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Abstract

Background: Antimicrobial-resistant bacteria and their antimicrobial resistance (AMR) genes can spread by

hitchhiking in human guts. International travel can exacerbate this public health threat when travelers acquire AMR

genes endemic to their destinations and bring them back to their home countries. Prior studies have demonstrated

travel-related acquisition of specific opportunistic pathogens and AMR genes, but the extent and magnitude of

travel’s effects on the gut resistome remain largely unknown.

Methods: Using whole metagenomic shotgun sequencing, functional metagenomics, and Dirichlet multinomial

mixture models, we investigated the abundance, diversity, function, resistome architecture, and context of AMR

genes in the fecal microbiomes of 190 Dutch individuals, before and after travel to diverse international locations.

Results: Travel markedly increased the abundance and α-diversity of AMR genes in the travelers’ gut resistome, and

we determined that 56 unique AMR genes showed significant acquisition following international travel. These

acquisition events were biased towards AMR genes with efflux, inactivation, and target replacement resistance

mechanisms. Travel-induced shaping of the gut resistome had distinct correlations with geographical destination,

so individuals returning to The Netherlands from the same destination country were more likely to have similar

resistome features. Finally, we identified and detailed specific acquisition events of high-risk, mobile genetic

element-associated AMR genes including qnr fluoroquinolone resistance genes, blaCTX-M family extended-spectrum

β-lactamases, and the plasmid-borne mcr-1 colistin resistance gene.
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Conclusions: Our results show that travel shapes the architecture of the human gut resistome and results in AMR

gene acquisition against a variety of antimicrobial drug classes. These broad acquisitions highlight the putative risks

that international travel poses to public health by gut resistome perturbation and the global spread of locally

endemic AMR genes.
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Background
Antimicrobial resistance (AMR) is a major global public

health threat with a high mortality cost [1–6]. AMR bac-

terial infections now frequently render antibiotics inef-

fective and limit clinicians’ antibiotic treatment options.

This trend threatens 70 years of progress in treating bac-

terial infectious diseases.

AMR is rising worldwide, but there are large geo-

graphic differences in the prevalence and type of resist-

ant bacteria and their AMR genes [7, 8]. Low- and

middle-income countries generally have higher endemic

AMR than high-income countries, mainly driven by anti-

biotic overuse in humans and animals [6–10]. Inter-

national travel can facilitate the transfer of resistant

bacteria and AMR genes from their endemic regions to

other locations around the globe [11–18].

An AMR gene’s ability to spread via international

travel is context-dependent [11, 19, 20]. Context in-

cludes the AMR gene’s prevalence in the endemic re-

gion, the specific bacteria harboring the AMR gene, and

the other genetic elements colocalized with the gene.

AMR genes such as extended-spectrum β-lactamases

(ESBLs), qnr, and mcr-1 are often associated with mobile

genetic elements like plasmids and are of particularly

high concern due to their ease of spread [8, 11, 21–23].

Returning travelers are rarely tested for resistant bac-

teria or AMR genes unless they manifest clinical symp-

toms, so the magnitude of AMR gene acquisition risk

from international travel remains underdetermined.

Using microbial culture, studies have shown significant

acquisition rates of opportunistic pathogens, such as

ESBL-producing Enterobacteriaceae [16, 18, 24, 25].

These studies identified specific pathogenic bacteria ac-

quired during international travel, and several identified

specific AMR genes acquired during travel [16, 26, 27].

But the effect of international travel on AMR is most

likely not limited to opportunistic pathogens such as

Escherichia coli or to ESBL-encoding resistance genes. A

broader risk assessment must include acquired commen-

sals and their potential horizontal transfer of AMR genes

with host microbiomes.

Rapid advancements in sequencing technology, bio-

informatics, and database curation facilitate quantitative

insight into the human microbiome’s role as an AMR

reservoir in a broader context and how this role might

be influenced by international travel [8, 28]. We can se-

quence all extracted DNA using shotgun metagenomic

sequencing [8, 28, 29], and we can directly identify AMR

genes in these shotgun metagenomes by mapping reads

to curated AMR gene databases [8, 28]. Though AMR

gene databases and identification techniques have made

significant advancements in recent years, they still rely

heavily on the traditional microbiological culture that

excludes many bacteria [28]. Functional metagenomics is

a powerful complementary method to more broadly sur-

vey AMR determinants without relying on culturing re-

sistant bacteria [8, 28, 30]. Instead, functional

metagenomics uses a cultivable indicator bacterium to

identify functional AMR determinants from metage-

nomic samples via recombinant gene expression and

phenotypic selection [30].

Here, we combine next-generation sequencing, func-

tional metagenomics, and statistical modeling to investi-

gate the abundance, diversity, function, context, and

acquisition of AMR genes in a group of international

travelers. Our results demonstrate that international

travel is a significant perturbation to the gut resistome

and reveal destination-specific changes to travelers’

resistomes including AMR gene acquisitions against last

resort antibiotics and AMR gene colocalization with mo-

bile genetic elements. These findings further our under-

standing of the role of travelers as potential reservoirs

and spreaders of AMR.

Methods
Study design, sample collection, and DNA extraction

Samples for this project were selected from a subset of

the broader Carriage Of Multiresistant Bacteria After

Travel (COMBAT) study [17, 31]. Within this multicen-

ter longitudinal cohort study, travelers were recruited at

the outpatient travel clinics run by the Academic Med-

ical Center (Amsterdam, The Netherlands), Havenzie-

kenhuis (Rotterdam, The Netherlands), and Maastricht

University Medical Center/Public Health Service South

Limburg (Maastricht, The Netherlands). Minors, inca-

pacitated subjects, and subjects that traveled abroad for

shorter than 1 week or longer than 3 months were ex-

cluded from the study. In total, 2001 travelers were in-

cluded and provided with fecal swab kits that included

instructions, a modified Carey-Blair transport medium
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with an associated swab (Fecal Swab®; Copan, Brescia,

Italy), a questionnaire, and paid postage. Before leaving

for and immediately after returning from travel, subjects

took samples from their stool using the fecal swab kits

and mailed them to the lab. The methods for sample

collection are described in detail in Arcilla et al. [31] and

Arcilla et al. [17].

For the purpose of the present study, we limited the

selection to travelers to Southeastern Asia, South Asia,

North Africa, and Eastern Africa to have sufficient num-

bers per subregion. Subregions are defined according to

the United Nations regional grouping M49 standard

[32]. Travelers were excluded if they visited multiple

subregions or consumed antibiotics in the 3 months be-

fore travel. Selections were made by stratified random

sampling using SPSS.

Metagenomic DNA was extracted from stool samples

using repeated bead-beating (RBB) combined with

column-based purification according to protocol Q

(IHMS_SOP 06 V2 - http://www.microbiome-standards.

org/index.php?id=253) of the International Human

Microbiome Standards consortium [33]. Bead-beating

was done using the FastPrep™ Instrument (MP Biomedi-

cals, Santa Ana, CA, USA) with 0.1-mm zirconium-silica

beads (BioSpec Products, Bartlesville, OK, USA) to

homogenize feces. DNA was finally purified by adapting

to the QIAamp DNA Stool Mini kit columns (Qiagen,

Hilden, Germany). A Qubit® fluorometer dsDNA HS

Assay (Invitrogen) was used to quantify extracted DNA,

and this DNA was stored at −20°C.

