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Neuroinflammation-related amyloid-beta peptide (Aβ) accumulation after cerebral ischemia/reperfusion (I/R) accounts for
cerebral I/R injuries and poststroke dementia. Recently, pyroptosis, a proinflammatory cell death, has been identified as a
crucial pathological link of cerebral I/R injuries. However, whether pyroptosis acts as a trigger of Aβ accumulation after
cerebral I/R has not yet been demonstrated. Blood-brain barrier (BBB) and glymphatic system mediated by aquaporin-4
(AQP-4) on astrocytic endfeet are important pathways for the clearance of Aβ in the brain, and pyroptosis especially
occurring in astrocytes after cerebral I/R potentially damages BBB integrity and glymphatic function and thus influences
Aβ clearance and brain homeostasis. In present study, the method of middle cerebral artery occlusion/reperfusion
(MCAO/R) was used for building models of focal cerebral I/R injuries in rats. Then, we used lipopolysaccharide and
glycine as the agonist and inhibitor of pyroptosis, respectively, Western blotting for detections of pyroptosis, AQP-4, and
Aβ1-42 oligomers, laser confocal microscopy for observations of pyroptosis and Aβ locations, and immunohistochemical
stainings of SMI 71 (a specific marker for BBB integrity)/AQP-4 and Nissl staining for evaluating, respectively, BBB-
glymphatic system and neuronal damage. The results showed that pyroptosis obviously promoted the loss of BBB integrity
and AQP-4 polarization, brain edema, Aβ accumulation, and the formation of Aβ1-42 oligomers and thus increased
neuronal damage after cerebral I/R. However, glycine could inhibit cerebral I/R-induced pyroptosis by alleviating
cytomembrane damage and downregulating expression levels of cleaved caspase-11/1, N-terminal gasdermin D, NLRP3
(nucleotide-binding domain, leucine-rich repeat containing protein 3), interleukin-6 (IL-6) and IL-1β and markedly abate
above pathological changes. Our study revealed that pyroptosis is a considerable factor causing toxic Aβ accumulation,
dysfunctional BBB-glymphatic system, and neurological deficits after cerebral I/R, suggesting that targeting pyroptosis is a
potential strategy for the prevention of ischemic stroke sequelae including dementia.

1. Introduction

Ischemic stroke, a common cerebrovascular disease, consti-
tutes most strokes and is among the leading causes of long-
term disability and dementia worldwide [1, 2]. For patients

suffered from acute cerebral ischemia, there is a pressing
need to restore blood flow of the ischemic cerebral tissue in
a short-time window. However, the additional injuries fol-
lowing ischemia/reperfusion (I/R) greatly influence the ther-
apeutic efficacy of restoring blood flow and induce ischemic
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stroke sequelae including dementia. As one of the key factors
causing Alzheimer’s disease (AD), neuroinflammation-
related amyloid-beta peptide (Aβ) massively accumulates
around astrocytes in ischemic brain tissues, accounting for
cerebral I/R injuries and the occurrence of dementia induced
by ischemic stroke [3–6].

Astrocytes in the brain are star-shaped cells with a range
of functions, among which are to supply energy for neurons,
underscoring the importance of astrocytes in neuroglial vas-
cular coupling named neurovascular unit (NVU) [7]. More-
over, aquaporin-4 (AQP-4) on astrocytic endfeet functions
as an important part of both blood-brain barrier (BBB) and
glymphatic system to clear metabolic wastes such as Aβ
and maintains the homeostasis of central nervous system
(CNS) environment [8].

Pyroptosis is a newly discovered proinflammatory form
of cell death distinguished from apoptosis, and it has been
demonstrated that pyroptosis plays an important role during
I/R injuries in multiple vital organs including the brain [9–
11]. And the known signaling molecules involved in pyropto-
sis mainly include certain cysteine-dependent aspartate-
directed proteases (caspase), proinflammatory factors such
as interleukin-1β (IL-1β), nucleotide-binding oligomeriza-
tion domain-like receptors pyrin domain containing 3
(NLRP3), and the gasdermin family [12]. Various studies
have demonstrated that the gasdermin D (GSDMD) can be
cleaved by activated caspase-4/5/11 (caspase-4/5 in humans,
and the orthologous caspase-11 in rodents) or caspase-1 to
form N-terminal (GSDMD-N) fragment which determines
pyroptotic cell death by forming membrane pores [13–15].

