of asymptotic stability (15)-(17) and
(20), we observe that the first two of them restrict the region of
variation of parameters ¢ and Q either to a half-plane d tr D > 0,
if det D >0, or to a space between the line 6 =0 and one of the
branches of a hyperbola | det D] P - = Zw%, if detD < 0.
Provided that 6 and € belong to the described domain, the
asymptotic stability of system (1) is determined by inequalities
(17) and (20), which impose limits on the variation of v.

As it follows from condition (17), for det K<O0 the diver-
gence domain splits the domain of asymptotic stability into two
non-intersecting parts, bounded by the planes v = +v4 and by
the surfaces v = vi(é, Q). In comparison with the unperturbed
system, the divergence boundary does not change because it is
given by the same critical values £v4 which are independent
from ¢ and Q. For det K > 0 inequality (17) is fulfilled, and in
accordance with condition (20) the asymptotic stability domain
is contained between the surfaces v=v;;(5, Q) and v=v_(6, Q).

The functions vcir (9, Q) defined by expression (21) are sin-
gular at the origin due to vanishing denominator. Assuming
Q = f6 and calculating a limit of these functions when ¢ tends
to zero, we obtain

4BB, £ D,/ (tr D +4(F— )

+ : +

= 1 = 5 23
Yo () i= lim ver = e (tr D) +4f2 =
where

tr(K — 02D
By = — (24)

2v¢

The limits v(jf (p) are real-valued functions of f if the radicand
in expression (23) is non-negative.

Proposition 2. Let /1(D) and /(D) be eigenvalues of D. Then,
|21 (D) — A2(D)]

[B.l< 5 (25)
If D is semi-definite (detD >0) or indefinite with

ki2(d — di1) — dia(kan — k11))?
0>detD> — (k12(d22 — di1) — dia(k2 — k11)) ’ 26)

2
dvg

then
|tr D|
2 9

1B.] < 27)

and the limits vg (P) are continuous real-valued functions of f5.

Otherwise, there exists an interval of discontinuity > < ﬁi —
(tr D)% /4.

Proof. With the use of the definition of f, (24), a series of
transformations

,  (trD)?
ﬂ*_ 4
1 ( (kiy — ko) (d11 — da) 2
:_2< 11 — k) (di1 — da +2k12d12>
4vg 2
(i1 +dn)? (ki = ka)® + 4k7y)
4 4v?
ki2(do — di1) — dia(kaa — k11))?
_ _detp — K12(dn 11)4 : 12(k22 — k11)) 28)
Vi
yields the expression
P (1(D) — Jn(D))?
T 4
ki2(doa — di1) — di2 (koo — k11))?
_ Ghiatdy —diy) —diatky — k1)) 29)

2
4vg

For real f,,, formula (29) implies inequality (25). The remaining
part of the proposition follows from (28). [

To get an impression of the behavior of the functions v(jf (),
we calculate and plot them, normalized by vy, for the following
positive-definite matrix K and indefinite matrix D = D;, where

i=1,2,3:
27 3 6 3
k=3 5) v=(5 1)
7 4J/130 — 11
D2=(4 3 ) D3=(7 5).
V130 - 11 1 5 1

(30)

The graphs of the functions vgt () bifurcate with a change
of detD. Indeed, since D; satisfies the strict inequality (26),
the limits are continuous functions with separated graphs, as
shown in Fig. 3(a). Expression (26) is an equality for the matrix
D,. Consequently, the functions v(ﬂ)c(ﬂ) are continuous, with
their graphs touching each other at the origin, Fig. 3(b). For
the matrix D3, condition (26) is not fulfilled, and the functions
are discontinuous. Their graphs, however, are joint together,
forming continuous curves, see Fig. 3(c).

Except for a strongly pronounced bifurcation pattern, Fig. 3
shows that the calculated voi () are bounded functions of 5, not
exceeding the critical values vt of the unperturbed circulatory
system.

Proposition 3.

VB < IVE(ELD] = vs. (31)
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Fig. 3. The functions \,'(J)r(/)’) (bold lines) and v, () (fine lines), and their
bifurcation when D is changing.

Proof. Let us observe that ,u(f = v(jf /v¢ are roots of the
quadratic equation

viagu® — 26Qbgvep — 6*co =0, (32)
where
2ap = a(d, o) = 8*(4f* + (r D)%),

by := b(0, 0) = 4,
co :=¢(0,0) = vZ((tr D) — 442). (33)

According to the Schur criterion [50] all the roots i of Eq. (32)
are inside the closed unit disk, if

d%co +viag = (rD)? + 4B — 2 + (wD)> >0,
20Qveby + v%aﬂ — 52C0 =B+ ‘[f*)z >0,
—26Qvtbg + viag — 6%co = (B — B,)* >0. (34)

The first of conditions (34) is satisfied for real vO, implying
g (BI< 1 with | (B)] =gy (=B =1. O

Therefore, the magnitude of the non-conservative positional
force at the onset of flutter for system (1) with vanishingly
small dissipative and gyroscopic forces, does not exceed that of
the circulatory system (2), demonstrating a jump in the critical
load which is characteristic of the destabilization paradox in
Ziegler’s form.