Extracted metagenomic DNA was diluted to 0.5 ng/μL

and prepared for sequencing with a Nextera DNA Li-

brary Prep Kit (Illumina) using a modified Nextera

protocol [34]. Libraries were purified using the Agen-

court AMPure XP system (Beckman Coulter) and quan-

tified using the Quant-iT PicoGreen dsDNA assay

(Invitrogen). For each sequencing lane, 10 nM of ap-

proximately 96 samples was pooled three independent

times. These pools were quantified using the Qubit®

dsDNA BR Assay and combined in an equimolar fash-

ion. Samples were submitted for 2×150 bp paired-end

sequencing on an Illumina NextSeq High-Output plat-

form with a target sequencing depth of 5 million reads

per sample.

Sequence quality filtering

Trimmomatic v0.36 [35] was used to trim Nextera

adapter sequences and to quality filter sequenced reads

with the following parameters:

Adapter = Nextera

Illuminaclip = 2:30:10:1:TRUE

Leading = 10

Traling = 10

Sliding window =4:15

Min length = 60

Deconseq v0.4.3 was used to remove human read con-

tamination [36].

Functional metagenomics

We constructed, sequenced, and analyzed 21 small-

insert (>0.7 kb) functional metagenomics libraries which

were screened for antibiotic resistance with adaptations

to our previously published protocols [30, 37–44]. The

experimental protocol for creation and screening of

functional metagenomics library is briefly described

below:

Construction of functional metagenomics libraries

The metagenomic DNA (mgDNA) of 190 post-travel

samples were divided based on four different travel re-

gions, and up to ten random samples from each region

were pooled together for the construction of each func-

tional metagenomic library (Additional file 1: Fig. S1).

The pooled mgDNA was fragmented by partial restric-

tion digestion using BamHI, BglII, and BstYI (New Eng-

land Biolabs (NEB)) restriction enzymes. First, 1 μg of

mgDNA was mixed with 1–5 units of both BamHI and

BglII (NEB) in a total volume of 90 μl. The digest was

put at 37 °C in an Eppendorf incubator, and aliquots of

15 μl were withdrawn after 5, 10, and 15 min and col-

lected in an Eppendorf tube, containing 270 μl of abso-

lute ethanol and 9 μl of 3M sodium acetate (pH=8) on

ice. After withdrawing the third aliquot, 1–5 units of re-

striction enzyme BstYI (NEB) was added to the

remaining digest. The incubation was continued at 37

°C, while withdrawing 15 μl every 5 min and pooling

with the first aliquots, on ice. The pooled sample was

mixed by vortexing and incubated at −70 °C for 5–10

min. The DNA was pelleted by centrifugating for 10 min

at full speed in an Eppendorf centrifuge and subse-

quently washed once with 200 μl of 80% ethanol. After

drying, the DNA pellet was dissolved in 50 μl of sterile

water.

For size selection and purification of the partially re-

striction digested mgDNA, the MagVigen™ DNA select

Kit (NVigen Inc.) was used according to the manufac-

turer’s instructions to retain fragments >700 bp. Finally,

the sample was eluted in 30 μl of sterile water, and DNA

concentration was quantified in a Qubit™ fluorometer

(Invitrogen).

Vector pZE21-MCS was linearized by digestion with

restriction enzyme BamHI and dephosphorylated using

alkaline phosphatase (FastAP Thermosensitive Alkaline

Phosphatase; Thermo Scientific), according to the manu-

facturer’s instructions. Ligation was performed using 50

ng of linearized, dephosphorylated pZE21-MCS vector

and 100–150 ng of fragmented, size-selected insert

DNA, according to the suppliers’ instructions (DNA
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ligation kit LONG; TaKaRa). Ligation reaction was per-

formed for at least 3 h at 16 °C.

Subsequently, the ligation mixture was precipitated by

adding 5 μl of 3 M sodium acetate pH 8 and 150 μl of

absolute ethanol. The solution was mixed and incubated

for 10 min at −70 °C, followed by a spin at full speed for

10 min in an Eppendorf centrifuge. The resulting DNA

pellet was washed twice with freshly prepared 80% etha-

nol, air-dried, and dissolved in 5 μl sterile water. On ice,

25 μl of electrocompetent E. coli cells (E.cloni® 10G;

Lucigen) was added to the ligated plasmid DNA, and

electroporation was done according to the supplier’s in-

structions (1-mm cuvette, 10 μF, 600 Ω, 1800 V). Imme-

diately after transformation, 2 ml of LB medium was

added to the cells, and the suspension was incubated for

1 hat 37 °C in an orbital shaker.

The library titers were determined by plating 0.1 μl

and 0.01 μl of recovered cells onto Luria-Broth (LB) agar

plates containing 50 μg/ml kanamycin as previously de-

scribed [30].

The remainder of recovered cells were grown over-

night in 50 ml of LB broth containing 50 μg/ml kanamy-

cin (LB-Kan) in a shaker (library amplification).

The culture was then centrifuged and re-suspended in

15 ml LB-Kan broth containing 15% glycerol and stored

at −80 °C for subsequent screening.

Functional screening of antibiotic resistance

Each metagenomic expression library was screened on

Mueller-Hinton agar with 50 μg/ml kanamycin and one

of the 15 antibiotics at concentration listed in Additional

file 2: Table S9. Before plating each library on antibiotic-

containing growth media, the concentration of each li-

brary was adjusted such that 100 μl of library freezer

stock contains at least 10× the total number of unique

clones as determined at the time of library creation. To

adjust the concentration, the freezer stock solution was

either diluted with MH-Kan or centrifuged and reconsti-

tuted again in the appropriate volume for plating. The

antibiotic selection plates were incubated for 16–24 h at

37°C to allow the growth of antibiotic-resistant clones.

Additionally, for each antibiotic selection, a negative

control plate of E. coli (E.cloni® 10G; Lucigen) trans-

formed with unmodified pZE21 (without metagenomics

insert) was plated to ensure that the concentration of

antibiotic used entirely inhibited the growth of clones

with only pZE21. The surviving colonies from each anti-

biotic selection were collected by adding 1500 μl of LB-

Kan with 15% glycerol and then gently scraped the col-

onies with an L-shaped spreader from the agar plate.

The slurry of antibiotic-resistant clones was removed

from the surface of the plate and then stored at −80 °C

before sequencing them with the Illumina NextSeq

platform.

Sequencing, assembly, and annotation of antibiotic

resistance genes

The plasmid DNA-containing antibiotic-resistant

mgDNA fragments were extracted from functionally se-

lected clones using the QIAprep Spin Miniprep Kit (Qia-

gen) and prepared for sequencing with a Nextera

protocol as described above. The samples were submit-

ted for sequencing using an Illumina NextSeq platform

(2×150 bp reads). Reads from each antibiotic selection

were assembled into contigs using PARFuMS [37], a tool

specifically designed for high-throughput assembly of

resistant-conferring DNA fragments from functional se-

lections. Of note, selections were excluded from analysis

if (i) the number of contigs assembled was 10 times

more than the total number of colonies or (ii) more than

200 contigs were assembled. Contigs were also filtered

based on length (> 500 bp).

The total number of contigs obtained was 7020, and in

total, 16,334 open reading frames (ORFs) were predicted

in these contigs using the gene finding algorithm Prod-

igal [45]. These ORFs were annotated following a hier-

archical approach, where the ORFs were first searched

against BLAST-based ARG databases (CARD [46],

ResFinder [46], and AMRFinder-Prot [47]) with high

percent identity (>95%) and coverage (>95%), and then

the remaining ORFs were annotated using HMM-based

ARG databases (Resfams [48], AMRFinder-fam [47]).

This AMR gene annotator (resAnnotator.py) pipeline for

the sequential annotation of ARGs using BLAST and

HMM approach is available on GitHub. Overall, 1233

complete sequences were assigned using the resAnnota-

tor.py pipeline. Percentage identity of 1233 ARGs was

examined via a BlastP query against both the NCBI pro-

tein Non-Redundant (NR) database (retrieved 10 January

2020) and a combined database of all ARG proteins

from CARD, NDARO to identify the top local align-

ment. The best hit identified using BlastP was then used

for a global alignment using the needle program with

the following non-default parameters: -gapopen-10

-gapextend=0.5. Twenty-two AMR genes did not have

any homologs in known AMR sequence databases.

