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Abstract In this paper, we develop a flexible cure rate survival model by assuming
the number of competing causes of the event of interest to follow a compound weighted
Poisson distribution. This model is more flexible in terms of dispersion than the pro-
motion time cure model. Moreover, it gives an interesting and realistic interpretation
of the biological mechanism of the occurrence of event of interest as it includes a
destructive process of the initial risk factors in a competitive scenario. In other words,
what is recorded is only from the undamaged portion of the original number of risk
factors.

Keywords Competing risks · Cure rate models · Long-term survival models ·
Weighted Poisson distribution · Conway-Maxwell Poisson (COM-Poisson)
distribution

1 Introduction

Models for survival data with a surviving fraction (also known as cure rate models or
long-term survival models) play an important role in reliability and survival analysis.
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In this paper, we extend the proposal of Yakovlev and Tsodikov (1996) (see also Chen
et al. 1999) through a special case of the compound weighted Poisson distribution. The
proposed compound weighted cure rate survival model is a more realistic alternative
to the unified cure rate model discussed by Rodrigues et al. (2008) and it presumes that
the original number of risk factors produced by nature undergoes a destructive pro-
cess and what is recorded is only the undamaged portion of the original observations
which is represented by a compound variable. Furthermore, this model can account for
over-dispersion and under-dispersion that is commonly encountered in discrete data.

We find applications of cure rate models in a wide array of areas such as biomedical
studies, finance, criminology, demography, manufacturing, and industrial reliability.
For instance, in biomedical studies, an event of interest can be the patient’s death,
which can occur due to different competing causes or a tumor recurrence, which can
occur due to metastasis-component tumor cells in the individual left active after an
initial treatment. A metastasis-component tumor cell is a tumor cell which has the
potential of metastasizing (Yakovlev and Tsodikov 1996).

Let Mw be an unobservable weighted Poisson random variable denoting the initial
number of competing causes related to the occurrence of an event of interest, with
probability mass function (pmf)

pw(m; η, φ) = P[Mw = m; η, φ] = w(m;φ)p∗(m; η)

Eη[w(M;φ)] , m = 0, 1, 2, . . . , (1)

where w(·;φ) is a non-negative weight function with parameter φ ≥ 0, p∗(·; η) is
the pmf of a Poisson distribution with parameter η > 0, and Eη[·] indicates that the
expectation is taken with respect to the variable M following a Poisson distribution
with mean parameter η. We refer to (1) as the weighted Poisson distribution with
parameter η and weight function w(·;φ) or, alternatively, the weighted version of M .

Given Mw = m, let X j , j = 1, 2, . . . , m, be independent random variables, inde-
pendently of Mw, following a Bernoulli distribution with success probability p indi-
cating the presence of the j-th competing cause. The total damaged Dw, representing
the total number of competing causes among the Mw initial competing causes which
are not destroyed, is defined as

Dw =
{

X1 + X2 + · · · + X Mw , if Mw > 0,

0, if Mw = 0.
(2)

By damage or destruction, we mean that Dw ≤ Mw. The conditional distribution of
Dw, given Mw = m, will therefore be referred to as damaged distribution.

Another way of looking at (2) was described by Yang and Chen (1991) in a bioassay
study. They assumed that the initial risk factors are primary initiated malignant cells
where X j in (2) denotes the number of living malignant cells that are descendants of
the j-th initiated malignant cell during some time interval. In this case, Dw denotes
the total number of living malignant cells at some specific time.

With respect to the weighted distributions, they were introduced first by Fisher
(1934), but it was Rao (1965) who studied the weighted distributions in a unified way.
Rao (1965) pointed out that in many situations the recorded observations cannot be
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considered as a random sample from the original distribution due to many reasons
such as non-observability of some events, damage caused to original observations and
adoption of unequal probability sampling. For instance, the weighted distribution with
identity weight function is called the length-biased distribution. The length-biased dis-
tribution has found applications in biomedical problems such as early detection of a
disease (Zelen and Feinleib 1969). Rao (1965) used the length-biased distribution in
the study of human families and wildlife population. It has also been used by Cnaan
(1985) in a cardiology study involving two phases.

The rest of this paper is organized as follows. In Sect. 2, we formulate the com-
pound weighted cure survival function. Some illustrative examples are then given in
Sect. 3. Maximum likelihood estimation of the parameters of the model is described in
Sect. 4. An application to a real data set is detailed in Sect. 5. Finally, some concluding
comments are made in Sect. 6.

