
1904 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 10, OCTOBER 2006

Desynchronization: Synthesis of Asynchronous
Circuits From Synchronous Specifications

Jordi Cortadella, Member, IEEE, Alex Kondratyev, Senior Member, IEEE,
Luciano Lavagno, Member, IEEE, and Christos P. Sotiriou, Member, IEEE

Abstract—Asynchronous implementation techniques, which
measure logic delays at runtime and activate registers accord-
ingly, are inherently more robust than their synchronous coun-
terparts, which estimate worst case delays at design time and
constrain the clock cycle accordingly. Desynchronization is a new
paradigm to automate the design of asynchronous circuits from
synchronous specifications, thus, permitting widespread adoption
of asynchronicity without requiring special design skills or tools.
In this paper, different protocols for desynchronization are first
studied, and their correctness is formally proven using techniques
originally developed for distributed deployment of synchronous
language specifications. A taxonomy of existing protocols for asyn-
chronous latch controllers, covering, in particular, the four-phase
handshake protocols devised in the literature for micropipelines,
is also provided. A new controller that exhibits provably maximal
concurrency is then proposed, and the performance of desynchro-
nized circuits is analyzed with respect to the original synchronous
optimized implementation. Finally, this paper proves the feasi-
bility and effectiveness of the proposed approach by showing its
application to a set of real designs, including a complete imple-
mentation of the DLX microprocessor architecture.

Index Terms—Asynchronous circuits, concurrent systems, de-
synchronization, electronic design automation, handshake proto-
cols, synthesis.

I. INTRODUCTION

F EEDBACK closed-loop control is a classical engineering
technique used to improve the performance of a design in

the presence of manufacturing uncertainty. In traditional digital
design, synchronization control is performed in an open-loop
fashion. That is, all synchronization mechanisms, including
clock distribution, clock gating, and so on, are based on a
feedforward network, from the oscillator to one or more phase-
locked loops to a clock buffering tree and routing network. All
delay uncertainties in both the clock tree and the combinational
logic must be designed out, i.e., taken care of by means of
appropriate worst case margins.

Manuscript received June 15, 2005. This work was supported by the Working
Group on Asynchronous Circuit Design (ACID-WG, IST-1999-29119), the
ASPIDA under Project (IST-2002-37796), and CICYT under TIN2004-07925.
This paper was recommended by Associate Editor R. Camposano.

J. Cortadella is with the Software Department, Universitat Politécnica de
Catalunya, Barcelona 08034, Spain (e-mail: jordi.cortadella@upc.edu).

A. Kondratyev is with Cadence Berkeley Laboratories, Berkeley, CA 94704
USA (e-mail: kalex@cadence.com).

L. Lavagno is with Politecnico di Torino, Torino 10132, Italy (e-mail:
lavagno@polito.it).

C. P. Sotiriou is with ICS-FORTH, Crete 711 10, Greece (e-mail: sotiriou@
ics.forth.gr).

Digital Object Identifier 10.1109/TCAD.2005.860958

This approach has worked very well in the past, but, cur-
rently, it shows several signs of weakness. A designer, helped
by classical electronic design automation (EDA) tools, must
estimate at every design stage (floor planning, logic synthesis,
placement, routing, mask preparation) the effect that uncer-
tainties about the following design and fabrication steps will
have on geometry, performance, and power (or energy) of the
circuit. In the case of delay and power, these uncertainties
add up to huge margins that must be taken in order to ensure
that a sufficiently large number of manufactured chips work
correctly, i.e., within specifications. Statistical static timing
analysis (SSTA, see, e.g., [1] and [26]) partially deals with the
problem, by separating uncorrelated variations, whose effect
is reduced because they quickly average out, and correlated
variations, which must still be taken care of by margins.

This paper focuses on reducing the effect of correlated vari-
ability sources such as supply voltage, operating temperature,
and large-scale process variations (e.g., optical imperfections).
Such sources of power and performance variation cannot be
taken into account purely by SSTA.