Quantification of antibiotic resistance genes in

metagenomes

AMR gene relative abundance was quantified using

ShortBRED [49] v0.9.4. A ShortBRED marker database

was built from 7921 antibiotic resistance proteins that

were used as a protein of interest for the identification

of marker families using shortbred_identify.py. Default

parameters were used with the exception for -clustid

0.95 (see Additional file 1: Supplementary Note A for

more information on 95% sequence identity clustering).

Uniref90 [50] was the reference masking protein data-

base (Additional file 1: Fig. S1). These protein sequences
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include ARG sequences from the Comprehensive Anti-

biotic Resistance Database (CARD) [46], the NCBI-AMR

database [47], and antibiotic resistance proteins identi-

fied using functional metagenomics in this cohort as well

as from previous studies [37–44, 51]. This resulted in a

database consisting of 6585 unique marker sequences

representing 2331 AMR gene families. These AMR gene

families were then manually curated, and the entries

with the following criteria were removed from analysis

consideration because they would not be confidently ex-

pected to provide resistance based solely on a short-read

marker (e.g., when that gene would require other com-

ponents to provide phenotypic resistance, or when

short-read markers would not distinguish between sus-

ceptible vs resistant versions of an antibiotic target):

1) Genes associated with global gene regulators, two-

component system proteins, and signaling media-

tors (e.g., blaZ, vanS-vanR, mecI, mepR, gadW,

marR)

2) Genes encoding subunits that are part of multiple

efflux pumps (e.g., tolC, oprM, opmD)

3) Resistance via mutation in genes (e.g., resistance to

antifolate drugs via mutations in dhfr, resistance to

rifamycin via mutation in rpoB)

4) Genes conferring resistance by modifying cell wall

charge (e.g., mprF)

5) Genes that reduce permeability (omp38, tmrB) or

confer resistance through overexpression (e.g.,

thymidylate synthase)

6) General efflux pumps that came through functional

selections (MFS-type, ABC-type)

The relative abundance of AMR gene families was

quantified by mapping reads to the filtered set of marker

sequences using shortbred_quantify.py. ShortBRED hits

were filtered out if they had counts lower than 2 or

mean reads per kilobase million (RPKM) lower than

0.001. The filtered list of markers is given in Additional

file 2: Table S8.

Metagenome profiling and assembly

Microbial taxa relative abundance was calculated using

MetaPhlAn2 [52] (repository tag 2.6.0). Contig assembly

was done using the de novo assembler SPAdes v3.14.0

[53]. Assemblies were annotated using our in-house

AMR gene annotator called resAnnotator.py which in-

cludes CARD [46], Resfinder [54], NCBI-AMR [47], and

Resfams [48]. Assemblies were also annotated with

Prokka [55]. The BLAST+ command line tool (blastn)

[56] was used to compare the mcr-1 plasmid to our con-

tig containing mcr-1. FastANI [57] v1.3 was used for

average nucleotide identity comparisons between assem-

bly GCA_004135815.1 (a CRE resistant E. coli isolated

from stool from a patient with gastroenteritis in 2014 at

Maharaj nakorn Chiang Mai hospital) and our draft gen-

ome assembly and for comparisons between our assem-

bled mcr-1 containing plasmid and NCBI Reference

Sequence NZ_CP034405.1 (a plasmid sequence from the

CRE resistant E. coli isolate). The BioSample for this iso-

late is SAMN10531954.

MGE element profiling

Annotations with the following keywords were pulled

from the functional metagenomic assemblies: transpo-

sase, transposon, integrase, integron, conjugative, conju-

gal, recombinase, recombination, mobilization, and

phage. These elements were counted as putative mobile

genetic elements. The same keywords were used in the

analysis of putative mobile genetic elements from whole

metagenome assemblies.

Comparisons to other shotgun metagenomic data

The cohort of 110 Indian residents we compared to was

published by Dhakan et al. in 2019 [58]. Fecal samples

from this cohort were frozen within 30 min of collection

and were subjected to whole metagenome shotgun se-

quencing. This cohort was selected because it includes a

wide age range (average age of 29.72 with a standard de-

viation of 17.41) and samples from North-Central and

South India, providing a more complete picture of the

resistome than studies focusing only a single area or age

range. Additionally, all travelers to South Asia in our

study visited India, making it the most appropriate com-

parison country for this study. The data from Dhakan

et al. can be accessed from BioProject PRJNA397112 or

from [https://doi.org/10.5524/100548].

Statistical analysis and data visualization

Statistical analysis was conducted in R [59] version 3.6.2.

Visualizations were made using ggplot2 [60] version

3.1.0, ggpubr [61] version 0.2.5, and cowplot [62] version

1.0.0. Figures 1 and 9b were made using sf [63] version

0.1.8 and spData [64] version 0.3.3 with post-processing

in Adobe Illustrator [65] version CC 2020 (24.0.2). San-

key networks were generated using networkD3 [66] ver-

sion 0.4 with the sankeyNetwork function. Alignment

visualization for mcr-1 in Fig. 9c was made using geno-

PlotR [67]. Dirichlet multinomial mixture models [68]

were made using DirichletMultinomial [69] version

1.26.0. For each clustering model (all samples together,

only T0 samples, and only T1 samples), we did 50 itera-

tions of clustering with different starting seeds. For each

of these 50 iterations, we started with 1 cluster and

stopped at a maximum of 25 clusters. Laplace approxima-

tions were generated for each cluster model, and the clus-

ter model with the most evidence by this metric was

chosen for further analysis (see source data of Figs. 3b and
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5b for AIC and Laplace approximations for all clustering

models). Samples were grouped with their best-matched

cluster (see source data of Figs. 3b and 5b for cluster

matching probability for each sample). Linear mixed-

effects models were implemented with lme4 [70] version

1.1-21 (lmer function). Models were assessed using report

[71] version 0.1.0 and performance [72] version 0.4.4.

Vegan: Community Ecology Package [73] version 2.5.6

was used for the canonical analysis of principal coordi-

nates [74] (capscale function), α- and β-diversity calcula-

tions (diversity and vegdist functions), and PERMANOVA

tests (anova.cca function). Dabestr [75] version 0.2.3 was

used for bootstrapping samples and calculating confidence

intervals from bootstrapped samples. Linear models were

implemented with lme4 [70] version 1.1.21 (lmer func-

tion). MaAsLin2 was used for modeling resistome data

with metadata and taxonomic variables [76]. Subject_ID

was used as a random effect for all models, and travel des-

tination was also included as a random effect for the

model that included all other metadata variables. Confi-

dence intervals for non-bootstrapped samples were calcu-

lated using Rmisc [77] version 1.5 (group.CI function).

Multinomial tests were calculated using the multino-

mial.test function from EMT [78] version 1.1. Stats (base

R) version 3.6.2 was used for statistical calculations. The

wilcox.test function was applied with paired=T/F as

appropriate. The fisher.test function was for Fisher’s exact

comparisons. The binom.test function was for binomial

tests. The p.adjust function was applied where appropriate

to correct for multiple hypothesis testing with method=

“fdr” (Benjamini-Hochberg [79]). p values lower than ma-

chine precision of 2.220446e−16 are reported as p<2e−16.

The aov function was used for the analysis of variance,

and the TukeyHSD function was used for the analysis of

variance significance testing. The sqrt function was used

for square root transformations. Log transformation was

implemented using a custom log function.