2 Model formulation

In the competing causes scenario, the number of competing causes Dw in (2) and
the lifetimes V associated with its causes are not observable (latent variables). So, in
order to include those individuals who are not susceptible to the event occurrence, the
lifetime is defined as

Y = min{V1, V2, . . . , VDw} (3)

for Dw ≥ 1, and Y = ∞ if Dw = 0, which leads to a proportion p0 of the population
not susceptible to the event occurrence, also called the “cured fraction”.

According to Tsodikov et al. (2003) and Rodrigues et al. (2008), among others, the
compound or destructive weighted cure survival function of the random variable Y in
(3) is given by

Spop(y) = P[Y ≥ y] = ADw (S(y)) =
∞∑

m=0

P[Dw = m] {S(y)}m , (4)

where S(·) denotes the common survival function of the unobserved lifetimes in (3)
and ADw(·) is the probability generating function (pgf) of the compound variable Dw,
which converges when s = S(y) ∈ [0, 1]. In the next theorem, we present the survival
function of the observed lifetime in (3).

Theorem 2.1 Let φ ≥ 0, θ ∈ � ⊂ R, and the pmf of the number of competing causes
Mw be of the form

pw(m; θ, φ) = ϕ(m;φ) exp{θm − K (θ, φ)}, m = 0, 1, 2, . . . . (5)

Then, the destructive weighted Poisson cure rate survival function is given by

Spop(y; η, φ, p) = exp{−ηpF(y)} Eη{1−pF(y)}[w(M;φ)]
Eη[w(M;φ)] , (6)

where η = exp(θ), F(·) = 1 − S(·) and w(m;φ) = m!ϕ(m;φ).
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Proof The pgf of the Bernoulli variables in (2) is h(s; p) = 1− p + ps. Since the pmf
in (1) can be written as in (5), the result follows from a straightforward application of
Theorem 1 in Rodrigues et al. (2009) and the theorem in Feller (1968, p. 287). �	

If we take p = 1, we get the weighted Poisson long-term survival function obtained
by Rodrigues et al. (2009, Theorem 1). The function in (6) is not a proper survival
function, as shown in the next theorem.

Theorem 2.2 Given a proper survival function S(y) and w(0;φ) > 0, we have

lim
y→∞ Spop(y; η, φ, p) = p0 = exp(−ηp)

Eη(1−p)[w(M;φ)]
Eη[w(M;φ)] , (7)

where p0 denotes the proportion of “cured” or “immune” individuals present in the
population from which the data were taken.

Proof The expression in (7) follows immediately from (6). �	
An immune individual means one who is not subject to the event under study. Thus,

according to (7), we define p0 as the compound weighted Poisson long-term propor-
tion and Spop(·; η, φ, p) in (6) as the compound weighted Poisson long-term survival
function.

In the next theorem, we present the pmf of the total damaged Dw in (2).

Theorem 2.3 Let the pmf of the discrete variable Mw be as in Theorem 2.1. Then,
the compound variable Dw is a weighted Poisson distribution with parameter ηp and
with weight function

wp( j; η, φ, p) = Eη(1−p)[w( j + U ;φ)], (8)

where U = M − j is a Poisson variable with parameter η(1 − p).

Proof It follows from the fundamental formula for conditional probabilities that

P[Dw = j; θ, φ, p] =
∞∑

m=0

pw(m; θ, φ)︸ ︷︷ ︸
weighted Poisson

damaged distribution︷ ︸︸ ︷
P[Dw = j |Mw = m; p] . (9)

From (1) and using the pmf of a binomial variable, after some direct algebra, we obtain

P[Dw = j; η, φ, p] = e−ηp(ηp) j

j !Eη[w(M;φ)] Eη(1−p)[w( j + U ;φ)]. (10)

Since Eη[w(M;φ)] = Eηp[wp(D; η, φ, p)], the result follows from (10), where D
is a Poisson random variable with parameter ηp and Dw is the weighted version
of D. �	
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Theorem 2.4 Let the destructive random variable U = M − D be as in Theorem 2.3.
Then, U w is a weighted Poisson random variable with parameter η(1 − p) and with
weight function

w∗
p( j; η, φ, p) = Eηp[w( j + D;φ)], (11)

or, Mw = Dw + U w.