In addition to variability effects induced by process and
operating conditions, people now use circuit-level power mini-
mization and equalization techniques, such as dynamic voltage
scaling and adaptive body biasing, that have very significant
effects in terms of performance. Unfortunately, operating very
close to the transistor threshold voltage increases the signifi-
cance of nonlinearities and second-order effects, thus, making
the a priori prediction of delays across a broad range of
operating voltages very problematic.

Changing the clock frequency in order to match performance
with scaled supply voltage is already quite difficult, since it
multiplies the complexity of timing analysis by the number of
voltage steps, and variability impact at low voltages is much
more significant. Performing frequency scaling in the presence
of adaptive body biasing, and hence, variable threshold
voltage, is even more complex. Moreover, clocks generated by
phase-locked loops cannot be used during frequency change
transients.

The techniques described in this paper make voltage/
frequency-based power optimization and control much easier,
since they are inherently more tolerant of delay variations.

Fortunately, several kinds of applications, and, in particular,
those using complex processor architectures for part of the com-
putation (e.g., general purpose computing and multimedia), and
several others that are tolerant to environmental variations (e.g.,
wireless communications) do not have to obey strict timing
constraints at all times. Due to the widespread use of caches,

0278-0070/$20.00 © 2006 IEEE

CORTADELLA et al.: DESYNCHRONIZATION: ASYNCHRONOUS CIRCUITS FROM SYNCHRONOUS SPECIFICATIONS 1905

irregular processing speeds, and multitasking kernels, all these
application areas inherently require algorithms that are tolerant
to internal performance variations and offer only average case
guarantees. For example, a digital camera takes about 1 s to
process four or five million pixels. In all these cases, a design
style in which the device provides average case guarantee, but
may occasionally go slower (e.g., when used in the desert) or
faster (e.g., when used on the snow) is quite acceptable. If
the performance of that device, on average, is double that of a
traditionally designed one, then there is a significant motivation
to use the robust techniques described in this paper.

It is widely reported that, as technology progresses, the
distance between the “official performance” and the “actual
performance” of a chip is continuously broadening, and 100%
margins (meaning that an integrated circuit can work twice as
fast as it is officially rated) are not uncommon even today.
This motivates us to look into the issue of measuring circuit
delay at runtime, after fabrication, rather than estimating it
during design, before fabrication. Unfortunately, this requires
us to consider asynchronous design techniques, since they are
inherently closed loop, and hence, more robust in the presence
of variation, as discussed above. This is enough to make most
designers nervous, since asynchronous design has traditionally
been considered dangerous. We believe that there are two major
reasons for this fact.

1) There are no good computer-aided design (CAD) tools
that completely cover the design flow.

2) Asynchrony involves changing most of the designers’
mentality when devising the synchronization among dif-
ferent components in a system.

This paper is a first step in the direction of automatically
introducing, based only on standard EDA tools and flows,
asynchronous feedback control of latches and flip-flops in a
digital design.

We propose a methodology that deviates from normal
application-specified integrated circuit (ASIC) design only
when it deals with the clock tree at the logical level. That
is, specification using synthesizable hardware description lan-
guages (HDLs), logic synthesis, layout, verification, extrac-
tion, automated test pattern generation, and so on all remain
the same.

This is only a first step, because we only consider the
synchronization level and not the actual measurement of logic
and wire delays. In this paper, delays are bounded by using
matched delay lines, which must be longer than the longest
path in the combinational logic. Ongoing research devoted to
automated conversion of a datapath to dual rail, in order to
measure actual delays, is discussed in [12].