Another characteristic feature of this destabilization paradox
is an abrupt change of the critical frequency of the onset of
flutter due to an infinitesimally small damping [8,13]. This phe-
nomenon is especially important in the problems of acoustics
of friction, such as disk brake squeal suppression [30,31,43,46].
An explicit and exact expression for the critical frequency fol-
lows directly from the characteristic polynomial (10)

wcr(é, Q, V) = :l: ws 1 + 2 ﬁ vfﬁ*
w?trD
= vi(f = )+ (v —vp)
- e trD
+0(ﬁ_ﬂ*vv_ vr), (35)

being in agreement with the results of the works [13,41,42].

It is remarkable that the limits Yo (ﬁ) of the critical values
of the circulatory parameter v; £(5, ), which are complicated
functions of 6 and €, depend only on the ratio f=€/0, defining
the direction of approaching zero in the plane (9, 2). Along
the directions ff = f, and ff = —f,, the limits coincide with
the critical flutter loads of the unperturbed circulatory system
(2) in such a way that v (/3*) = and Vg (—B4) = —vr. Power
series expansions of the functions v, £(p) around f==p, (with
the radius of convergence not exceeding |tr D|/2) give simple
estimates of the jumps in the critical load

ve — v (f) = (B =B+ o((B— B,

(D2

vi + vy (B) = (B4 B)* +o((B+B.)7). (36)

T D)2

If we leave only second-order terms in expressions (36)
and then substitute f = 2/, we get equations of the form
Z = X?/Y?, which is canonical for the singular surface known
as the Whitney umbrella [3]. These equations give simple ap-
proximations of the boundary of the asymptotic stability do-
main of system (1) in the vicinity of the points (0, 0, v¢) in
the space of the parameters (9, €2, v), and confirm the qualita-
tive picture following from the Arnold theory [3].

A more general way of investigation of the stability boundary
near singularities is based on the perturbation theory for eigen-
values [8,13-18,20,22,25,28,32,33,38-43]. For a fixed v a sim-
ple root A=iw(v) of the characteristic polynomial P (4, , 2, v),
calculated at 6 = Q = 0, is expanded into the Taylor series

0,P(v)

A0, Q,v)—iw(v)=—9o 03P ()

6;P(v) -0

+0(3, Q). (37)
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It is evident, that equation Re(A(J, 2, v)) = 0 defines a curve
in the plane (0, Q), which contributes to the boundary of the
asymptotic stability domain, corresponding to some constant
value of the parameter v. A linear approximation to this curve
in the vicinity of the origin is given by the expression

Re(005P (v) + Q0o P (v)) =0, (38)
which for the polynomial (10) reads as
SQveB, + (w*(v) — wf) tr D) — 2Qv =0. (39)

Eqgs. (38), (39) give correct linear approximation of the
boundary of the asymptotic stability domain, if the func-
tions w(v) are known exactly, as it is in our case, where
Egs. (11)—(13) yield

@?(v) = of £ /vF — 2. (40)

Substituting (40) into (39), we obtain

2
Q:ﬁ[[i*iﬂll—%}é, 1)
v 2 Vi

which is simply formula (23) inverted with respect to f=Q/J.

In general, for systems with m >2 degrees of freedom, ex-
plicit analytical expressions like (40) cannot be found. Instead,
numerical data can be used [13], or, alternatively, power series
expansions of w(v) in the vicinity of v = v, which in case of
a double eigenvalue are given by the Newton—Puiseux series
[28,32]

o) =wr £ 2 621,P (v —vg) + O((v —vp)). (42)
aU,P

As a payment for the generality of the approach, Eq. (39) and
expression (42), evaluated for polynomial (10), give only ap-
proximations (36) of formula (23). Such approximations for
general finite-dimensional and distributed imperfect reversible
systems were obtained in [32,38,40—43].

Being based on the linear approximation (41), we study an
asymptotic behavior of the stability domain in the vicinity of
the origin in the plane (9, ) for various v. This give us better
understanding of the shape of the stability domain in the space
of the parameters o, @, and v.

For our purpose it is enough to consider only the case
when trK >0 and detK >0, so that —v¢ <v < v¢, because
for det K< O the region V2 < vﬁ < v% is unstable and should be
excluded.

For v < v%, the radicand in expression (41) is real and non-
zero, so that in the first approximation, the domain of asymp-
totic stability is contained in the angle between two lines in-
tersecting at the origin, as depicted in Fig. 4 (central column).
When v approaches the critical values £v¢, the angle becomes
more acute until at v = vf or v = —vy it degenerates to a sin-
gle line Q = of, or Q = —9f,, respectively. For f§, # O these
lines are not parallel to each other, and due to inequality (25)
they never stay vertical, see Fig. 4 (right column). However, the

Q Q Q
z
Z
4
0 3 0 3 0 3
P
-,
- 7
7
v—+0 0<v <vg V=V
Q Q Q
7
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z -
0 S 0 d 0 3
“
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Fig. 4. For various v, bold lines show linear approximations to the boundary
of the asymptotic stability domain (white) of system (1) in the vicinity of
the origin in the plane (J, Q), when tr K> 0 and detK > 0, and condition
(26) is fulfilled (upper row) or fails (lower row).

degeneration can be lifted already in the second approximation

wgtrDy/det D + f2
Q=145p, + ’+0(&

2v¢

)- (43)

If the radicand is positive, Eq. (43) defines two curves touching
each other at the origin, in such a way that the domain of
asymptotic stability has a cuspidal form, as shown in Fig. 4 by
dashed lines. Inside the cusp the critical value of the circulatory
parameter v of the imperfect reversible system (1) is not less
than that of the circulatory system (2). One can conclude, that
an accurate choice of the small velocity-dependent forces can
enlarge the stability range for v.