LOG <- function(x) {y <- replace(x, x == 0,

min(x[x>0])/2); return(log10(y))}

Results
Cohort description and generation of a functional

metagenomics augmented resistance marker database

To understand the effects of travel on the human gut

resistome, we conducted whole metagenome shotgun se-

quencing and analysis on fecal samples from 190 Dutch

individuals collected immediately before and after they

traveled internationally to 4 different geographic regions

(Fig. 1 and Additional file 2: Table S1). Our cohort vis-

ited Northern Africa (n=43), Eastern Africa (n=44),

Southern Asia (n=51), and Southeastern Asia (n=52),

yielding 380 samples (190 before travel and 190 after

Fig. 1 Destinations for Dutch travelers. A total of 190 Dutch individuals’ gut microbiomes were sampled before and after traveling (380 total

samples) to 4 different subregions (Northern Africa, Eastern Africa, Southern Asia, and Southeastern Asia)
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travel). A total of 174 study participants denied using

antibiotics during the observation period while 10 partic-

ipants claimed antibiotic use (6 participants answered

unknown). The majority (n=170) were traveling on holi-

day, with a minority traveling for business (n=6), to visit

relatives (n=4), and for religious purposes (n=10). Partic-

ipants were adults with a median age of 50.7 (IQR 32.5–

59.2) years.

To improve on AMR gene detection offered by con-

ventional AMR databases, we used functional metage-

nomics. Functional metagenomics is a culture-

independent method for identifying AMR genes from a

metagenomic sample which, when expressed in a heter-

ologous host, would enable this previously susceptible

host to gain phenotypic resistance to an antibiotic [30,

37–44, 80]. In our protocol, we shotgun-cloned metage-

nomic DNA into an expression vector and transformed

the resultant metagenomic expression libraries into E.

coli indicator hosts. These E. coli transformant libraries

were then screened against antibiotics at selective con-

centrations, and the cloned insert DNA in surviving

transformants was sequenced to identify open reading

frames that confer phenotypic resistance to the normally

susceptible host. Here, we refer to AMR genes identified

by this method as “functionally discovered AMR genes.”

We pooled our cohort stool samples within travel des-

tinations to make 21 functional metagenomics libraries,

which we screened against 15 antibiotics (Additional file

1: Fig. S1 and Additional file 1: Supplementary Note A)

[30, 37]. These libraries yielded resistant transformants

for every antibiotic screened except meropenem. By

combining sequences from known AMR gene databases

(CARD [46], NCBI-AMRFinder [47]) and from our func-

tionally discovered AMR genes, we generated a custom

ShortBRED [49] database with 6585 marker sequences

corresponding to 2331 AMR gene families.

Travel increases AMR gene abundance and α-diversity but

decreases β-diversity

We used our custom ShortBRED database to profile the

gut resistome in our 380 Dutch traveler samples. We

then compared the pre- and post-travel samples for

AMR gene abundance and diversity. AMR gene abun-

dance in the gut microbiome was significantly higher

(p=1.8e−5 [paired sample t test]) in the post-travel com-

pared to the pre-travel samples (Fig. 2a), indicating that

travel may enrich the microbiome for AMR determi-

nants. This increase in abundance was matched by in-

creased α-diversity (Fig. 2b) measured by unique AMR

genes (richness, p<2e−16 [paired sample t test]) and by

the evenness of AMR genes in the resistome (Shannon

index, p<3e−12 [paired sample t test]). These results

suggest that travelers are acquiring new AMR genes

abroad.

Linear mixed-effects modeling of AMR gene abun-

dance and α-diversity measured as richness (unique

genes) showed that while the two measurements are sig-

nificantly related (p<0.001), pre- or post-travel state sig-

nificantly impacts AMR α-diversity (p<0.001) even when

AMR gene abundance is accounted for (Additional file

2: Tables S2-S4 and Additional file 1: Supplementary

Note B). Time point also had a larger effect on α-

diversity (measured as richness) than it did on resistance

gene abundance. These results are consistent with inter-

national travel as a driver of new AMR gene acquisition.

While AMR gene α-diversity increased following

travel, resistome β-diversity (Bray-Curtis dissimilarity)

between samples decreased (p<2e−16 [paired Wilcoxon

test]) (Fig. 2c). These results suggest that the pressure of

travel on the resistome may increase resistome similarity

between individuals despite their different destinations.

This finding could result from the acquisition of similar

AMR genes.

Unsupervised clustering separated pre- and post-travel

samples into distinct subclusters, suggesting composition

differences

Dirichlet multinomial mixture models [68], an unsuper-

vised method for clustering and modeling metagenomics

data, revealed significant bias for samples from the same

collection time point to group in the same metaresis-

tome (p<2e−16 [Fisher’s exact test]) (Fig. 3a). Each

metaresistome is a multinomial parameter probability

vector, fit from a Dirichlet prior, over the resistance

genes detected in our cohort. Together, the metaresis-

tomes are the set of possible probability distributions

that could result in our 380 samples using multinomial

random draws. Thus, samples associated with the same

metaresistome can be thought of as being drawn from

the same underlying probability distribution.

Of the 8 metaresistomes in the best fit mixture model,

6 showed a significant bias to either the pre-travel (n=3)

or post-travel (n=3) time point (Fig. 3b). Since each sub-

ject has two samples, we determined if an individual’s

pre- and post-travel samples grouped in the same metar-

esistome. Instead, we observed 150 travelers (79%)

switched metaresistomes, indicating a travel-specific ef-

fect in addition to subject random effects.

Since we have underlying AMR gene probability distri-

butions for each metaresistome in our final mixture

model, we can directly compare the models together.

The post-travel-biased metaresistomes were character-

ized by higher α-diversity and lower β-diversity (Add-

itional file 1: Fig. S2), mirroring the results we observed

for the samples considered individually.

Prior studies of non-travel resistome perturbations [42,

81, 82] have used supervised clustering from Bray-Curtis

dissimilarity [74, 83] to determine the group significance
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to resistome composition. Supervised clustering of our

Dutch traveler resistomes also revealed significant separ-

ation (p=2e−4 [permanova]) between the pre-travel and

post-travel samples (Additional file 1: Fig. S3A). How-

ever, the 8 optimal metaresistomes from the Dirichlet

multinomial mixtures and the differences in the AMR

gene diversity between metaresistomes suggest subclus-

ters exist within the pre-travel and post-travel time

points.

Destination-specific resistome signatures explain

metaresistome subclustering

Though all four destinations had increased AMR gene

abundance (Fig. 4a) and α-diversity (Fig. 4b), the magni-

tude of these differences varied and broadly agree with

clinical isolate resistance data published by the Center

for Disease Dynamics, Economics, and Policy (Add-

itional file 2: Table S5 and Additional file 1: Supplemen-

tary Note C). Resistome α-diversity was significantly

higher for individuals returning from Southeastern Asia

than from the other three destinations (Additional file 1:

Fig. S4). Individuals traveling to the same subregion also

had decreased interindividual resistome β-diversity (p=

0.016 [unpaired Wilcoxon test]), suggesting that having

the same travel destination makes traveler resistomes

more similar (Additional file 1: Fig. S5 and Additional

file 1: Supplementary Note D). These β-diversity de-

creases were significantly larger in travelers returning

from Southeastern Asia and Eastern Africa than North-

ern Africa and Southern Asia (Fig. 4c). Thus, individuals

returning from Southeastern Asia and Eastern Africa

had more similar AMR profiles to other travelers to the

same destination than individuals returning from North-

ern Africa and Southern Asia.

To interrogate these region-specific effects, we rebuilt

Dirichlet multinomial mixture models after separating

the pre-travel and post-travel samples. Separating the

time points removes possible random effects due to sub-

ject identity allowing a narrower focus on destination.