Proof We have

P[U w = j] = (1 − p) j e−η

Eη[w(M;φ)] j !
∞∑

m= j

w(m;φ)ηm pm− j

(m − j)! . (12)

Since Eη[w(M;φ)] = Eη(1−p)[w∗
p(U ; η, φ, p)], the result readily follows. �	

It is very important to emphasize here that the weighted Poisson random variables
Dw and U w are independent if, and only if, the weight function w(m, φ) is constant,
that is, Mw is the standard Poisson variable with parameter η. This result was men-
tioned by Rao and Rubin (1964) in a very particular case.

The next result gives an exact expression for the mean and variance of Dw which
will be very important to study dispersion problems (Kokonendji et al. 2008).

Theorem 2.5 Assuming that Mw is a weighted Poisson distribution with parameter
η and with weight function w(·;φ), and a binomial damaged distribution, we have

Var[Dw] = E[Dw] + η2 d2

dη2 log{Eηp[wp(D; η, φ, p)]}

with

E[Dw] = ηp + η
d

dη
log{Eηp[wp(D; η, φ, p)]},

where D is a Poisson random variable with parameter ηp.

Proof The result follows from (8) and a straightforward application of the lemma in
Kokonendji et al. (2008). �	

In order to be more clear about the damaged distribution, what we mean is that
there is a positive probability of the value m of Mw to be reduced to some value j of
Dw or, after some destructive process, m − j of the m initial risk factors remain active
in a competitive scenario.

3 Some illustrative examples

In this section, we present a few specific models that arise from our general formula-
tion. In Table 1, we present the surviving function and the cured fraction corresponding
to these models, as well as the improper density function fpop(y) = −d Spop(y)/dy.
As expected, the greater the values of p and η, the smaller the cured fraction.
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Table 1 Survival function (Spop), density function ( fpop), and cured fraction (p0) for different models

Destructive Spop(y) fpop(y) p0
model

Length-biased

Poisson e−ηpF(y){1 − pF(y)} p

{
η + 1

1 − pF(y)

}
Spop(y) f (y) (1 − p)e−ηp

Exponentially

weighted
Poisson exp{−ηpe2φ F(y)} ηpe2φ Spop(y) f (y) exp{−ηpe2φ}

Negative

binomial {1 + φηpF(y)}−1/φ ηp

1 + φηpF(y)
Spop(y) f (y) (1 + φηp)−1/φ

COM-Poisson
Z(η{1 − pF(y)}, φ)

Z(η, φ)

p f (y)

Z(η, φ){1 − pF(y)}
∞∑
j=1

j[η{1 − pF(y)}] j

( j !)φ
Z(η(1 − p), φ)

Z(η, φ)

3.1 Destructive length-biased Poisson model

When the weight function of Mw is w(m;φ) = m, then the weight function of Dw has
an explicit form given by wp( j; η, p) = j + η(1 − p). Recall that, in this case, Mw

has a Poisson distribution with parameter η shifted up by one, and is underdispersed,
since Var[Mw] < E[Mw]. Also, note that the compound Poisson distribution of Dw

is not shifted-Poisson, since its pmf is of the form

P[Dw = j; η, p] = exp(−ηp)(ηp) j

j !
(

1 − p + j

η

)
, j = 0, 1, 2, . . . . (13)

From (6), we obtain the destructive length-biased Poisson cure rate survival function
in Table 1. It is interesting to note that for p = 1 it is a proper survival function, since
the initial number of risk factors is truncated at 0.

3.2 Destructive exponentially weighted Poisson model

When the weight function of the initial number of risk factors is exponential,
w(m;φ) = eφm, φ ∈ R, then the weight function of the damaged random variable Dw

has an explicit form wp( j; η, φ, p) = Eη(1−p)[exp{φ( j +U )}] = exp{φ j −η(1− p)

(1 − eφ)}. It is easy to see that Mw has a Poisson distribution with parameter ηeφ

and that the total damaged variable, Dw, has a weighted Poisson distribution with the
above weight function and parameter ηpeφ .

3.3 Destructive negative binomial model

Let us consider the initial number of risk factors, Mw, as a variable with a negative
binomial distribution with parameters φ > 0 and η > 0, that is,
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P[Mw = m; η, φ] = �(φ−1 + m)

�(φ−1)m!
(

φη

1 + φη

)m

(1 + φη)−1/φ, m = 0, 1, 2, . . . .