Astrocytic and microglial pyroptosis induced by cerebral
I/R has been reported [16, 17]. Therefore, we hypothesized
and designed this study to identify that pyroptosis, especially
occurring in astrocytes, aggravates the damage of BBB-
glymphatic system, triggers the accumulation of toxic Aβ,
and thus destroys homeostasis of neurons survival after cere-
bral I/R, and that inhibition of pyroptosis could ameliorate
these pathological changes.

2. Materials and Methods

2.1. Animals. A total of sixty specific pathogen-free (SPF)
male Sprague-Dawley rats, weighing 200-230 g, were
obtained from Shanghai Laboratory Animal Research Center
and housed in SPF animal rooms of Shanghai Jiao Tong Uni-
versity Affiliated Sixth People’s Hospital, under the standard
laboratory conditions with controlled humidity and constant
temperature. Experimental operations were carried out after
the acclimation of animals for several days with unlimited
food and water. Both animal handling procedures and exper-
imental protocols were consistent with the guidelines for the
management of laboratory animals and approved by the Ani-
mal Ethics Committee of Shanghai Jiao Tong University
Affiliated Sixth People’s Hospital.

2.2. Groups and Interventions. Lipopolysaccharide (LPS) and
glycine (Gly) are usually used as the activator and inhibitor of
pyroptosis, respectively [18, 19]. Accordingly, the rats in this
study were randomly divided into four groups including the

sham group, cerebral ischemia/reperfusion group (I/R), cere-
bral ischemia/reperfusion plus LPS group (I/R+LPS), and
cerebral ischemia/reperfusion plus Gly group (I/R+Gly).
And LPS (125μg/ml) and Gly (200mg/ml) (#L2630,
#G7126, Sigma-Aldrich, USA) dissolved in distilled water
were intraperitoneally injected (LPS, 500μg/kg; Gly,
800mg/kg) at 3 h after cerebral I/R according to previous
studies [20, 21]. Rats in other groups were injected with
equivalent volume of distilled water.

2.3. Models of Focal Cerebral I/R Injuries and Neurological
Function Assessment. The method of left middle cerebral
artery occlusion/reperfusion (MCAO/R) was used for build-
ing models of focal cerebral I/R injuries in rats as described
in our previous work [22, 23]. Rats in I/R, I/R+LPS, and
I/R+Gly groups were subjected to MCAO/R surgeries, while
rats in the sham group underwent the same operation with
no insertion of the monofilament. Neurological examina-
tions were performed after reperfusion. And in order to
exclude the interference of operative failures, the rats sub-
jected to MCAO/R with no detectable neurological deficits
were eliminated from the following researches and analyses.
During the whole course, rectal temperature and cardiovas-
cular rate of all rats were monitored and maintained. Finally,
eight rats were died or ruled out from the experiments. And
neurological deficits score of rats at 24 h after reperfusion in
present study were evaluated on a 5-point scale as described
previously [24].

2.4. Brain Water Content Measurement. Brain water content
was measured with the dry-wet weight method. Briefly, after
being anesthetized with pentobarbital sodium (0.5%,
1ml/100 g), the animals were sacrificed, and the brain tissues
were removed and separated into ischemic and nonischemic
hemispheres, which were immediately weighed to obtain the
wet weight (WW). Then, the tissues were placed in an oven at
60°C for 24 h and reweighed to obtain the dry weight (DW).
The brain water content was assessed with the following for-
mula: 100% × ðWW −DWÞ/WW.