This analysis yielded 9 metaresistomes (4 in the pre-

travel samples and 5 in the post-travel samples). Though

the pre-travel metaresistomes did not show significant

bias by destination (p=0.485 [Fisher’s exact test]), the

post-travel metaresistomes had a strong regional bias

(p<2e−16 [Fisher’s exact test]) (Fig. 5a). These results

also appeared in supervised clustering where destination

significantly distinguished samples (Additional file 1: Fig.

S3B-C) after travel (p=4e−4 [permanova]) but not before

Fig. 2 AMR gene abundance and α-diversity increases with travel and AMR gene β-diversity decreases. a The left panel shows the AMR gene

abundance in RPKM. Each point is a sample, and the boxes are the medians with interquartile ranges for the pre-travel samples in blue and the

post-travel samples in red. The p value (paired-sample t test) for the comparison is given at the top of the panel. The right panel shows the

difference between the bootstrapped distributions of the post- and pre-travel samples. The red line gives the 95% confidence interval for the

difference, and the point gives the estimate. b AMR gene α-diversity is measured by richness (top left panel), and Shannon Index (bottom left

panel) is compared between the pre-travel (blue) and post-travel (red) samples. Each point corresponds to a given sample, and each box gives

the median and interquartile range for the distribution. The p value (paired-sample t test) for the comparison is given at the top of each panel.

The panels to the right of the boxplots show the difference between the bootstrapped distributions of the post- and pre-travel samples. The red

line gives the 95% confidence interval for the difference and the point gives the estimate. c AMR gene β-diversity measured by Bray-Curtis

dissimilarity is compared between the pre-travel (blue) and post-travel (red) samples. Each point is a comparison between two samples within

the same time point group. The distributions are shown to the right of the points, and boxplots showing the median and interquartile ranges are

overlaid on top of the points. The p value by paired Wilcoxon test for the comparison is shown near the top. In the right panel, the lines show

the 95% confidence intervals, and points show the mean values for the pre- (blue) and post-travel (red) Bray-Curtis dissimilarity distributions.

Source data is provided in the source data file (Additional file 3)
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travel (p=0.7021 [permanova]). This demonstrates

that individuals traveling to the same destination are

far more likely to have their post-travel samples clus-

ter in the same metaresistome than their pre-travel

samples.

Considering these destination signatures, we wanted to

determine if the travelers’ resistomes looked similar to

resident gut resistomes in their travel destinations. We

used shotgun metagenomic reads from a recently pub-

lished cohort of fecal microbiomes from the Indian sub-

continent [58]. After profiling the Indian resistomes

using our ShortBRED AMR protein marker database, we

found that the Dutch subjects returning from Southern

Asia (which includes India) had resistomes that were

more similar to the Indian resistomes compared to sub-

jects returning from the other three subregions (North-

ern Africa p=2.2e−10; Eastern Africa p<2e−16;

Southeastern Asia p<2e−16 [unpaired Wilcoxon test])

(Additional file 1: Fig. S6 and Additional file 1: Supple-

mentary Note E).

The grouping effect of destination was strongest for

Eastern Africa and Southeastern Asia (Fig. 5b). This

Fig. 3 Travel outweighs subject effects in shaping resistome architecture. a 95% confidence interval (red line segment), odds ratio (red point),

and p value calculated by Fisher’s exact test for samples with the same time point being drawn from the same metaresistome. The black vertical

line at 1 shows the expected result under the null. b Each row in this plot corresponds to a metaresistome (m1–m8) in a Dirichlet multinomial

mixture model of all traveler samples. The pie charts on the left are proportional in size to the number of samples in each metaresistome. The fill

of the chart corresponds to the number of individuals in the time point (pre-travel in blue and post-travel in red). The network shows the

number of individuals that transition from any model to any other model following their return from abroad. The black lines indicate staying

within the same model, and the green lines indicate transition from one model to another model. The thickness and opacity of the lines

correspond to the number of people following that transition path. Node label sizes correspond to the number of individuals in the model from

the time point. Nodes filled in blue are significantly enriched in pre-travel samples, and nodes in red are significantly enriched in post-travel

samples. The right panel shows the estimates (points) and 95% confidence intervals (lines) for binomial tests of bias for pre- or post-travel

samples. p values for the comparison (FDR-corrected binomial test) are given above the lines. The expected estimate under the null model is

given by the dark black line at 0.5. Source data for all panels is provided in the source data file (Additional file 3)
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Fig. 4 (See legend on next page.)
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finding matches the previous results (Fig. 4c) where in-

terindividual resistome β-diversity was lower in subjects

returning from these two destinations. We can see from

these analyses that the destination-specific effects result

in individuals returning from the same destination hav-

ing similar post-travel resistome states despite diverse

pre-travel states.

AMR gene abundance increases and acquisitions during

travel are concentrated in several AMR gene families and

resistance mechanisms

We found a positive correlation between prevalence and

abundance (p<2e−16) for AMR genes in our Dutch trav-

eler cohort (Additional file 1: Fig. S7), but this correl-

ation varies by AMR mechanism. Efflux (p=6.73e−5),

inactivation (p=2.76e−4), and target protection (p=7.87e

−8) all had significant positive correlations, and the

trend for antibiotic target alteration was also positive. In

contrast, the trend for antibiotic target replacement is

nearly flat, showing that target replacement genes we de-

tected in gut resistomes do not have a corresponding in-

crease in abundance when they are prevalent in more

samples.

We next assessed if the abundance of these mecha-

nisms changed following travel (Fig. 6a). The abundance

of genes encoding for target replacement (p=1.1e−9), ef-

flux (p=3.4e−3), and inactivation (p=8.0e−8) of antibi-

otics all significantly increased after travel. This indicates

that at the level of AMR mechanisms, there is a signifi-

cant effect of travel in structuring the gut resistome. By

further classifying the AMR genes families into gene

classes defined by CARD ontology, we observed that 11

of 20 detected classes had increased abundance in the

post-travel samples compared to the pre-travel samples

(Fig. 6b). These data demonstrate that travel-related re-

sistance gene increases are not limited to those identified

by culture-based analysis. The strongest effect was seen

in class A β-lactamases which inactivate several clinically

important antibiotics, though we did not observe class A

carbapenemases. This is consistent with the lack of re-

sistant transformants observed against meropenem in

our functional metagenomic libraries.

We detected 56 AMR genes with significant evidence

of acquisition after travel, compared to only 4 showing

significant loss following travel (Fig. 6c and Additional

file 1: Fig. S8), highlighting the heavy bias of AMR gene

acquisition in the post-travel samples. AMR genes for

antibiotic efflux (p=2.78e−6 [permutation test]) and

for antibiotic target replacement (p=0.0295 [permuta-

tion test]) were both highly enriched in the signifi-

cantly acquired set of genes. In contrast, AMR genes

for antibiotic target protection (p=8.29e−6 [permuta-

tion test]) were completely absent in the significantly

acquired genes (far less than predicted under a null

model).

The diversity of AMR genes with significantly in-

creased abundance and acquisition post-travel demon-

strates the importance of expanding AMR analysis

beyond ESBLs to the entire gut resistome. For example,

we detected two variants of tetX, an antibiotic-

inactivating monooxygenase which confers resistance

against all clinically relevant tetracyclines, including last-

resort antibiotics like tigecycline, eravacycline, and oma-

dacycline [84, 85]. Tetracycline inactivation AMR genes

increased in abundance after travel (Fig. 6b), but the ac-

quisition was only significant for one of two tetX vari-

ants (Additional file 1: Fig. S8). The variant of tetX

encoded in NCBI-AMR was not significantly acquired

during travel (0.59 CI [0.406–0.763], p=0.523 [binomial

test]), while the variant of tetX discovered in our func-

tional selections was significantly acquired during travel

(0.75 CI [0.551–0.893], p=0.0247 [binomial test]).