(14)

Note that φ = 1 leads to the geometric distribution with parameter 1/(1 + φη). Com-
paring with (1), we realize that (14) is a weighted Poisson distribution with parameter
φη/(1 + φη) and weight function w(m;φ) = �(φ−1 + m). So, we arrive at a closed-
form expression for the weight function wp( j; η, φ, p), as

wp( j; η, φ, p) = Eφη(1−p)/(1+φη)[�(φ−1 + j + U )]

= exp{−φη(1 − p)/(1 + φη)}
{

1

1 − φη(1 − p)/(1 + φη)

} j

× �(φ−1 + j)

{1 − φη(1 − p)/(1 + φη)}1/φ
.

However, in this case, after some algebraic manipulations, we find

Eηp[wp(D; η, φ, p)] = exp{−φη/(1 + φη)}�(φ−1)(1 + φηp)1/φ

and

P[Dw = j; η, φ, p] = �(φ−1 + j)

�(φ−1) j !
(

φηp

1 + φηp

) j

(1 + φηp)−1/φ, j = 0, 1, 2, . . . .

3.4 Destructive COM-Poisson model

Let us suppose that the initial number of risk factors or competing causes follows a
COM-Poisson distribution with parameters η > 0 and φ > 0 (Shmueli et al. 2005),
with probability mass function

P[Mw = m; η, φ] = 1

Z(η, φ)

ηm

(m!)φ , m = 0, 1, 2, . . . , (15)

where Z(η, φ) = ∑∞
j=0 η j/( j !)φ . In particular, when φ = 0 and η < 1, the COM-

Poisson distribution reduces to the geometric distribution with parameter 1 − η. The
distribution in (15) may also be viewed as a weighted Poisson distribution with weight
function w(m;φ) = (m!)1−φ . Therefore, by using (6), we get the corresponding
entries in Table 1. In Sect. 5, the truncation of the Z(η, φ) series is done as described
by Rodrigues et al. (2009).

123



Josemar Rodrigues et al.

From (8), for integer φ, the weight function of the total damaged variable Dw is
given by

wp( j; η, φ, p) = Eη(1−p)[{( j + U )!}1−φ]

= exp{−η(1 − p)}( j !)1−φ
∞∑

m=0

[( j + 1)( j + 2) × · · · × ( j + m)]1−φ {η(1 − p)}m

m!
= exp{−η(1 − p)}( j !)1−φ

1Fφ( j + 1; j + 1, . . . , j + 1; η(1 − p)), (16)

where the generalized hypergeometric function is defined by

uFv(a1, . . . , au; b1, . . . , bv; x) =
∞∑

m=0

(a1)m(a2)m × · · · × (au)m

(b1)m(b2)m × · · · × (bv)m

xm

m! ,

with (a)m = a(a+1)×· · ·×(a+m−1) (Gradshteyn and Ryzhik 2000). Taking j = 0
and p = 0 in (16), we obtain from (6) a closed-form expression for the destructive
COM-Poisson cure rate model as

Spop(y; η, φ, p) = exp{−ηpF(y)} 1Fφ(1; 1, . . . , 1; η{1 − pF(y)})
1Fφ(1; 1, . . . , 1; η)

.

In this case, the distribution of the total damaged variable is

P[Dw = j; η, φ, p] = e−ηp 1Fφ(1; j + 1, . . . , j + 1; η(1 − p))

1Fφ(1; 1, . . . , 1; η)
, j = 0, 1, 2, . . . .

4 Inference

Let us consider the situation when the lifetime in (3) is not completely observed and is
subject to right censoring. Let Ci denote the censoring time. In a sample of size n, we
then observe Ti = min{Yi , Ci } and δi = I(Yi ≤ Ci ), where δi = 1 if Ti is a lifetime
and δi = 0 if it is right censored, for i = 1, . . . , n. Let γ denote the parameter vector
of the distribution of the unobserved time in (3). We propose to relate the parameters
p and η of the models in Sect. 3 to covariates x1i and x2i , respectively. We adopt the
link functions

log

(
pi

1 − pi

)
= x�

1iβ1 and log(ηi ) = x�
2iβ2, (17)

i = 1, . . . , n, where β1 and β2 denote vectors of coefficients. Note that the exponen-
tially weighted Poisson and the negative binomial models in Sects. 3.2 and 3.3 are
unidentifiable in the sense of Li et al. (2001). To circumvent this problem, when fitting
these models, the covariates x1i and x2i do not share common elements and β2 does
not include an intercept term.
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From n pairs of times and censoring indicators (t1, δ1), . . . , (tn, δn), the likelihood
function under non-informative censoring is given by