The evolution of the domain of asymptotic stability, when v
goes from %v¢ to zero, depends on the properties of the matrix D
and is governed by inequality (26). In case when the inequality
is fulfilled, we have |2f,|<trD, and the angle between two
lines (41) is getting wider, tending to = for v — 0, as shown
in Fig. 4 (upper left). Otherwise, the angle reaches a maximum
for some vZ < v% and then shrinks to a single line 6 =0 at v=0,
Fig. 4 (lower left). We note that these degenerations differ from
that occurred when v — v, because they do not depend on the
order of approximation. Indeed, at v=0 the Q-axis corresponds
to a marginally stable gyroscopic system, and thus it forms an
edge of the dihedral angle singularity of the boundary of the
domain of asymptotic stability.

Since the linear approximation to the asymptotic stability
domain does not contain the Q-axis at any v # 0, small gyro-
scopic forces cannot stabilize a circulatory system in the ab-
sence of damping forces (6 = 0), which is in agreement with
theorems of Lakhadanov and Karapetyan [11,12]. Another in-
teresting interpretation of Fig. 4 is that a conservative system
with K > 0 can be made asymptotically stable by small gyro-
scopic and damping forces with semi-definite or indefinite ma-
trix D, satisfying condition (26). For indefinite matrices D vi-
olating inequality (26), the asymptotic stability can be reached
only in the presence of gyroscopic, damping, and circulatory
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Fig. 5. Blowing the stability domain of circulatory system (2) up to the
domain of asymptotic stability of system (1) with the singularities Whitney
umbrella, dihedral angle, and trihedral angle when tr K >0, det K >0 and
condition (26) is fulfilled (a) or fails (b), and when tr K > 0 and det K <0 (c).

forces. Therefore, a stable circulatory system with two degrees
of freedom can be made asymptotically stable by the proper
combination of gyroscopic and damping forces with real sym-
metric matrix D having arbitrary structure, as it is clearly seen
from Eq. (41) and Fig. 4. Therefore, at least in two dimensions
the requirement of definiteness of the matrix D established in
[35] is not necessary for the stabilization of circulatory systems
by gyroscopic and damping forces.

Combining our analytical results with the qualitative picture
based on the singularity theory, we conclude that there are three
typical configurations of the surfaces v = vfr(é, ) and thus
three typical configurations of the asymptotic stability domain
of system (1) in the vicinity of the v-axis. The parts of the sur-
faces v=vZE (5, ) bounding the domain of asymptotic stability,
belong to the half-space o tr D > 0, as depicted in Fig. 5.

The first configuration corresponds to a positive-definite ma-
trix K and to a semi-definite or indefinite matrix D, which sat-
isfies condition (26). We see that addition of small damping
and gyroscopic forces blows the stability interval of a circula-
tory system 12 < v% up to a three-dimensional region bounded
by a surface with singularities, Fig. 5(a). The stability interval
of a circulatory system itself becomes an edge of a dihedral
angle, formed due to intersection of two smooth surfaces. At
v = 0 the angle of the intersection reaches its maximum (),
creating another edge along the (2-axis. While approaching the
points +vg, the angle becomes more acute and ends up with the
deadlock of an edge, which is a part of the Whitney umbrella
singularity, Fig. 5(a).

Changing the matrix D in such a way that it approaches the
threshold of condition (26), we deform the asymptotic stability
domain. Two smooth parts of the stability boundary correspond-
ing to negative and positive v are going towards each other until
they touch, when D is at the threshold. After D violates condi-
tion (26) this temporary glued configuration collapses into two
pockets of asymptotic stability as shown in Fig. 5(b). Each of
the two pockets has a deadlock of an edge as well as two edges
which meet at the origin. This complicated geometry is respon-
sible for the difficulties of stabilization by damping forces with
indefinite matrix D. Moreover, according to inequality (19) in
this case the magnitude of the damping forces is limited from
above. For example, if v=Q =0, then 5 < 5§r where

5cr=\/_

and 41 (K) and 4, (K) are eigenvalues of the matrix K. We note
that the formula (44) generalizes the result of Freitas et al. [27],
which was obtained for a diagonal matrix of potential forces.

The third configuration corresponds to an indefinite matrix K
with tr K > 0 and det K < 0, Fig. 5(c). In this case the condition
V> vﬁ divides the domain of asymptotic stability into two
parts, corresponding to positive and negative v. The intervals
of v-axis form edges of dihedral angles which end up with the
deadlocks at v = +v¢ and with the trihedral angles at v = £y,
Fig. 5(c). Qualitatively, this configuration does not depend on
the properties of the matrix D.