2.5. Western Blotting Analysis for Detections of Pyroptosis,
AQP-4, and Aβ1-42 Oligomers. After 24 h reperfusion, the rats
were deeply anesthetized, and the brains were quickly
removed after cardiac perfusion with 200ml normal saline.
The expression levels of pyroptosis-related proteins, AQP-
4, and Aβ1-42 oligomers were detected by Western blotting.
In brief, after concentrations measurement, equal amounts
of protein extracted from ischemic penumbra and equivalent
area under sham were separated by 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
electrotransferred onto the polyvinylidnene fluoride mem-
branes (#ISEQ00010, Millipore, USA). The membranes were
blocked at room temperature with 5% bovine serum albumin
(BSA) for 1 h and incubated with the following primary anti-
bodies at 4°C overnight: caspase-11 (1 : 200, #sc-56038, Santa
Cruz, USA), GSDMD (1 : 1000, #93709, Cell Signaling Tech-
nology, USA), NLRP3 (1 : 300, #19771-1-AP, Proteintech,
USA), caspase-1 (1 : 500, #22915-1-AP, Proteintech), IL-6
(1 : 200, #sc-57315, Santa Cruz), IL-1β (1 : 200, #sc-12742,
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Santa Cruz), AQP-4 (1 : 200, #sc-32739, Santa Cruz), Aβ1-42
(1 : 1000, #ab201060, Abcam, UK), and β-actin (1 : 1000,
#3700, Cell Signaling Technology). Then, the membranes
were washed and incubated with corresponding secondary
antibodies (1 : 5000, #L3012/L3032, Signalway Antibody,
USA) for 1 h at room temperature. Western blotting bands
were developed with the enhanced chemiluminescence kit
(#WBKLS0500, Millipore), and then pictures were captured
with a gel imaging instrument (Bio-Rad Laboratories,
USA), and the intensities were analyzed by ImageJ software
(National Institutes of Health, USA).

2.6. LDH Assay. Briefly, homogenates from cortex tissues in
ischemic penumbra and equivalent area under sham were
prepared and centrifuged at 1,2000 rpm and 4°C for 10min,
and then the supernatant was used to detect the content of
LDH for preliminarily assessing the degree of pyroptosis by
an LDH assay kit (#C0016, Beyotime, China) following the
manufacturer’s instructions.

2.7. Observations of Pyroptosis and Aβ Locations by Laser
Confocal Microscopy. After anesthetization followed by infu-
sion with normal saline and then 4% paraformaldehyde, the
brains of rats were removed and immersed in 4% paraformal-
dehyde for 24 h fixation and then prepared for paraffin sec-
tions. According to the procedure described previously
[25], we made an optimum proposal of PI staining in this
study. Briefly, the paraffin sections were dewaxed and rehy-
drated (100% ethanol for 3min, 95% ethanol for 2min,
80% ethanol for 2min, 75% ethanol for 2min, H2O for
1min) followed by incubation with PI dye (5μg/ml,
#ST511, Beyotime) diluted by phosphate buffer solution
(PBS) for 2min at room temperature. Subsequently, PI dye

was removed quickly and washed with PBS, and then 4′,6-
diamidino-2-phenylindole (DAPI) staining solution was
added onto the sections for 10min at 37°C. For immunoflu-
orescence stainings of protein colocalization, after dewaxing
and rehydration with gradient ethanol, the sections further
went through antigen retrieval, permeation by 0.3% triton-
X 100, and then blockage with 5% BSA. Subsequently, the
sections were incubated with the first antibodies mixed for
caspase-11/ionized calcium-binding adapter molecule-1
(Iba-1) (#ab178847, Abcam), caspase-11/glial fibrillary acidic
protein (GFAP) (#23935-1-AP, Proteintech), Aβ (#sc-28365,
Santa Cruz)/GFAP, and GSDMD (#20770-1-AP, Protein-
tech)/GFAP (#60190-1-Ig, Proteintech) overnight at 4°C
followed by incubations with corresponding mixed Alexa
Fluor 488/647 secondary antibodies (1 : 500, #A0423/A0473,
#A0428/A0468, Beyotime) for 1 h at room temperature. After
DAPI staining, all the sections were covered with antique-
nching agent for capturing fluorescent pictures by a laser
scanning confocal microscope (Leica Wetzlar, Germany).