A. Desynchronization

Desynchronization incorporates asynchrony in a con-
ventional EDA flow, without changing the “synchronous
mentality” or requiring new tools. Both aspects are quite ad-
vantageous from several standpoints. First, the notion of opera-
tion cycle lives in the subconscious of most circuit designers.
Finite state machines, pipelined microprocessors, multicycle
arithmetic operations, etc., are typically studied with the un-

derlying idea of operation cycle, which is inherently assumed
to be defined by a clock. As an example, one can think about
the traditional lecture on computer architecture explaining the
DLX pipeline. One immediately imagines the students look-
ing at the classical timing diagram showing the overlapped
IF–ID–EX–MEM–WB stages, synchronized at the level of a
cycle. It would be very difficult to persuade the lecturer to
explain the same ideas without that notion. Secondly, most
EDA tools, from logic synthesis to verification, assume a cycle-
based paradigm for computation (between clock edges) and
memorization (at clock edges), which is very useful to sepa-
rate functionality (Boolean logic) from performance (timing of
longest and shortest paths).

Operation cycles are useful for reasoning and designing. On
the other hand, an underlying asynchronous implementation
is extremely valuable for the reasons described above. Both
these apparently conflicting requirements can be reconciled by
using the concept of desynchronization. The essential idea is to
start from a synchronous synthesized (or manually designed)
circuit and replace directly the global clock network with a set
of local handshaking circuits. The circuit is then implemented
with standard tools, using the flows originally developed for
synchronous circuits. The only modification is the clock tree
generation algorithm. With this approach, we provide a design
methodology that can be picked up almost instantaneously and
without risk by an experienced team.

B. Contributions

This work gets its inspiration from a number of contributions
from past work, each providing a key element to a unique novel
methodology. Many of the concepts that appear in this paper
have been around for a long time, such as handshake protocols,
asynchronous pipelines, local controllers, etc.

The essential novelty of our contribution is that it provides
a fully automated synthesis flow based on a sound theory
that guarantees correctness, does not require any knowledge
of asynchronous design by the designer, and does not change
at all the structure of synchronous datapath and controller
implementation, but only affects the synchronization network.

In particular, our design flow starts from a standard synthe-
sizable HDL specification or gate-level netlist, yet, it provides
several key advantages of asynchronicity, such as low electro-
magnetic interference (EMI), global idling, and modularity.

To show that the suggested methodology is sound, we
provide formal proofs of correctness based on the theory of
Petri nets. We study different handshake protocols for latch
controllers and present a taxonomy determined by the degree
of concurrency of each protocol. A controller that preserves the
maximum concurrency for desynchronization is also presented.

We validated our approach by comparing synchronous and
desynchronized designs of large examples, including an im-
plementation of the data encryption standard (DES) and one
of the DLX microprocessor [19], since we did not want to
rely on small artificial logic synthesis benchmarks. Both de-
sign styles were implemented using the same set of commer-
cial EDA tools for synthesis, placement, and routing. To the
best of our knowledge, this is the first time an asynchronous

1906 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 10, OCTOBER 2006

design obtained through a conventional EDA flow does not
show any penalty (in terms of area, power, and performance)
with respect to its synchronous counterpart. Initial measure-
ments from a fabricated version of the DLX, with both syn-
chronous and desynchronized clock trees, further confirms
simulation results.

II. PREVIOUS WORK

Sutherland, in his Turing award lecture, proposed a scheme
to generate local clocks for a synchronous latch-based data-
path. His theory for asynchronous designs has been exploited
successfully by both manual designs [16] and CAD tools [2],
[5], [7]. That methodology is very efficient for dataflow type
of applications but is less suitable to emulate the behavior
of synchronous system by firing of local clocks in a sort of
“asynchronous simultaneity.”

In a different research area, Linder and Harden started from
a synchronous synthesized circuit and replaced each logic
gate with a small sequential handshaking asynchronous circuit,
where each signal was encoded together with synchronization
information using a level-encoded dual-rail (LEDR) delay-
insensitive code [24]. That approach bears many similarities
with ours, in particular, because it generates an asynchronous
circuit from a synchronous specification, but in our opinion, it
attempts to go too far, because it transforms each combinational
gate into a sequential block, which must locally keep track of
the odd/even phases. Thus, it may have an excessive overhead,
even when used for large-granularity gates such as in FPGAs.
To alleviate this overhead, a coarse-grain approach was used in
[29], but no direct apples-to-apples comparison with a synchro-
nous design was presented there.