We see that the asymptotic stability domain of the non-
conservative system (1) naturally incorporates not only the in-
terval of marginal stability of circulatory system (2) but also
that of gyroscopic system (3) in such a manner that they serve
as singularities of its boundary. The imperfect reversible system
is therefore intimately related with the imperfect Hamiltonian
one, whose domain of asymptotic stability we study in the next
section.

tr(KD — A1 (K)D) tr(KD — /,(K)D)
trDdetD (tr KD — tr Ktr D)

. (44)

3. A gyroscopic system with weak damping and
circulatory forces

In 1879, Thomson and Tait showed that a statically unsta-
ble potential system, which has been stabilized by gyroscopic
forces could be destabilized by the introduction of small damp-
ing [4]. Later it has been observed that many statically unstable
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gyropendulums enjoy robust stability at high speeds [22]. Since
the idea that damping is completely absent in a real system
could not be accepted, it has been understood that the nature of
damping itself may be different from that assumed in the sta-
tionary damping model. In 1933, Smith introduced a concept
of rotating damping and showed on a planar model of a flexible
rotor, that the critical angular velocity depends on the ratio of
the coefficients of stationary and rotating damping [6,22]. Con-
trary to the stationary damping, which is a velocity-dependent
force, the rotating one is also proportional to the displacements
by a non-conservative way and thus contributes not only to the
matrix D in Eq. (1), but to the matrix N as well. This leads to
a problem of perturbation of conservative gyroscopic system
(3) by weak dissipative and non-conservative positional forces,
attracted recently new attention [19,22,23,35-37,44,46-48].

3.1. Stability of a conservative gyroscopic system

First we consider stability of gyroscopic system (3). In the
absence of dissipative and circulatory forces (6 = v = 0), the
characteristic polynomial (10) has four roots +4y, where

Iy = \/—%(trK + Q)+ %\/(trK + Q%) —4detK.  (45)

Analysis of these eigenvalues yields the following result, see
e.g. [24].

Proposition 4. If det K >0 and tr K <0, gyroscopic system
(3) with two degrees of freedom is unstable by divergence for

Q* < Qy 2, unstable by flutter for Qg 2 < Q? < QaL 2, and stable
for Q(TZ < Q%, where the critical values Q, and QE)'_ are

og\/—trK —2V/detK =: Q; <Qf =/ —trK + 2V/detK.
(46)

If det K > 0 and tr K > 0, the gyroscopic system is stable for
any Q.
If det K <0, the system is unstable.

We note that the last two statements are simply the theorems
of Routh [5] and Thomson and Tait [4], respectively. The re-
maining part of the proposition follows from Eq. (45), repre-
sented in the form

_2 2 _2 2
Ai=\/—%<92—%(90 o) £ @ - aph@-agd.
47)
Indeed, at Q = 0 there are in general four real roots £y =
:i:(Qa' + Qy)/2 and system (3) is statically unstable. With the

increase of Q7 the distance 1, — A_ between the two roots of
the same sign is getting smaller. The roots are moving towards

each other until they merge at Q%> = Qy * with the origination of
a pair of double real eigenvalues g with the Jordan blocks,
where

wo =1y 257 - Q5 = VdetK > 0. (48)

Further increase of Q2 yields splitting of +wq to two couples
of complex-conjugate eigenvalues lying on the circle

Re /2 +1Im 2% = o}, (49)

The complex eigenvalues move along the circle until at Q=
Qg 2 they reach the imaginary axis and originate a complex-
conjugate pair of double purely imaginary eigenvalues Fiwy.
For @° > Q(J{z the double eigenvalues split into four simple
purely imaginary eigenvalues which do not leave the imaginary
axis, Fig. 6.

Thus, the system (3) with K < 0 is statically unstable for 2 €
(=9, &), it is dynamically unstable for £ € [—Q, -0y U
(2, Qg ], and it is stable (gyroscopic stabilization) for Q €
(—00, —QF) U (2], 00), see Fig. 6. The values of the gyro-
scopic parameter &€, define the boundary between the diver-
gence and flutter domains while the values j:QS' originate the
flutter—stability boundary.

3.2. The influence of small damping and non-conservative
positional forces on the stability of a gyroscopic system

Let us establish a relationship between the one-dimensional
stability domain of gyroscopic system (3) given by Proposition
4, and the domain of asymptotic stability of imperfect Hamil-
tonian system (1) defined in the space of the parameters 9, v,
and Q by conditions (15)—(17) and (20).

Observing that inequality (17) is fulfilled for det K > 0 and
inequality (15) simply restricts the region of variation of ¢ to
the half-plane 6 tr D > 0, we focus our analysis on conditions
(16) and (20).

Let us consider the asymptotic stability domain in the plane
of the parameters ¢ and v in the vicinity of the origin, assum-
ing that Q # 0 is fixed. Taking into account the structure of
coefficients (22) and leaving the linear terms with respect to 0
in the Taylor expansions of the functions v (5, ), we get the
equations determining a linear approximation to the stability
boundary

B trKD—tthrD—trD;Fi(Q)(S
"= 20

_2uKD+ur D(Q*—rK) £ tr DV (2 +trK)2—4detK 5
= 4Q 9
(50)

where the eigenvalues A4 (£2) are given by formula (45).

For det K > 0 and tr K > 0 the gyroscopic system is stable
at any €. Consequently, the coefficients ii () are always real,
and Egs. (50) define in general two lines intersecting at the
origin, Fig. 7. Since tr K > 0, inequality (16) is satisfied for
det D >0, and it gives an upper bound of 5% for det D < 0. Thus,
according to conditions (15) and (20), a linear approximation
to the domain of asymptotic stability near the origin in the
plane (4, v), is an angle between two lines (50), as shown in
Fig. 7. With the change of Q the size of the angle is varying
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Fig. 6. Stability diagram for the conservative gyroscopic system with tr K <0 and det K > 0 (left) and the corresponding trajectories of the eigenvalues in the

complex plane for the increasing parameter Q > 0 (right).
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Fig. 7. For various £, bold lines show linear approximations to the boundary of the asymptotic stability domain (white) of system (1) in the vicinity of the
origin in the plane (9, v), when tr K> 0 and det K > 0, and condition (26) is fulfilled (upper row) or fails (lower row).

and moreover, the stability domain rotates as a whole about the
origin.