2.8. Evaluations of the BBB-Glymphatic System and Neuronal
Damage. Endothelial barrier antigen (EBA, clone: SMI 71) is
a specific marker for BBB integrity, and polarization loss of
AQP-4 on astrocytic endfeet is the major cause of glymphatic
dysfunction. Thus, we further made evaluations of BBB and
glymphatic system by the immunohistochemical staining of

SMI 71 and AQP-4. Briefly, the sections were dewaxed and
rehydrated and went through antigen retrieval, permeation,
and inactivation of the endogenous catalase by H2O2 and
then blockage with 5% BSA. Subsequently, the sections were
incubated, respectively, with anti-rat BBB antibody (SMI 71)
(1 : 100, #836812, BioLegend, USA) and AQP-4 antibody
(1 : 100, #sc-32739, Santa Cruz) overnight at 4°C followed
by incubations with the secondary antibody in immunohisto-
chemical kit (#KIHC-5, Proteintech) for 1 h at room temper-
ature. Then, 3,3-diaminobenzidine tetrahydrochloride and
hematoxylin were used as color developing reagents for visu-
alizing the sections. Neuronal damage was evaluated by the
method of Nissl staining as described in our previous study
[22]. Briefly, the sections were dewaxed, rehydrated, and
stained with Nissl staining solution (#E607316, Sangon Bio-
tech, China) at room temperature for 20min. Subsequently,
the sections were rinsed and cleared in graded ethanol and
xylene and coverslipped under permount. Finally, all sections
were observed with a light microscope (Leica Wetzlar,
Germany).

2.9. Statistical Analysis. All the data were expressed as the
mean ± standard deviation (SD). Statistical analysis was per-
formed using GraphPad Prism 8.0 (GraphPad Software
Inc., USA). Statistical significance of difference among
groups was analyzed by one-way ANOVA or unpaired
Student’s t-test. A value of P < 0:05 was considered to be sta-
tistically significant.

3. Results

3.1. Effects of LPS and Gly Interventions on Neurological
Deficits. Figure 1 exhibited the schematic diagram of experi-
mental protocol (Figure 1(a)) and neurological deficits score
of rats at 24 h after reperfusion (Figures 1(b) and 1(c)) in
present study. The neurological deficits were evaluated on a
5-point scale as described in Figure 1(b). And the result of
neurological function assessment showed that cerebral I/R-
induced neurological deficits were obviously exacerbated by
LPS but reversed by Gly as described in Figure 1(c).

3.2. Effects of LPS and Gly Interventions on Degree of
Pyroptosis. Detection of the LDH content in damaged tissues
and PI staining is effective methods used for preliminarily
assessing the degree of pyroptosis. In present study, com-
pared with the sham group, the I/R group showed higher
LDH content and more positive PI staining which were obvi-
ously increased by LPS and reduced by Gly (Figures 2(a) and
2(b)), implying that pyroptosis was aggravated in the I/R
+LPS group but alleviated in the I/R+Gly group after
reperfusion.

3.3. Pyroptosis Focuses on Microglia and Astrocytes after
Reperfusion. Pyroptosis is initially found as an innate
immune response with strong inflammatory reaction. Thus,
in this study, locations of pyroptosis were locked on the
immunocyte in the brain. As expected, pyroptosis mainly
occurred in microglia and astrocytes of ischemic brain tis-
sues, which was observed from the double immunofluores-
cence staining of caspase-11 colocalized with Iba-1
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(microglial biomarker) and GFAP (astrocytic biomarker),
respectively, and was obviously aggravated in the I/R+LPS
group but alleviated in the I/R+Gly group (Figure 3(c)). Cor-
respondingly, the expression levels of pyroptosis-related pro-
teins such as pro-/cleaved-caspase-11, GSDMD-FL (full
length GSDMD)/N (Figures 3(a) and 3(b)), NLRP3, cleaved
caspase-1, IL-6, and cleaved IL-1β (Figures 3(d) and 3(e))

significantly increased in the I/R+LPS group but decreased
in the I/R+Gly group compared with those in the I/R group.