Similarly, Theseus Logic proposed a design flow [23] that
uses traditional combinational logic synthesis to optimize the
datapath and uses direct translation and special registers to
generate automatically a delay-insensitive circuit from a syn-
chronous specification. That approach also has a high overhead
and requires designers to use a nonstandard HDL specification
style, different from the synchronous synthesizable subset.

Kessels et al. also suggested generating the local clocks of
synchronous datapath blocks using handshake circuits [20],
but used Tangram as a specification language. This has some
advantages, in that synchronous block activation can be con-
trolled at a fine granularity level as in clock gating, but does
not use a standard synchronous register transfer level (RTL)
specification.

The generation of local clocks from the handshaking
circuitry while ensuring the global “synchronicity” was first
suggested in [30]. That was the first work suggesting a conver-
sion of synchronous circuits into asynchronous ones through
replacement of flip-flops by master–slave latches with corre-
sponding controllers for local clocking. Similar ideas were
exploited in a doubly latched asynchronous pipeline suggested
in [21]. Our paper extends the results from [21] and [30]
by using more general synchronization schemes and provides
a theoretical foundation for the desynchronization approach
by proving a behavioral and temporal equivalence between a
synchronous circuit and its desynchronized counterpart.

We also extend with respect to our own previous work
in [10] and [11], because we use a maximally concurrent
synchronization mechanism, show how previously published
handshake controllers can be derived from this maximally
concurrent model by concurrency reduction, and, finally, prove
its equivalence to the synchronous version.

A related research area, albeit in a totally different appli-
cation domain, is desynchronization of synchronous language
specifications for deployment on distributed loosely synchro-
nized platforms. In that case, the problem arises from the need
to use synchronous languages [18] for embedded software mod-
eling. These languages offer the same zero-delay abstraction
as combinational logic and, thus, ensure easy specification of
composable deterministic reactive software modules. However,
compilation techniques into machine code for these languages
traditionally assume implementation on a single processor,
while application areas (e.g., automotive and aerospace) gen-
erally assume distributed implementation onto loosely coupled
control units, which do not share a dependable common clock.

Benveniste et al. [3], [4] devised conditions under which a
synchronous specification can be deployed on an architecture
that does not ensure in-order reception of events on different
physical signals, which is very similar to the assumption made
in asynchronous hardware design. We use some of their defin-
itions in order to formally prove the equivalence between our
desynchronized circuits and the original synchronous specifi-
cation. Note, however, that Benveniste’s original results require
the synchronous modules to satisfy a pair of conditions that are
not true in general of any synchronous design.

1) Endochrony requires every module distributed asynchro-
nously (in our case, every group of logically related
registers) to have a way to tell when its inputs are ready
and which ones are irrelevant in a given operation cycle,
based only on their values.

2) Isochrony requires two modules who share a signal to
agree always on its value (i.e., they cannot assign con-
currently conflicting values to it).

In our case, we simplify such conditions, so that they are met
by every possible input synchronous circuit. In particular, we
assume that all inputs to a combinational block are required
to compute its output. While conservative, our condition is
easier to satisfy than Benveniste’s ones. It potentially loses
performance and power, with respect to a solution implemented
using Benveniste’s approach, because it neglects to consider
“sequential don’t cares” when determining synchronization
conditions. However, it is automatable, and, hence, we chose
it for our work.

III. MARKED GRAPHS

A marked graph (MG) is the formalism used in this paper to
model desynchronization. They are a subclass of Petri nets [25]
that can model decision-free concurrent systems.
Definition 3.1 (MG): An MG is a triple (Σ,→,M0), where

Σ is a set of events, →⊆ (Σ× Σ) is the set of arcs (prece-
dence relation) between events, and M0 :→−→ N is an ini-
tial marking that assigns a number of tokens to the arcs
of the MG.