When 2 — oo, the size of the angle defined by Egs. (20)
and (50) tends to 7/2 in such a way that the stability domain
fits one of the four quadrants of the parameter plane, as shown
in Fig. 7 (right column). To study the shape of the stability
domain at 2 — 0 we note that

2tr KD — tr K tr D| — [tr D]/ (tr K)> — 4 det K<O0, (51)

if D satisfies condition (26). Consequently, the angle between
the lines (50) tends to m, Fig. 7 (upper left). In this case the
domain of asymptotic stability spreads over two quadrants and
contains the J-axis. Otherwise, the left side of inequality (51)
is positive and at £2 — 0 the angle tends to zero, Fig. 7 (lower
left). In these conditions the stability domain always belongs to
one quadrant and does not contain J-axis. The latter means that
in the absence of non-conservative positional forces, gyroscopic
system (3) with K > 0 cannot be made asymptotically stable
by damping forces with indefinite matrix D violating inequality
(26), which is also visible in the three-dimensional picture of
Fig. 5(b).

The domain of asymptotic stability of imperfect Hamiltonian
system (1) with K > 0 and D satisfying inequality (26), in the
space of the three parameters o, v, and Q2 has the form of a
dihedral angle with the Q-axis as its edge, as shown in Fig.
5(a). With the increase in |Q2|, the section of the domain by the
plane ©Q = const is getting more narrow and is rotating about
the origin so that the points of the parameter plane (J, v) that
where stable at lower || can lose their stability for the higher
absolute values of the gyroscopic parameter. This geometry of
the stability domain describes the mechanism of gyroscopic
destabilization of a statically stable conservative system in the
presence of damping and non-conservative positional forces.

To study the case when K < 0 we use expressions (46)—(48),
and write Egs. (50) in the form

QF aD | @°
v=— |t — | —5 -
Q 4 ot?
0
x <\/Q2 o+ \/92 - 952> 5, (52)
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Fig. 8. For various €2, bold lines show linear approximations to the boundary of the asymptotic stability domain (white) of system (1) in the vicinity of the

origin in the plane (J, v), when trK <0 and detK > 0.

where

K+ (@ — o)ID

Yo 53
Vs 200 (53)

Proposition 5. Let /.1 (D) and 75 (D) be eigenvalues of D. Then,

o |41 (D) + Z2(D)] Lo |41 (D) — iz(D)I_

2 2 (54)

7, <

Proof. Indeed, using the Cauchy—Schwarz inequality, after a
series of transformations we obtain

D K — (rK/2)I)(D — (irD/2)I
IV*|<Q§|H |+tr( (tr /))J(r (tr D/2)I)
4 20;
Dl [4(K) — K)[|i D) — i (D
gQathr |+| 1(K) — 42( )||+1( ) — /a( )I_ (55)
4 407

Taking into account that [11(K) — A (K)| = Q Qa' , we get
inequality (54). O

Analyzing expression (52) we find that it is real-valued when
Q? 29;{2 or ? <Qy *. For sufficiently small |d] the first in-
equality implies stability condition (16), whereas the last in-
equality contradicts it. Consequently, the domain of asymptotic
stability is determined by the inequalities (15) and (20), and its
linear approximation in the vicinity of the origin in the (9, v)-
plane has the form of an angle with the boundaries given by
Eq. (52). For Q tending to infinity the angle expands to n/2,
whereas for Q= Qa' or Q= —Q(‘)" it degenerates to a single line
v =07, or v = —0d7,, respectively. For y, # O these lines are
not parallel to each other, and due to inequality (55) they never
stay vertical, see Fig. 8 (left). This degeneration can, however,
be removed already in the second-order approximation

trD,/w} det D — )2 2+ 06

yv==40y, +
x 207

(56)

If the radicand in Eq. (56) is positive, they describe two smooth
curves touching each other at the origin in such a way that the
stability domain has a form of a cusp, shown by dashed lines
in Fig. 8 (left).

Therefore, gyroscopic stabilization of statically unstable con-
servative system with K < 0 can be improved up to asymptotic
stability by small damping and circulatory forces, if their mag-
nitudes are in the narrow region with the boundaries depending
on Q. The lower desirable absolute value of the critical gyro-
scopic parameter Q¢ (9, v) the poorer choice of the appropriate
combinations of damping and circulatory forces.

The new critical value of the gyroscopic parameter Q¢ (9, v)
can deviate significantly from that of the conservative gyro-
scopic system. To estimate it, we consider formula (52) in the
vicinity of the points (0, 0, iQ(T ,) in the parameter space.
Leaving only the terms, which are constant or proportional to

Q+ Qa' in both the numerator and denominator and assum-

ing v = 0, we write the equations separately for positive and
negative Q,

2
Q=0 + ngw — 707 +o((y — 70D, (57

Q.0 =-9f —Q (7,07 H0((+7,07). (58)

(wo tr D)
It is remarkable that Eqgs. (57) and (58) have the form Z =
X?/Y?, canonical for the Whitney umbrella.