AMR gene acquisitions were also significant when ac-

counting for gene abundance (Additional file 1: Supple-

mentary Note F). Models with taxonomic covariates

(Additional file 1: Fig. S9) built at both the broad AMR

(See figure on previous page.)

Fig. 4 Travelers to different destinations cluster separately by resistome composition but show similar trends by abundance and diversity metrics.

a The bottom panel shows the comparisons of AMR gene abundance before and after travel to the four subregions in this study. Points

correspond to samples, and boxes give the median and interquartile ranges. Pre-travel is shown in blue, and post-travel is shown in red. The p

values (FDR-corrected paired Wilcoxon tests) for comparisons within the region between the pre- and post-travel samples are shown above each

comparison. The top panel shows the difference between the bootstrapped distributions of the post- and pre-travel samples. The red line gives

the 95% confidence interval for the difference, and the point gives the estimate. b AMR gene α-diversity is measured by richness (left), and

Shannon Index (right) is compared by region between the pre-travel (blue) and post-travel (red) samples. Each point corresponds to a given

sample, and each box gives the median and interquartile range for the distribution. The p values (FDR-corrected paired Wilcoxon test) are above

each comparison. The panels above show the difference between the bootstrapped distributions of the post- and pre-travel samples for each

destination. The red line gives the 95% confidence interval for the difference, and the point gives the estimate. c The left panel compares the β-

diversity for pre-travel (blue) and post-travel (red) collections for the four travel destinations. The points are pairwise Bray-Curtis dissimilarity

between two samples, and the boxes represent the median and interquartile ranges of the distributions. p values (paired Wilcoxon test) are given

above each comparison. The right panel shows the difference between the bootstrapped dissimilarities of the pre- and post-travel groups. The

lines give the 95% confidence interval for the difference, and the point gives the estimate. Source data for all panels is provided in the source

data file (Additional file 3)
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gene classification level (Additional file 1: Fig. S10-S12)

and at the detailed single-gene level (Additional file 2:

Table S6) all showed more AMR determinants associ-

ated with the post-travel time point. A model with all

metadata included identified time point as a significant

predictor of AMR gene abundance for 65 of the 121

AMR genes (Additional file 2: Table S7 and Additional

file 1: Supplementary Note F). Travel duration had a

weak but significant effect on AMR gene acquisition

when all AMR gene acquisitions were considered to-

gether (Additional file 1: Fig. S13). When the 121 AMR

genes were considered individually, increased travel dur-

ation only significantly correlated with catA, a chloram-

phenicol acetyltransferase (Additional file 2: Table S7).

Fig. 5 Travelers’ resistomes group significantly by region after travel, and Southeastern Asia and Eastern Africa have the strongest signature. a

95% confidence intervals, odds ratios, and p values for the samples with the same destination being drawn from the same metaresistome.

Fisher’s exact tests were done for this comparison within the time point (y-axis). The black vertical line at 1 shows the expected result under the

null. Source data for all panels is provided in the source data file (Additional file 3). b The left of this Sankey diagram has models built from the

pre-travel samples, and the right has models built from the post-travel samples. Each model has a pie chart that shows the number of samples in

the model (total of 190 for each time point), and these pies are divided by destination. The lines connecting the pre- and post-travel models are

colored according to region (dark blue is Northern Africa, light blue is Eastern Africa, orange is Southern Asia, and red is Southeastern Asia), and

their thickness is proportional to the number of samples that follow that path
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Travelers to Southeast Asia had the most AMR gene

acquisition and Southeast Asian functional selections had

high mobile genetic element burden

Every destination showed significant AMR gene acquisi-

tion (Fig. 7a), with travelers to Southeastern Asia having

the highest AMR gene acquisition (0.73 CI [0.71–0.75],

p<2e−16) and those visiting Northern Africa having the

lowest AMR gene acquisition (0.67 CI [0.65–0.70], p<2e

−16). Six of the 56 significantly acquired AMR genes

identified in Fig. 6c were significantly associated with

travel destinations (Fig. 7b, c). Travelers to Southeastern

Asia had the most acquisitions normalized by the num-

ber of subjects traveling to the region, for all six genes.

Three of these AMR genes were dfrA1 variants, which

confer resistance against trimethoprim. Each dfrA1 vari-

ant had a fold change increase between 3.62 and 3.92 in

prevalence in post-travel samples. Increases we saw in

trimethoprim-sulfamethoxazole resistance genes (Figs.

6b and 7c) parallel results from Blyth et al. 2016 where

42% of post-travel E. coli isolates had new resistance

against trimethoprim-sulfamethoxazole [15].

There was a bias for aminoglycoside resistance gene

ant3 to be acquired in Southeastern Asia, and a bias for

the macrolide resistance gene mphA to be acquired in

Southeastern and Southern Asia. tetA was the only AMR

gene of these six with more acquisition events from

Eastern Africa than from Southern Asia though South-

eastern Asia still had the highest acquisition rate.

Genomic context like colocalized mobile genetic ele-

ments impact AMR gene spread [11, 19, 20, 86]. To

search for AMR gene context, we assembled contigs

from our travelers’ metagenomic samples and searched

for putative mobile genetic element annotations adjacent

to AMR genes. In these AMR-containing contigs, we de-

tected a higher burden of putative mobile genetic ele-

ments in post-travel samples than in pre-travel samples

(p=1.4e−10 [paired Wilcoxon test]) (Additional file 1:

Fig. S14A). This difference was significant across all

Fig. 6 AMR gene abundance changes and acquisitions are unequal across AMR mechanisms. a AMR mechanism abundance is compared

between pre-travel (blue) and post-travel (red) samples. Each point is a sample, and the boxes represent the median and interquartile range. p

values (FDR-corrected paired Wilcoxon test) for the comparisons are given near the top of the panel. The top panel shows the difference

between the bootstrapped distributions of the post- and pre-travel samples. The lines give the 95% confidence interval for the difference, and

the point gives the estimate. AMR classes where the 95% confidence interval does not cross 0 are red. b AMR class abundance is compared

between pre-travel (blue) and post-travel (red) samples. Each point is a sample, and the boxes represent the median and interquartile range. p

values (FDR-corrected paired Wilcoxon test) for the comparisons are given near the top of the panel. The top panel shows the difference

between the bootstrapped distributions of the post- and pre-travel samples. The lines are the 95% confidence interval for the difference, and the

point is the estimate. AMR classes where the 95% confidence interval does not cross 0 are red. c AMR gene acquisitions or losses after travel.

Each point is an AMR gene, and points are filled in according to their AMR mechanism. The x-axis is the number of individuals that had the gene

in the pre-travel time point, but not in the post-travel time point. The y-axis is the number of individuals that had the gene in the post-travel

time point, but not in the pre-travel time point. The red-shaded region spans significantly acquired AMR genes, the blue-shaded region spans

significantly lost AMR genes, and the gray-shaded region spans genes that were not significantly acquired or lost. The diagonal line is the null of

equal losses and gains for an AMR gene. The inset panel shows which AMR mechanisms were significantly acquired during travel by permutation

testing. The colored histograms show the expected distribution according to 10,000 permutations, and the black vertical lines show the observed

value (points in the red-shaded region of the main plot). The z-score and the FDR-corrected p value for the comparison of observations to their

expected distribution are given in the top left of each plot. Source data for all panels is provided in the source data file (Additional file 3)
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regions (Additional file 1: Fig. S14B), but not between

travel destinations (Additional file 1: Fig. S15).