3.4. Pyroptosis Influences BBB Integrity after Reperfusion.
Astrocytic endfeet envelops the cerebral capillaries that form
BBB. Our study showed that the damage of BBB integrity
reflected by immunohistochemical staining of SMI 71 was
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Figure 1: (a) Schematic diagram of the experimental protocol. (b) Longa’s score and corresponding neurobehavioral manifestation. (c)
Neurological deficit scores of each group according to Longa’s score method, n = 10. Data are presented as mean ± SD.#P < 0:05, I/R group
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Figure 2: Effects of LPS and Gly interventions on the degree of pyroptosis at 24 h after reperfusion. (a) Representative pictures of PI staining,
the red dots represent positive PI staining; scale bars, 50μm. (b) Relevant quantitative analysis of LDH content, n = 4. Data are presented as
mean ± SD. ##P < 0:01, I/R group versus sham group; ▲P < 0:05, I/R + LPS group versus I/R group; ∗∗P < 0:01, I/R +Gly group versus I/R
group.
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worsened with the exacerbation of astrocytic pyroptosis in
the I/R+LPS group but alleviated with the mitigation of
astrocytic pyroptosis in the I/R+Gly group, respectively
(Figures 4(a) and 4(b)). Accordingly, the water content of
ischemic hemisphere significantly increased in the I/R+LPS
group but decreased in the I/R+Gly group compared with
that in the I/R group (Figure 4(c)).

3.5. Pyroptosis Influences AQP-4 Polarization and Aβ
Clearance after Reperfusion. The AQP-4-dependent glym-
phatic system is an important pathway for the clearance of
Aβ in the brain. And glymphatic dysfunction is closely asso-

ciated with the loss of AQP-4 polarization on astrocytic end-
feet. In present study, the results showed that the loss of
AQP-4 polarization after reperfusion with obvious disper-
sion and perturbed expression was worsened in the I/R
+LPS group but apparently lightened in the I/R+Gly group
(Figures 5(a), 5(c), and 5(d)). Accordingly, the accumulation
of Aβ concentrated around astrocytes was also aggravated in
the I/R+LPS group but alleviated in the I/R+Gly group
(Figure 5(b)). Furthermore, Aβ1-42 oligomer (the main form
of toxic Aβ) obviously increased in the I/R+LPS group but
decreased in the I/R+Gly group compared with that in the
I/R group (Figures 5(e) and 5(f)).
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Figure 3: Effects of LPS and Gly interventions on expression levels of pyroptosis-related proteins and observations of pyroptosis locations. (a,
b) Expression levels of pro-/cleaved caspase-11 and GSDMD-FL/N by Western blotting analysis, n = 6. (c) Representative pictures of the
double immunofluorescence staining (white arrows) of caspase-11 (red) colocalized with Iba-1 or GFAP (green), respectively, scale bars,
50μm. (d, e) Expression levels of NLRP3, cleaved caspase-1, IL-6, and cleaved IL-1β, n = 6. Data are presented as mean ± SD. ##P < 0:01,
I/R group versus sham group; ▲P < 0:05, ▲▲

P < 0:01, I/R + LPS group versus I/R group; ∗∗P < 0:01, I/R +Gly group versus I/R group.
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3.6. Pyroptosis Influences Neuron Survival after Reperfusion.
The above results in present study have revealed that cerebral
I/R-induced pyroptosis promotes dysfunctions of the BBB-
glymphatic system and toxic Aβ accumulation and thus
potentially influences the CNS homeostasis on which neu-
rons survival depend. Accordingly, our study further showed
that the damaged neurons in ischemic cortex (Figures 6(a)
and 6(b)) and hippocampus (Figures 6(c) and 6(d)) tissues
after reperfusion significantly increased in the I/R+LPS
group but decreased in the I/R+Gly group compared with
those in the I/R group, which was consistent with the results
of neurological function assessment. Furthermore, Figure 7
summarizes internal relationships of pyroptosis promoting
neurological deficits associated with the dysfunctional BBB-

glymphatic system and Aβ accumulation after I/R in this
study, which would be expatiated detailedly in the following
discussion.