The domain of asymptotic stability of an imperfect Hamil-
tonian system (1) with K <0 is shown in Fig. 9(a). The parts
of the Q-axis, which correspond to the stability domain of the
unperturbed gyroscopic system, form an edge of the dihedral
angle singularity of the stability boundary. The angle becomes
more acute near the points :l:Q(‘)Ir , at which it degenerates with
the origination of the deadlock of an edge singularity. Qualita-
tively, the domain of asymptotic stability given by inequalities
(15) and (20) consists of two pockets of two Whitney umbrel-
las, selected by the condition dtrD > 0. Eq. (52) is a linear
approximation to the stability boundary in the vicinity of the
2-axis. Moreover, it describes in an implicit form a limit of the
critical gyroscopic parameter Q. (d, yd) when ¢ tends to zero,
as a function of the ratio y = v/J, Fig. 9(b).

As it follows from expressions (52), (57) and (58), most
of the directions y give the limit value |Qcir(y)| > Q(J)r with an
exception for y =y, and y = —y,, so that Qf.(y,) = Q(‘)" and
QL (=7, = —Q(J)r . This means that the critical value of the
gyroscopic parameter 2 generally jumps up for infinitely small
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Fig. 9. Blowing the domain of gyroscopic stabilization of a statically unstable
conservative system with K <0 up to the domain of asymptotic stability with
the Whitney umbrella singularities (a). The limits of the critical gyroscopic
parameter er as functions of y =v/0 (b).

o0 and v, which is characteristic of the destabilization paradox
in the Ziegler form. This effect illustrates high sensitivity of the
critical parameters at the onset of flutter to small imperfections
(an important example is the behavior of the critical angular
velocity of a rotating disk of the squealing automotive brake
[46]). As it is seen from the expression following from the
characteristic polynomial (10)

Qy— QF
wﬂ&&ﬁziw01+}LTjﬁ
wytrD
iy — 5 _ ot
trD
+0(V_V*,Q—Qa_), (59)

the critical frequency of flutter also demonstrates an abrupt
change due to the non-Hamiltonian perturbations of a gyro-
scopic system.

Therefore, in the presence of small damping and non-
conservative positional forces, gyroscopic forces can both
destabilize a statically stable conservative system (gyroscopic
destabilization) and stabilize a statically unstable conservative
system (gyroscopic stabilization). The first effect is essentially
related with the dihedral angle singularity of the stability
boundary, whereas the second one is governed by the Whitney
umbrella singularity. In the next section we demonstrate how
these singularities appear in the mechanical systems described
by the modified Maxwell-Bloch equations [20,22,36,44,47].

4. The modified Maxwell-Bloch equations and its
applications

The modified Maxwell-Bloch equations are the normal
form for rotationally symmetric, planar dynamical systems
[20,36,44]. They are a particular case of Eq. (1) for m = 2,
D =1, and K = «I, and thus can be written as a single differ-
ential equation with the complex coefficients

X +10Qx +0x +ivx +kx =0, x=x; —ixa, (60)

where parameter x corresponds to potential forces. This simple
equation is important in studying some problems of gyrody-
namics, such as tippe top inversion and the rising egg phenom-
ena [22,36,44,47].

According to stability conditions (15)—(19) the zero solution
of the modified Maxwell-Bloch equations is asymptotically
stable if

a-"_% 61)
o v

0>0,
which also agrees with the Bilharz criterion applied to the com-
plex polynomial 42 + (8 +iQ)/ 4 x + iv [50].

Since the matrices D and K cannot be indefinite, then ac-
cording to the results of the previous section the asymptotic
stability domain of Eq. (60) has one of the two typical config-
urations, shown in Fig. 10. For x > 0 the domain of asymptotic
stability is a dihedral angle with the Q-axis serving as its edge,
Fig. 10(a). The sections of the domain by the planes £ = const
are contained in the angle-shaped regions with the boundaries

Q+VQ*+4
v=___71la (62)

The domain shown in Fig. 10(a) is a particular case of that
depicted in Fig. 5(a). According to the Merkin theorem [10], for
K =«I the interval of stability of a circulatory system [—v, v¢]
shown in Fig. 5(a) shrinks to a point so that at £ =0 the angle
is bounded by the lines v = £44/k and thus it is less than 7.
The domain of asymptotic stability is twisting around the Q-
axis in such a manner that it always remains in the half-space
0 > 0, Fig. 10(a). Consequently, the system stable at Q2 =0 can
become unstable at greater (2, as shown in Fig. 10(a) by the
dashed line. The larger magnitudes of circulatory forces, the
lower |Q2] at the onset of instability.

When x> 0 is decreasing, the hypersurfaces forming the
dihedral angle move towards each other. At k¥ = 0 they are
temporarily glued along the line v =0 and for k <0 a new
configuration is born, Fig. 10(b). The new domain of asymptotic
stability consists of two non-intersecting parts given by the
pockets of two Whitney umbrellas. The absolute values of the
gyroscopic parameter €2 in the stability domain are always not
less than Q(J)“ =2./—k. As a consequence, the system unstable
at 2 = 0 can become asymptotically stable at greater €, as
shown in Fig. 10(b) by the dashed line.
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Fig. 10. Two configurations of the asymptotic stability domain of the modified Maxwell-Bloch equations for k > 0 (a) and k <0 (b) corresponding to gyroscopic

destabilization and gyroscopic stabilization, respectively.