Destination differences did appear when we counted

the number of mobile genetic element-associated anno-

tations on contigs with AMR genes from our functional

metagenomics data. We split these counts based on

sample destination for the inputs to the functional meta-

genomics selections, and we found a significant associ-

ation between subregion and the number of mobile

genetic element annotations. This was true when we

normalized by the number of input reads (Fig. 7d) or by

the number of input libraries (Fig. 7e). Travelers to

Southeastern Asia had the most mobile genetic element-

associated annotations despite having fewer input reads

and fewer input libraries. Though travelers to Southeast-

ern Asia had the highest number of mobile genetic ele-

ments adjacent to AMR genes, travelers to Southern

Asia and Eastern Africa also had comparable numbers.

Travelers to Northern Africa had far fewer AMR gene-

associated mobile genetic element annotations than the

other three regions. This is concordant with our findings

showing that travelers to Northern Africa also had lower

AMR gene abundance and acquisition than other

destinations.

Our results suggest that the colocalization of mobile

genetic elements with AMR genes correlates with

Fig. 7 AMR gene acquisitions and mobile genetic elements differed by travel destination. a Significance of AMR gene acquisitions by travel

destination. The lines show the 95% confidence intervals, and the points show the estimates of binomial tests for bias. Binomial tests were

conducted by region for the number of acquired AMR genes and the number of lost AMR genes. Both acquisitions and losses were normalized

by the number of individuals traveling to the region. p values (FDR-corrected) from this test are shown just below the dotted line at 0.5

indicating the null. Numbers lower than 0.5 indicate AMR gene loss, and numbers greater than 0.5 indicate AMR gene gain. b Genes that showed

significant region-specific bias following multinomial testing. Points indicate their number of acquisitions normalized by the number of travel

subjects, and p values are given in the top left. c Sankey diagram of AMR gene acquisitions by travel region. Black nodes are when the gene was

not found, and bright red nodes indicate the gene was present. The width of all lines is proportional to the number of individuals following that

path. d, e The number of MGE elements detected from the functional metagenomic libraries is plotted on the y-axis, and the number of input d

libraries and e reads is on the x-axis. p values calculated by the FDR-corrected multinomial test are in the bottom left of each panel. Most p

values in b, d, and e hit underflow and have been set to p<0.001. Source data for all panels is provided in the source data file (Additional file 3)
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destination-specific resistance gene acquisition and dem-

onstrate the importance of functional metagenomics

data in detecting these differences. This fact is

highlighted for subregion by the contrast between the

lack of association with travel destination for MGE an-

notation counts across all assemblies (not necessarily

colocalized with AMR genes) as presented in Additional

file 1: Fig. S15 and the strong association with travel des-

tination in Fig. 7d, e showing annotations in the func-

tional selections where the mobile genetic elements are

adjacent to AMR genes. The number of mobile genetic

elements adjacent to AMR genes may contribute to the

increases in AMR gene burden post-travel.

qPCR detected high-risk AMR genes acquired by Dutch

travelers

Concurrent with our comprehensive metagenomic resis-

tome analysis, we specifically targeted 16 clinically im-

portant AMR genes in our samples by qPCR. Of these

16, four genes (tetM, tetQ, ermB, and mefAE) were

present in all of the samples, and two genes (qnrA and

mcr-2) were not present in any samples. We conducted

acquisition analysis and destination bias analysis for the

remaining 10 genes.

Acquisition analysis showed that 6 of the 10 AMR

genes that were present in at least 1 sample were signifi-

cantly associated with the post-travel time point (Fig.

8a). Notably, mcr-1, a plasmid borne colistin resistance

gene, was found only in post-travel samples.

Quinolone resistance genes qnrB and qnrS were ac-

quired in high proportion following travel to all four

subregions (Fig. 8b), but blaCTX-M-1, blaCTX-M-9, and

mcr-1 had strong region-specific effects (Figs. 8b and

9a). Over 80% of blaCTX-M-1 and blaCTX-M-9 β-lactamase

acquisitions were in travelers to Asia. blaCTX-M-1 was

predominantly acquired in Southern Asia (61.8%), and

blaCTX-M-9 was predominantly acquired in Southeastern

Asia (82.1%). Uniquely, mcr-1 was only acquired by trav-

elers to Southeastern Asia (Fig. 9a).

Dutch travelers to Southeastern Asia acquired mcr-1

We also observed that AMR genes in our cohort were

often colocalized with mobile genetic elements. mcr-1, a

plasmid-borne colistin resistance gene, was one of the

Fig. 8 Quinolone resistance genes were acquired in regions with equal frequency, while β-lactam resistance genes had destination-specific

acquisition. a AMR genes acquired or lost after travel detected by qPCR. Each point is an AMR gene. The x-axis is the number of individuals that

had the gene in the pre-travel time point, but not in the post-travel time point. The y-axis is the number of individuals that had the gene in the

post-travel time point, but not in the pre-travel time point. Significant acquired AMR genes are in red. The number of significant genes is

tabulated in the top right. Non-significant genes are in black. The diagonal line is the null of equal losses and gains for an AMR gene. The inset

panel gives the results from binomial tests of bias for AMR gene acquisition for the post-travel time point. The lines are 95% confidence intervals,

and the points are estimates. p values (FDR-corrected binomial test) are given at the bottom of the plot for each gene. The dotted line is the

expected value under the null. The lines and points are red if significantly acquired. b Sankey diagrams of significant gene acquisitions by travel

region detected by qPCR. Black nodes are when the gene was not found, and bright red nodes indicate the gene was present. Ribbon colors

correspond to the destination countries (dark blue is Northern Africa, light blue is Eastern Africa, orange is Southern Asia, and red is Southeastern

Asia). The width of all lines is proportional to the number of individuals following that path. Source data for both panels is provided in the source

data file (Additional file 3)
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most concerning genes we detected. Colistin is a drug of

last resort for drug-resistant gram-negative pathogens

used when other antimicrobial therapies fail [87, 88].

mcr-1 is the first plasmid-borne resistance gene against

colistin, and it is responsible for rapidly increasing colis-

tin resistance observed over the last 4–5 years [20].

Eighteen of the 52 Dutch travelers to Southeastern Asia

(34.6%) acquired mcr-1 during our study.

To further investigate the mcr-1 colistin resistance

gene, we assembled contigs using the raw shotgun

reads from the samples that were mcr-1 positive by

qPCR and annotated these contigs for mcr-1. One

contig assembled from subject S032, a traveler return-

ing from Vietnam, was positive (Fig. 9). Plasmidfinder

2.0 identified subject S032’s mcr-1 containing contig

as an IncI2 type plasmid (100% identity and 100%

template length using the Enterobacteriaceae data-

base) [89, 90]. A follow-up study [91] of the 6 isolates

from Arcilla et al. [92] demonstrated that one ESBL-

producing E. coli from a traveler returning from

Vietnam also harbored mcr-1 on an IncI2 type

plasmid.

We searched NCBI for the best BLAST match of sub-

ject S032’s mcr-1 containing contig, and the top hit

(99.9% identity with 100% query coverage) was to a plas-

mid from gastroenteritis-causing E. coli (Fig. 9b) isolated

in Chiang Mai, Thailand (data from BioSample SAMN1

0531954 and NCBI reference sequence NZ_CP034405.1

). In both plasmids (Fig. 9c), mcr-1 is flanked by a tra

cluster of conjugon transfer genes, and mcr-1 is also

colocalized with a virB cluster type IV secretion system

(T4SS). T4SS have known involvement in horizontal

gene transfer [93–97]. There are prior reports of mcr-1

colocalization with T4SS in plasmids [20, 98], though in

those studies mcr-1 was on different plasmid incompati-

bility types than IncI2.