4. Discussion

Damage of cell membrane is a common pathological change
of I/R injuries [26, 27]. Cellular membrane permeabilization
is a prominent feature of pyroptosis, and the GSDMD in the
gasdermin family is identified as the key executor of pyropto-
sis to damage the integrity of cellular membranes by forming
nanopores which cause cellular swelling and death [13–15].
Therefore, recently, the roles of pyroptosis and its related sig-
naling molecules such as caspase-11/1 and GSDMD in I/R

Sham I/R I/R+LPS I/R+Gly

G
SD

M
D

/G
FA

P
/D

A
P

I

50 µm 50 µm 50 µm 50 µm

(a)

Sham

SM
I 

71

I/R

50 µm 50 µm 50 µm 50 µm

20 µm 20 µm 20 µm 20 µm

I/R+LPS I/R+Gly

(b)

Sham

I/R

I/R+LPS

I/R+Gly

#

*

▲

70
Ischemic hemisphere Contralateral hemisphere

75

80

B
ra

in
 w

at
er

 c
o

n
te

n
t 

(%
)

85

90

(c)

Figure 4: Influences of pyroptosis on BBB integrity at 24 h after reperfusion. (a) Representative pictures of double immunofluorescence
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Figure 5: Influences of pyroptosis on AQP-4 polarization and Aβ clearance at 24 h after reperfusion. (a) Representative pictures of
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immunofluorescence staining of Aβ (red) colocalized with GFAP (green), scale bars, 50 μm. (c, d) Protein levels of AQP-4 by Western
blotting analysis, n = 6. (e, f) Protein levels of Aβ1-42 oligomer by Western blotting analysis, n = 6. Data are presented as mean ± SD.
##
P < 0:01, I/R group versus sham group; ▲▲

P < 0:01, I/R + LPS group versus I/R group; ∗∗P < 0:01, I/R +Gly group versus I/R group.
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injuries have been attracting attention of researchers [9–11].
LPS is the common agonist of pyroptosis by activating cas-
pase-11, and Gly is usually used as the protective agent of cel-

lular membrane to inhibit pyroptosis [18, 19]. It has been
demonstrated that pyroptosis is an important pathological
link of cerebral I/R injuries [11], and our results in present
study showed that the pyroptosis-related damage of cell
membrane after cerebral I/R could be, respectively, aggra-
vated and alleviated by LPS and Gly interventions.

Previous literatures have indicated that the summit of
cerebral I/R induced pyroptosis occurs at 24 h after reperfu-
sion [11]. Our study showed that both microglia and astro-
cytes are the main locations of noncanonical pyroptosis
mediated by caspase-11 which could trigger the cleavage of
GSDMD and then the activation of NLRP3/caspase-1 path-
way, causing acute neuroinflammation at 24 h after cerebral
I/R along with the release of proinflammatory factors such
as IL-1β and IL-6. Astrocytic endfeet envelops the cerebral
capillaries that form BBB to exert the transport function of
nutrition or metabolic products [28], and BBB dysfunction
in I/R injuries is closely related to abnormal astrocytes which
cause brain edema formation and nonreflow phenomenon
and promote neuronal damage, greatly influencing effects
of restoring blood flow [29–31]. Therefore, astrocytic pyrop-
tosis was specially highlighted and exhibited in this study;
though, we noticed that pyroptosis may occur in a few neu-
rons or other brain cells besides microglia and astrocytes
which could be observed by the result of GSDMD staining
after I/R. Furthermore, our study indicated that aggravating
pyroptosis promotes the damage and dysfunction of BBB,
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Figure 6: Influences of pyroptosis on neurons survival at 24 h after reperfusion. (a, c) Representative pictures of ischemic cortex and
hippocampus-CA1 Nissl staining. Yellow arrows represent normal morphology of neurons with clear nucleolus, abundant cytoplasm, and
intact structure. Red arrows represent abnormal neurons appeared shrunken and deep stained, scale bars, 50μm. (b, d) Quantitative
analysis of damaged neurons in the cortex and hippocampus-CA1 areas, n = 6. Data are presented as mean ± SD. ##P < 0:01, I/R group
versus sham group; ▲▲