4.1. The Crandall gyropendulum

The Crandall gyropendulum is an axisymmetric rigid body
pivoted at a point O on the axis as shown in Fig. 11. When the
axial spin v is absent, the upright position is statically unstable.
When y is non-zero the body becomes a gyroscopic pendulum.
Its primary parameters are its mass m, the distance L between
the mass center and the pivot point, the axial moment of inertia
I, and the diametral moment of inertia /3 about the pivot point;
the gravity acceleration is denoted by g [22].

It is assumed that a drag force proportional to the linear ve-
locity of the center of mass of the gyropendulum acts at the
center of mass to oppose that velocity (stationary damping with
the coefficient bs). Additionally, it is assumed that a rigid sphere
concentric with the pendulum tip O, is attached to the pendu-
lum and rubs against a fixed rub plate. The gyropendulum is
supported frictionlessly at O, while a viscous friction force acts
between the larger sphere and the rub plate, being responsible
for the rotating damping with the coefficient b;. The linearized
equations of motion for the gyropendulum in the vicinity of
the vertical equilibrium position derived in [22] have the form
(60) with the coefficients

d=0c+p, Q=ny, K:—(xz, v =py, (63)

where parameters of the system are given by the expressions

Ia bs by

o mgL
= —, o= .
Iy Iy

I (64)

n

The parameter 7 is responsible for the shape of the gyropen-
dulum: for # <1 the pendulum is a rod-like, and for > 1 it
is a disk-like. The parameters ¢ and p correspond to the sta-
tionary and rotating damping, « is the non-spinning pendulum
frequency.

According to expressions (61) and (63), the asymptotic sta-
bility domain of the Crandall gyropendulum is given by the
conditions

y>75(p,0), y<ya(p,0), o+p>0, (65)

where the critical values of the spin y as a function of the two
damping parameters are
(64 p)a

+
Yer(ps 0) =% .
. V=2 + 0+ pro

(66)

Eq. (66) describes two surfaces in the space of the parameters
(p, 0, 7). Both surfaces have a singularity Whitney umbrella
at the points (0, 0, £y{), where 7§ = 2/—K/n = 20/n is the
critical spin of the undamped system (¢ = p = 0). The surface
7&:(p, o) is shown in Fig. 11 for «=1 and 5 =2. The inequality
o + p> 0 selects the stable pocket of the Whitney umbrella.
As it follows from expression (66), Qf > Q7 and Q_ < — Q.
The critical loads coincide only for the specific ratios of the
coefficients of the stationary and rotating damping

b 2—-n  Qf
_szgz_ﬂz_o_l’ (67)
b p n on)

where wg = o is the critical frequency of the undamped pendu-
lum [22].

4.2. Rising egg

When one spins sufficiently fast a hard-boiled egg with its
long axis horizontal, the egg rises from the horizontal state
to a vertical state as shown in Fig. 12. This effect caused by
the combined action of the dissipative, gyroscopic, and non-
conservative positional forces is known as the rising egg phe-
nomenon [44].

In [44] the egg of mass M is modelled by a prolate spheroid
surface with its equatorial radius less than the polar radius R,
so that their ratio o < 1. The mass distribution is assumed to
be symmetric, that is the center of mass coincides with the
geometric center, the moments of inertia about the two principal
axes in the equatorial plane are equal to /, and the moment of
inertia about the axis of symmetry is I. The gravity acceleration
is denoted by g. It is assumed that the surface frictional force
exerted on the body at the contact point is proportional with
the coefficient ¢ to the velocity of the contact point on the rigid
body relative to the center of mass [44].
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Fig. 12. The rising egg and the domain of asymptotic stability of its risen state.

With the dimensionless inertia ratio ¢, Froude number Fr,
mass p, and friction factor 7,
cR?
Iy’

I 7R
o=t ﬂ=£—u H=—>, n=
1 g 1

(68)

the equations of motion linearized about the risen state with
the spin rate y are in the form of the modified Maxwell-Bloch
equations (60) with the coefficients

oc3r]
, V= —.
Fr o

(69)

Since o < 1, the coefficient k¥ < 0 and in the absence of dissi-
pation (y=v=0), the gyroscopic system is stable for Q% > —4x,
which is equivalent to the inequality

4u(l — o?)

Fr>FP = 3
o

. (70)
When dissipative and circulatory forces are acting, then, ac-
cording to conditions (61) and expressions (69) the risen state
is asymptotically stable if 7 > 0 and

2,2

i/ BNy N (71)

Fr>F"=F"—— >
4y(om —v)

At the given o and p the critical Froude number of the damped
system Fr" is a function of the damping coefficient 5 and inertia
ratio ¢. However, due to the relation v = a’5/c we consider
it as a function of the magnitudes of damping and circulatory
forces Fr' = Fr' (i, v).