Discussion
Global AMR spread threatens decades of success in

treating bacterial infections with antibiotics [6, 10, 99–

101]. This problem is exacerbated by the worldwide

spread of antibiotic-resistant bacteria and AMR genes by

international travelers [8, 102]. Our investigation of 190

Dutch individuals’ gut resistomes before and after travel

indicates international travel is a significant gut resis-

tome perturbation and highlights the extent of AMR

gene acquisition. We found the acquisition of previously

unknown, functionally discovered AMR genes, increased

Fig. 9 mcr-1 containing contig from a Dutch traveler matched a plasmid sequenced from a gastroenteritis patient in the destination region. a

Sankey network showing region-specific acquisition for mcr-1. b Map showing where the reference genome was isolated from a gastroenteritis

patient. c Alignment between a plasmid from an E. coli isolated from a gastroenteritis patient in Chiang Mai and a contig assembled from a

Dutch traveler’s gut microbiome. Source data for all panels is provided in the source data file (Additional file 3)
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AMR gene abundance, and increased resistome α-

diversity in the post-travel samples. We also observed

AMR gene colocalization with mobile genetic elements

and identified travel destination-specific resistome

signatures.

A study by Langelier et al. in 2019 reported on the

resistome in 10 travelers to Asia or Africa [103]. Eight of

these travelers went to Nepal, one went to Nigeria, and

one went to Uganda. The authors sampled the subjects

once before travel and thrice after travel; they found in-

creased AMR genes against multiple antibiotic classes,

including β-lactams, quinolones, and anti-folates. This

increase in AMR genes after travel mirrors our results,

and many of the AMR genes they identified were also

detected in our study. Interestingly, in contrast to the re-

sults in Langelier et al., we saw increases in some tetra-

cycline resistance genes and aminoglycoside resistance

genes after travel. For the tetracycline resistance genes,

this may be explained by our more detailed consider-

ation of the resistance mechanism. We observed that

while tetracycline inactivation mechanisms significantly

increased in abundance after travel, tetracycline riboso-

mal protection mechanisms did not. In fact, none of the

tetracycline ribosomal protection resistance genes was

significantly acquired during travel. Our study-specific

functional metagenomic selection database also provides

higher sensitivity to detect AMR genes that may be un-

derrepresented in conventional AMR databases. Indeed,

51 of the 121 (42.1%) AMR genes detected and com-

pared in our analysis were from functional selections.

The AMR genes identified in Langelier et al. are often

found in commonly cultured clinical isolates and thus

are well represented in conventional AMR databases.

An individual’s gut resistome response to travel per-

turbation may parallel the response from other non-

travel gut perturbations, including hospitalization and

antimicrobial treatment [104, 105]. In a 2017 study of

healthy patients compared to antibiotic-treated patients

hospitalized in an ICU in The Netherlands, Buelow et al.

found that healthy patients had enriched tetW and catA

[105]; both tetW and catA were also more likely to be

found in our pre-travel than post-travel samples. In con-

trast, the antibiotic-treated ICU patient resistomes in the

Buelow et al. study were enriched for AMR genes such

as erm and an aac(6’) family gene, both of which were

also acquired and increased in our post-travel samples.

With antibiotic perturbation, the effects on the gut resis-

tome can vary based on the spectrum of the antibiotic

[41, 42, 81]. However, studies commonly observe an in-

crease in resistome α-diversity and a decrease in β-

diversity [81]. This is similar to our observations in re-

sponse to travel perturbation. Additionally, some studies

show a time dependence for AMR gene acquisitions and

abundance increases [42, 81] paralleling the weak time

dependence we show in our results. There are conflict-

ing results if these antibiotic perturbations return to the

initial state or leave persistent scars [42, 106]. Even if the

travel-related resistome changes revert to baseline, it is

possible that the AMR genes will be disseminated in the

resident country before they are lost in the host.

The high-risk gene acquisitions we observed are con-

cordant with qPCR-based research of endemic antibiotic

resistance in our cohort’s travel destinations. In 2019,

Bich et al. demonstrated qnr endemicity in Vietnam with

100% carriage of qnr by qPCR of fecal samples from 93

Vietnamese residents of the Ha Nam province [107].

This same study also found carriage of blaCTX-M-1 (38%)

and blaCTX-M-9 (61%). These results correspond well

with both the high acquisition rate we saw for these

genes in individuals returning from Southeastern Asia

and the blaCTX-M-9 predominance we saw in travelers

returning from Southeastern Asia.

Our cohort’s mcr-1 Southeast Asian geographic acqui-

sition bias is also consistent with Bich et al. where 88%

of tested Vietnamese residents carried mcr-1 [107]. In

comparison, a culture-based study [92] by Arcilla et al.

of ESBL-producing E. coli isolates from all 2001 partici-

pants (540 to Southeastern Asia) in the COMBAT study

detected mcr-1 in 6 E. coli isolates, indicating higher de-

tection sensitivity for mcr-1 using qPCR directly from

the stool. These results are also comparable to another

culture-based isolate study [27] where 20 of 412 return-

ing US travelers yielded mcr-harboring E. coli.

In 2018, Wang et al. analyzed mcr-1-containing plas-

mids across a number of different bacterial isolates from

around the globe [11]. China and Vietnam were the two

countries with the most isolates harboring mcr-1 plas-

mids, which corresponds to our detection of mcr-1 in

travelers to Southeastern Asia. The authors found that

mcr-1 initially mobilized to plasmids through an ISApl1

transposon. This is consistent with the reference plasmid

in Fig. 9c.

Our mcr-1 results advocate for a combined approach

of AMR gene detection. Short-read shotgun metage-

nomic sequencing provided us with excellent data for

understanding gut resistome composition changes, di-

versity changes, and AMR gene acquisitions due to

travel, but only 1 of 18 (5.6%) mcr-1 qPCR-positive stool

samples we assembled yielded an mcr-1 contig. How-

ever, we show that AMR gene contig assembly yields an

important genomic context surrounding resistance genes

that could have implications for understanding and

modeling AMR gene spread. Contig assembly using

short-read shotgun metagenomic sequencing may differ

by AMR gene. For example, we successfully assembled

tetX in 56 of 143 (39.2%) ShortBRED-positive samples.

Future studies may employ chromosome conformation

capture or long-read sequencing in concert with short-
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read sequencing to improve metagenomic assembly and

give even more detailed genomic context to resistance

gene detection directly from stool [28].

Our study design was optimized to understand the ac-

quisition within travelers, and we do not have samples

from travelers’ contacts while abroad. Pre-travel sam-

ples from our Dutch cohort also contain resistant

bacteria and AMR genes, but our study is only

equipped to show unidirectional gene transfer from

the destination to the travelers; it is also possible

that travelers could deposit AMR genes in their

travel destinations. Future investigation into travelers’

contacts at home and abroad may resolve AMR gene

transmission networks. We also observed that group-

ing samples by subregion better explains the sample

composition than grouping by continent. It is pos-

sible that we are missing even more granular effects

that would be found at the country or even city level

[40, 108].

Conclusions
We provide new data regarding the effect of inter-

national travel to low- and middle-income regions on

the gut resistome of travelers from a high-income coun-

try. We show that such travelers acquire AMR genes

abroad and carry these AMR genes back to their coun-

tries of origin. These AMR genes include both known

clinically relevant AMR genes that are common in path-

ogens (e.g., blaCTX-M and mcr-1) and functionally discov-

ered AMR genes with no known homologs in the

current databases. We also show AMR gene acquisition

and carriage in the gut resistome is travel destination-

specific with compositional signatures lasting at least

until the traveler returns home. Interventions to re-

duce AMR burden in low- and middle-income coun-

tries with current high endemic AMR burdens may

reduce traveler AMR gene acquisitions. Developments

in risk stratification for AMR genes could help target

such efforts [109].
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