P < 0:01, I/R + LPS group versus I/R group; ∗∗P < 0:01, I/R +Gly group versus I/R group.
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Figure 7: Schematic diagram about internal relationships among
pathological changes in this study. Red arrows present
relationships confirmed by this study among pathological changes
including pyroptosis, Aβ accumulation, dysfunctional BBB-
glymphatic system, and neurological deficits after I/R, and dotted
arrows and green arrows, respectively, present latent and known
relationships obtained on the basis of previous studies.
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and inhibiting pyroptosis by Gly could abate the damage of
BBB and significantly reduce brain edema after reperfusion.

Primary Gly at low level is an inhibitory neurotransmitter
in CNS. However, interestingly, Gly at high level (800mg/kg,
intraperitoneal administration) inversely exerts protective
effects against neuronal injury induced by I/R in rats accord-
ing to the previous study [21]. Therefore, our current study
adopted such level (800mg/kg) of Gly as the intervention
dosage administrated to rats, and we preliminarily observed
the equal neuroprotective effect of Gly by assessing neurolog-
ical function deficits. Then, our results further confirmed the
inhibitory effects of Gly on pyroptosis after I/R. Multiple
studies have demonstrated that Gly exerts cytoprotection
against pyroptosis by targeting plasmamembrane permeabil-
ity barriers [19]. However, in current study, the results
showed that Gly also exerts inhibitory effects on the expres-
sion levels of pyroptosis-related molecules such as cleaved
caspase-11/1, N-terminal gasdermin D, and IL-1β. It is firstly
considered that the protective effects of Gly on plasma mem-
brane permeability barriers prevent the stimulators including
abnormal iron current from aggravating pyroptosis in the
setting of this study and thus mediately downregulate the
expressions of pyroptosis-related signaling molecules. In
addition, this phenomenon is also likely associated with the
complex interrelated processes of pyroptosis. Recent evi-
dence has revealed that IL-1β reversely induces the expres-
sion of caspase-11 during sterile inflammation [32].
Therefore, acting on one link tends to cause changes of
its upstream or downstream processes during pyroptosis,
which needs to be further exploration in specific experi-
mental settings.

Recently, researches have demonstrated that toxic Aβ,
one of crucial damage-associated molecular patterns
(DAMPs) in AD, accumulates in brain and is responsible
for brain edema formation and the occurrence of dementia
induced by ischemic stroke and thus maintaining the clear-
ance of Aβ after stroke could offer a new therapeutic
approach to prevent poststroke cognitive impairment and
development into dementia [5, 6, 33]. Numerous studies
revealed that neuroinflammation is the fundamental factor
triggering the generation of Aβ [34–36], and the accumula-
tion of toxic Aβ is not only the outcome of BBB dysfunction
but also the important cause of BBB damage [33, 37], just as
our previous researches indicated that Aβ1-42 oligomers were
the main form of Aβ toxicity inducing dysfunctional BBB
[38, 39]. In this study, our results showed that cerebral I/R
induces the concentration of Aβ around astrocytes and the
formation of massive Aβ1-42 oligomers within 24 h after
reperfusion, and that aggravating pyroptosis obviously
increases Aβ1-42 oligomers while inhibiting pyroptosis by
Gly could markedly reverse Aβ accumulation and the forma-
tion of Aβ1-42 oligomers. Therefore, pyroptosis acts as a con-
siderable trigger of toxic Aβ accumulation after cerebral I/R.