The asymptotic stability domain of the risen state in the
space of the parameters 7, v, and Fr is shown in Fig. 12 for
u=1and o= % It has typical singular form implying that
Frt > Fr0, where the equality is attained only for v = na/2,
which is equivalent to ¢ = 20,

4.3. Tippe top

The most common geometric form of tippe top is a cylindri-
cal stem attached to a truncated ball [36,37]. On a flat surface,
the tippe top rests stably with its stem up (non-inverted state).
However, spun fast enough on its blunt end, the tippe top in-
verts, and spins on its stem (inverted state) [36].

In [36] the tippe top is modelled as a ball of radius R and mass
M on a fixed plane, see Fig. 13 (left). The mass distribution
of the ball is inhomogeneous, but symmetric about an axis
through the ball’s geometric center. Thus, the ball’s center of
mass is located on the axis of symmetry, but at a distance eR
from the geometric center, where e, |e| < 1 is the center of mass
offset. If in the non-inverted state the center of mass is above
the geometric center, then e > 0; if below, ¢ < 0. The moment
of inertia about the axis of symmetry is denoted by I. The
inertias about the two other principal axes attached to the center
of the ball are equal to /. The gravity acceleration is g. It is
assumed that the surface frictional force at the contact point is
proportional with the coefficient ¢ to the velocity of the contact
point on the rigid body relative to the center of mass [36].

The equations of motion linearized about the non-inverted
state with the spin rate y are in the form of the modified
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Fig. 13. The tippe top (left) and the domains of asymptotic stability of its non-inverted (center) and inverted (right) states.

Maxwell-Bloch equations (60) with the coefficients

. (14 e)y _ o

1+ Tl 4e)
Fr! 1

Kzr—e,u’ VZM7 (72)
—14e2u .

where the dimensionless inertia ratio o, Froude number Fr,
mass u, and friction coefficient 7 are

I 2R MR?
g = — . F = . = —

_cR2
¢ T B

Iy

(73)

Linearization about the inverted state yields the modified
Maxwell-Bloch equations (60) with the coefficients

5— (1—6)21’[ B o(l + e —2ue?)

I N (I [ S
—Fr! 1

po frep _mdte) (74)
—1 4 e2u —1+e2u

Fr>Fr" .= F

intersecting at the origin, see Fig. 13. The angle between the
lines is getting smaller with the increase in Fr. That means
that statically stable non-inverted state becomes unstable for
sufficiently large Froude number

Oeu
Fr> .
V(=66 +v(=1 4+ e2p))

(76)

As it has been shown in [36] there exists a heteroclinic con-
nection between the non-inverted and inverted states of tippe
top. Thus, the non-inverted state which has lost its stability, can
be transferred to the inverted state. In the absence of dissipation
the inverted state is stable for Q% > — 4x, which is equivalent
to the inequality

4pe(l — e)*(—1 + pe?)

Fr>FP =
o2(1 + e — 2ue?)?

(77)

We note that Fr¥ > 0 because e < 0 and 1—e?u > 0. If the damp-
ing is taken into account then according to stability conditions
(61) the inverted state is asymptotically stable for 6 > 0 and

’t(l4e— 2ue?)?

Since the eccentricity |e| < 1 we restrict our subsequent con-
siderations to the case 1 — e > 0. Then, in the absence of
dissipation (17 = 0), the non-inverted state with e <0, is sta-
ble for all Froude numbers because x> 0. When damping
forces are acting, then according to stability conditions (61)
the domain of asymptotic stability of the non-inverted state is
a dihedral angle in the space of parameters 0, v, and Fr, as
shown at the central picture in Fig. 13 for u=1, e = —%, and
o= % The boundaries of the stability domain are given by the
expressions

1 Fro=+ \/(Fra)z +4deuFr(—1+ ez,u)é

v
2 Fr(—1+ée2p)

(75)

Since e <0 and 1 — %> 0, the radicand in expressions (75)
is always positive and for every Fr they define two lines

>
4v(1 —e)(—1 + pe?)(a6(1 + e — 2ue?) + v(1 — ue?)(1 — e))

F, (78)
where the equality is attained only at

—( 7 __ “)5 (79)
' 21 —pe?) 1—e)

The domain of asymptotic stability of the inverted state is shown
in the right picture of Fig. 13 for u=1,e= —%, and 0 = % It
has a recognizable form of the half of the Whitney umbrella.

5. Conclusions

For a general linear mechanical system with two degrees
of freedom the effect of small damping and non-conservative
positional forces on the stability of a gyroscopic system as well
as the effect of small gyroscopic and damping forces on the
stability of a circulatory system has been studied.
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It was found that the stability boundary of both the imperfect
Hamiltonian system and the imperfect reversible one possesses
singularities such as Whitney umbrella, and dihedral and trihe-
dral angles. Dihedral angle singularity is responsible for the loss
of stability by a gyroscopic system, which is statically stable
in the absence of gyroscopic forces, due to action of the small
damping and circulatory forces. Whitney umbrella singularity
is the reason for the destabilization paradox appearing both in
the circulatory systems with weak velocity-dependent forces
and in the gyroscopically stabilized but statically unstable con-
servative systems perturbed by small damping and circulatory
forces. The Crandall gyropendulum, rising egg, and tippe top,
considered as mechanical examples, confirm the conclusions
of the theory.

As it has been noted by Sevryuk [2] there is a very close sim-
ilarity between the behavior of solutions of reversible systems
and that of Hamiltonian ones. The destabilization paradox due
to breaking the Hamiltonian and reversible symmetry remark-
ably reveals both the similarity and difference between the two
types of systems.
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