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Abstract

Summary: Diffusion maps are a spectral method for non-linear dimension reduction and have re-

cently been adapted for the visualization of single-cell expression data. Here we present destiny, an

efficient R implementation of the diffusion map algorithm. Our package includes a single-cell spe-

cific noise model allowing for missing and censored values. In contrast to previous implementa-

tions, we further present an efficient nearest-neighbour approximation that allows for the process-

ing of hundreds of thousands of cells and a functionality for projecting new data on existing

diffusion maps. We exemplarily apply destiny to a recent time-resolved mass cytometry dataset of

cellular reprogramming.

Availability and implementation: destiny is an open-source R/Bioconductor package

“bioconductor.org/packages/destiny” also available at www.helmholtz-muenchen.de/icb/destiny.

A detailed vignette describing functions and workflows is provided with the package.

Contact: carsten.marr@helmholtz-muenchen.de or f.buettner@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent technological advances allow for the profiling of individual

cells, using methods such as single-cell RNA-seq, single-cell RT

qPCR or cyTOF (Roditi et al., 2015). These techniques have been

used successfully to study stem cell differentiation with time-

resolved single-cell experiments, where individual cells are collected

at different absolute times within the differentiation process and

profiled. While differentiation is a smooth but nonlinear process

(Buettner and Theis, 2012; Haghverdi et al., 2015) involving con-

tinuous changes of the overall transcriptional state, standard meth-

ods for visualizing such data are either based on linear methods such

as Principal Component Analysis (see Supplementary Fig. S1) and

Independent Components Analysis or they use clustering techniques

not accounting for the smooth nature of the data.

In contrast, diffusion maps—initially designed by Coifman et al.

(2005) for dimensionality reduction in image processing—recover a

distance measure between each pair of data points (cells) in a low di-

mensional space that is based on the transition probability from one

cell to the other through several paths of a random walk. Diffusion

maps are especially suited for analysing single-cell gene expression

data from differentiation experiments (such as time-course experi-

ments) for three reasons. First, they preserve the global relations be-

tween data points. This feature makes it possible to reconstruct

developmental traces by re-ordering the asynchronously differentiat-

ing cells according to their internal differentiation state. Second, the

notion of diffusion distance is robust to noise, which is ubiquitous in

single-cell data. Third, by normalizing for sampling density, diffu-

sion maps become insensitive to the distribution of the data points
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(i.e. sampling density), which aids the detection of rare cell

populations.

Here, we present a user friendly R implementation of diffusion

maps including previously proposed adaptations to single cell data

(Haghverdi et al., 2015) as well as novel functionality. The latter in-

cludes approximations allowing for the visualization of large data

sets and the projection of new data on existing maps.

2 Description: the destiny package

2.1 Algorithm

As input, destiny accepts an expression matrix or data structure ex-

tended with annotation columns. Gene expression data should be

pre-processed and normalized using standard workflows (see

Supplementary Text S1) before generating the diffusion map. des-

tiny calculates cell-to-cell transition probabilities based on a

Gaussian kernel with width r to create a sparse transition probabil-

ity matrix M. If the user does not specify r, destiny employs an esti-

mation heuristic to derive this parameter (see Supplementary Text

S2). In contrast to other implementations, destiny allows for the vis-

ualization of hundreds of thousands of cells by only using distances

to the k nearest neighbors of each cell for the estimation of M (see

Supplementary Text S2). Optionally destiny uses an application-

specific noise model for censored and missing values in the dataset

(see Supplementary Fig. S2). An eigendecomposition is performed

onM after density normalization, considering only transition proba-

bilities between different cells. By rotating M, a symmetric adjoint

matrix can be used for a faster and more robust eigendecomposition

(Coifman et al., 2008). The resulting data-structure contains the

eigenvectors with decreasing eigenvalues as numbered diffusion

components, the input parameters and a reference to the data.

2.2 Visualization and projection of new data

This data-structure can be easily plotted and colored using the par-

ameters of provided plot methods. An automatic color legend inte-

grated into R’s palette system facilitates the generation of

publication-quality plots. A further new feature in destiny is the abil-

ity to integrate new experimental data in an already computed diffu-

sion map. destiny provides a projection function to generate the

coordinates for the new data without recalculating the diffusion

map by computing the transition probabilities from new data points

to the existing data points (see Supplementary Text S3).

3 Application

We applied destiny to four single-cell datasets of different size (hun-

dreds to hundreds of thousands of cells) and characteristics (qRT-

PCR, RNA-Seq and mass cytometry, see Supplementary Table S1).

We first estimate the optimal r that matches the intrinsic dimension-

ality of the data (Fig. 1A and Supplementary Figs S3A and S4A).

Using a scree plot (Fig. 1B and Supplementary Figs S3B, S4B and

S5A), the relevant diffusion components can be identified. However,

for big datasets as the mass cytometry data from Zunder et al.

(2015) with 256 000 cells and 36 markers, corresponding

Eigenvalues decrease smoothly. Although only a part of the intrinsic

dimensionality can be represented in a 3D plot, the diffusion map re-

veals interesting properties of the reprogramming dynamics (Fig. 1C

and Supplementary Fig. S6). We compared destiny’s performance to

other implementations, including our own in MATLAB (based on

Maggioni code (http://www.math.duke.edu/�mauro/code.html),

published with Haghverdi et al., 2015) and the diffusionMap R

package (Richards, 2014). destiny performs similarly well for small

datasets, while outperforming other implementations for large data-

sets (Supplementary Table S1).

4 Discussion and conclusion

We present a user-friendly R package of the diffusion map algo-

rithm adapted to single-cell gene expression data and include

new features for efficient handling of large datasets and a projec-

tion functionality for new data. We illustrate the capabilities of

our package by visualizing gene expression data of 250 000 cells

and show that our package is able to reveal continuous state

transitions. Together with an easy to use interface this facilitates

the application of diffusion map as new analysis tool for single-

cell gene expression data.
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Fig. 1. destiny applied to the mass cytometry reprogramming dataset of

Zunder et al. (2015) with 36 markers and 256 000 cells. (A) The optimal

Gaussian kernel width r. (B) The Eigenvalues of the first 100 diffusion compo-

nents decrease smoothly, indicating a large intrinsic dimensionality of the

data. (C) The initial population of mouse embryonic fibroblasts (MEFs) is

reprogrammed and profiled over 20 days. While a final cell population ex-

pressing stem cell markers is clearly separated, cells that revert to the MEF

state are found proximal to the initial population in the diffusion map. Inset:

destiny code to generate the diffusion map
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