The glymphatic system is an important pathway besides
BBB for the clearance of Aβ in the brain [33]. AQP-4, the
main component of glymphatic system, is a water channel
physiologically located with high polarization on astrocytic
endfeet, and the loss of AQP-4 polarization can cause the
dysfunction of glymphatic system in pathological changes

including AD and ischemic stroke [40, 41]. Thus, AQP-4 is
now recognized as essential for two unique functions,
namely, neurovascular coupling and glymphatic flow, to
facilitate the clearance of metabolic wastes such as Aβ [41,
42]. In present study, we observed that cerebral I/R-induced
AQP-4 polarization loss with obvious dispersion and per-
turbed expression and Aβ concentration around astrocytes
along with increased Aβ1-42 oligomers were exacerbated by
the further activation of pyroptosis but obviously abated by
the inhibition of pyroptosis, indicating that pyroptosis is an
important factor causing glymphatic dysfunction which
accounts for the accumulation of Aβ.

Previous researches have revealed that chronic Aβ accu-
mulation around astrocytes accompanies with not only BBB
damage but delayed neuronal death (DND) within six
months after cerebral I/R and even deposits to plaques with
the further extension of time [43, 44], which provide experi-
mental evidence for the occurrence of sporadic AD induced
by ischemic stroke. Furthermore, a clinical study by Liu
et al. [5] demonstrated that patients with Aβ deposition
experienced a more severe and rapid cognitive decline over
3 years after stroke/transient ischemic attack compared with
subjects without AD-like Aβ deposition, and Aβ was associ-
ated with changes in multiple cognitive domains. Recently,
Martins et al. [6] have reported the acute accumulation of
Aβ oligomers within 24h in blood vessel walls including
small capillaries and nearby brain tissues after cerebral I/R,
and that such accumulation acts as a detrimental factor pro-
moting brain damage. Additionally, the accumulation of
toxic Aβ can produce swelling in astrocytes and their endfeet
and also cause dysregulation of capillaries by acting on peri-
cytes, influencing energy supply for neurons [45, 46]. Our
study revealed that pyroptosis accounts for dysfunctions of
the BBB-glymphatic system and the accumulation of toxic
Aβ and thus destroys the CNS homeostasis on which neu-
rons survival depend, aggravating the damage of neurons
and neurological deficits after cerebral I/R. However, inhibit-
ing pyroptosis could markedly abate these pathological
changes. On the other hand, toxic Aβ has been identified as
a trigger of pyroptosis and neuroinflammation [47, 48],
which suggests a magnified effect of Aβ accumulation after
cerebral I/R.

In the light of the above discussion, the outcome in pres-
ent study firstly confirmed that cerebral I/R-induced pyrop-
tosis significantly promotes the dysfunctional BBB-
glymphatic system, Aβ accumulation, and the formation of
toxic Aβ which have been known as crucial pathological fac-
tors influencing the CNS homeostasis on which neurons sur-
vival depend and thus increasing neurological deficits.
Besides, after cerebral I/R, there exists a latent relationship
with mutual stimulation between the dysfunctional BBB-
glymphatic system and Aβ accumulation based on previous
studies, and toxic Aβ potentially aggravating pyroptosis also
deserves to be further demonstrated. Admittedly, the limita-
tion of our current study may be that glycine could not exert
a completely absolute blocking effect on pyroptosis of CNS.
To solve this problem, we will further construct GSDMD
gene knockout rats to indepth study pyroptosis and related
pathological changes after cerebral I/R. Furthermore, we
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speculate and will confirm in the following study that pyrop-
tosis and the acute accumulation of Aβ form a vicious circle
in cerebral I/R injuries, which triggers the chronic Aβ accu-
mulation after reperfusion and induces poststroke cognitive
impairment.

5. Conclusion

The present study demonstrated that pyroptosis is a consid-
erable factor causing the dysfunctional BBB-glymphatic sys-
tem and the accumulation of toxic Aβ (Aβ1-42 oligomers)
and thus aggravating the neuronal damage and neurological
deficits after cerebral I/R in rats. And our study not only fur-
ther identifies pyroptosis as an important link in cerebral I/R
injuries but also suggests that targeting pyroptosis is a poten-
tial strategy for the prevention of ischemic stroke sequelae
including dementia.
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