L(ϑ; t, δ) ∝
n∏

i=1

{
fpop(ti ;ϑ)

}δi
{

Spop(ti ;ϑ)
}1−δi , (18)

where ϑ = (φ,β�
1 ,β�

2 , γ �)�, t = (t1, . . . , tn)�, and δ = (δ1, . . . , δn)�, whereas
fpop(·;ϑ) and Spop(·;ϑ) for the models in Sect. 3 can be found in Table 1. We shall
now assume a Weibull distribution for the unobserved lifetime in (3) with F(v; γ ) =
1 − exp(−vγ1 eγ2) and f (v; γ ) = γ1v

γ1−1 exp(γ2 − vγ1 eγ2), for v > 0, γ1 > 0, and
γ2 ∈ R.

From the likelihood function in (18), the maximum likelihood estimation of the
parameter ϑ is carried out. Numerical maximization of the log-likelihood function

(ϑ; t, δ) = log{L(ϑ; t, δ)} is accomplished by using existing software (R Devel-
opment Core Team 2010). The computational program is available from the authors
upon request. Under suitable regularity conditions, it can be shown that the asymptotic
distribution of the maximum likelihood estimator ϑ̂ is multivariate normal with mean
vector ϑ and covariance matrix �(ϑ̂), which can be estimated by

�̂(ϑ̂) =
{
− ∂2
(ϑ; t, δ)

∂ϑ∂ϑ�

}−1

, (19)

evaluated at ϑ = ϑ̂ . The required second derivatives are computed numerically.
Different models can be compared penalizing over-fitting by using the Akaike

information criterion given by AI C = −2
(ϑ̂) + 2#(ϑ) and the Schwartz-Bayesian
criterion defined by SBC = −2
(ϑ̂) + #(ϑ) log(n), where #(ϑ) is the number of
model parameters. The model with the smallest value of any of these criteria (among
all models considered) is commonly taken as the preferred model for describing the
given dataset.

5 Application

In this section, we demonstrate an application of the models detailed in Sect. 3. The
dataset includes 205 patients observed after operation for removal of malignant mela-
noma in the period 1962–1977. The patients were followed until 1977. These data are
available in the timereg package in R (Scheike 2009). The observed time (T ) ranges
from 10 to 5565 days (from 0.0274 to 15.25 years, with mean = 5.9 and standard
deviation = 3.1 years) and refers to the time until the patient’s death or the censoring
time. Patients dead from other causes, as well as patients still alive at the end of the
study are censored observations (72%). We take ulceration status (absent, n = 115;
present, n = 90) and tumor thickness (in mm, mean = 2.92 and standard deviation =
2.96) as covariates. Remembering the identifiability issue in Sect. 4, in the destructive
exponentially weighted Poisson and the negative binomial models the probability p is
linked only to tumor thickness, whereas the parameter η is linked only to ulceration
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Fig. 1 Kaplan–Meier curves stratified by ulceration status (upper: present, lower: absent)

Table 2 Statistics from the
adjusted models

Statistic

Model AI C SBC

Destructive length-biased Poisson 437.1 463.7

Destructive exponentially weighted Poisson 424.6 447.8

Destructive negative binomial 411.9 435.2

Destructive COM-Poisson 422.2 452.1

Destructive geometric 418.5 438.5

Negative binomial 415.0 435.0

Geometric 420.8 437.5

status. Kaplan–Meier curves stratified by ulceration status (ulc) in Fig. 1 level off
between above 0.4. This behavior indicates that models that ignore the possibility of
cure will not be suitable for these data.

Model comparison can be performed with the results shown in Table 2. Two par-
ticular cases of the destructive negative binomial were also fitted to the data; namely,
the negative binomial (p = 1) and the geometric (p = 1, φ = 1). In this way, the
destruction mechanism is absent. For these models, the parameter η is linked to the
two covariates.

According to the AI C and SBC criteria, the destructive negative binomial and the
negative binomial models stand out as the best ones. We emphasize that the destruc-
tive length-biased Poisson and the destructive COM-Poisson models, even with the
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Fig. 2 QQ plot of the normalized randomized quantile residuals with identity line for the destructive
negative binomial model (each point corresponds to the median of five sets of ordered residuals)

Table 3 Maximum likelihood
estimation for the destructive
negative binomial model

Parameter Estimate
(est)

Standard
error (se)

|est|/se

γ1 3.52 1.01 –

γ2 −7.49 2.34 3.21

β1,intercept −6.44 2.47 2.60

β1,thickness 1.28 0.499 2.57

β2,ulc:absent 4.26 2.67 1.59

β2,ulc:present 6.43 3.19 2.02

φ 8.34 4.28 –

parameters p and η linked to both the covariates, do not yield a fit as good as these
ones. The QQ plot of the normalized randomized quantile residuals (Dunn and Smyth
1996; Rigby and Stasinopoulos 2005) in Fig. 2 suggests that the destructive negative
binomial model is acceptable. Each point in Fig. 2 corresponds to the median of five
sets of ordered residuals. Taking into account the criteria in Table 2 and the QQ plot in
Fig. 2, we select the destructive negative binomial model as our working model. Max-
imum likelihood estimates of the coefficients are in Table 3. The estimate of the shape
parameter (γ1) furnishes an evidence against the exponential distribution (γ1 = 1) for
the unobserved lifetimes.

Figure 3 displays the surviving function for patients with tumor thickness equal
to 0.320, 1.94, and 8.32 mm, which correspond to the 5, 50, and 95% quantiles.

123



Josemar Rodrigues et al.

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0a

Time (years)

S
ur

vi
vi

ng
 fu

nc
tio

n

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0b

Time (years)

S
ur

vi
vi

ng
 fu

nc
tio

n

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0c

Time (years)

S
ur

vi
vi

ng
 fu

nc
tio

n

Fig. 3 Surviving function under the destructive negative binomial model stratified by ulceration status
(upper: absent, lower: present) for patients with tumor thickness equal to (a) 0.320, (b) 1.94, and (c)
8.32 mm

The surviving probability decreases more rapidly for patients with thicker tumors. In
Fig. 3a, the surviving function does not fall below 0.7.

The destructive exponentially weighted Poisson and the negative binomial models
were fitted with the parameters p and η linked to tumor thickness and ulceration sta-
tus, respectively. If we swap these covariates, there is no improvement in the fit with
respect to the criteria in Table 2, since the values of (AI C, SBC) for these models
change to (427.7, 447.6) and (417.0, 436.9), respectively.

Finally, we turn out our attention to the role of the covariates on the cured fraction p0
(see Table 1). The estimates of the β2,ulc coefficients in Table 3 indicate that the mean
number of competing causes is greater when ulceration is present, so that the cured
fraction decreases. Since β̂1,thickness > 0 in Table 3, higher values of tumor thickness
imply smaller cured fraction estimates. Figure 4 displays the combined effect of these
covariates on the cured fraction. The lines run almost parallel and the cured fractions,
after a steep decrease, reach two plateaux for tumor thickness greater than 5 mm at
46.5 and 35.9% with ulceration status absent and present, respectively.
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Fig. 4 Cured fraction for the destructive negative binomial model versus tumor thickness stratified by
ulceration status (upper: absent, lower: present)

6 Conclusion

It is important to note that the total damaged variable Dw in (2) can be recognized as
the weighted Poisson processes on the interval [0, 1] formulated by Balakrishnan and
Kozubowski (2008). Therefore, most of the results in this paper can be obtained from
this viewpoint. In this paper, we look at the problem in a different way, that is, the
initial number of risk factors in a competitive scenario is subject to damage accord-
ing to the binomial probability law. We feel strongly that the length-biased Poisson
cure rate survival function truncated at 0 is more realistic than the Poisson distribu-
tion to represent, for instance, the number of metastasis-component tumor cells for
an individual before the treatment and the untruncated compound discrete distribu-
tion to consider the chance of cure after a given treatment. For the practical purpose,
the destructive weighted Poisson cure rate model formulated in this paper may be
helpful to assess whether the probability of the presence of the j-th competing cause
or the cured proportion are significant to justify the fitness, follow-up time and risk
prediction.

Finally, we believe that the destructive Poisson cure rate models are very helpful
for the global understanding of the variety of infection processes and the carcinogenic
effect of prolonged irradiation during some specified period of time (Klebanov et
al. 1993; Tournoud and Ecochard 2007). Indeed, these will be a subject of a future
research from the classical and Bayesian points of view.
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324
Rao CR, Rubin H (1964) On a characterization of the Poisson distribution. Sankhyā Ser A 26:295–298
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