CORTADELLA et al.: DESYNCHRONIZATION: ASYNCHRONOUS CIRCUITS FROM SYNCHRONOUS SPECIFICATIONS 1907

An event is enabled when all its direct predecessor arcs have
a token. An enabled event can occur (fire), thus, removing one
token from each predecessor arc and adding one token to each
successor arc. A sequence of events σ is feasible if it can fire
from M0, denoted by M0

σ→. A marking M ′ is reachable from
M if there exists a σ such that M

σ→M ′. The set of reachable
markings from M0 is denoted by [M0〉.

An example of an MG is shown in Fig. 3(b), where the events
A+ and A− represent the rising and falling transitions of signal
A, respectively. In the initial marking (denoted by solid dots at
arcs), two events are enabled, i.e., B+ and D+. The sequence
of events 〈D+ D− C+ B+ B− A+ C−〉 is an example of a
feasible sequence of the MG.
Definition 3.2 (Liveness): An MG is live if for any M ∈

[M0〉 and for any event e ∈ Σ, there is a sequence fireable from
M that enables e.

Liveness ensures that any event can be fired infinitely often
from any reachable marking.
Definition 3.3 (Safeness): An MG is safe if no reachable

marking from M0 can assign more than one token to any arc.
Definition 3.4 (Event Count in a Sequence): Given a firing

sequence σ and an event e ∈ Σ, σ(e) denotes the number of
times that event e fires in σ.

The following results were proven in [9] for strongly con-
nected MGs.
Theorem 3.1 (Liveness): An MG is live if and only if M0

assigns at least one token on each directed circuit.
Theorem 3.2 (Invariance of Tokens in Circuits): The token

count in a directed circuit is invariant under any firing, i.e.,
M(C) = M0(C) for each directed circuit C and for any M in
[M0〉, where M(C) denotes the total number of tokens on C.
Theorem 3.3 (Safeness): An MG is safe if and only if every

arc belongs to a directed circuit C with M0(C) = 1.
In the rest of the paper, we only deal with strongly con-

nected MGs.

IV. ZERO-DELAY DESYNCHRONIZATION MODEL

The desynchronization model presented in this section aims
at the substitution of the global clock by a set of asynchronous
controllers that guarantee an equivalent behavior. The model
assumes that the circuit has combinational blocks (CL) and reg-
isters implemented with D flip-flops (FF), all of them working
with the same clock edge [e.g., rising in Fig. 1(a)].

A. Steps in Desynchronization Method

The desynchronization method proceeds in three steps.
1) Conversion of the flip-flop-based synchronous circuit into

a latch-based one [M and S latches in Fig. 1(b)]. D flip-
flops are conceptually composed of master–slave latches.
To perform desynchronization, this internal structure is
explicitly revealed [see Fig. 1(b)] to:
a) decouplelocal clocks for master and slave latches

(in a D flip-flop, they are both derived from the same
clock);

b) optionally improve performance through retiming,
i.e., by moving latches across combinational logic.

Fig. 1. (a) Synchronous circuit. (b) Desynchronized circuit.

Fig. 2. Synchronous circuit with single global clock.

The conversion of a flip-flop-based circuit into a latch-
based one is not specific to the desynchronization frame-
work only. It is known to give an improvement in
performance for synchronous systems [8] and, for this
reason, it has a value by itself.

2) Generation of matched delays for the combinational
logic [denoted by rounded rectangles in Fig. 1(b)]. Each
matched delay must be greater than or equal to the delay
of the critical path of the corresponding combinational
block. Each matched delay serves as a completion detec-
tor for the corresponding combinational block.

3) Implementation of the local controllers. This is the main
topic of this section.

Fig. 2 depicts a synchronous netlist after the conversion
into latch-based design, possibly after applying retiming. The
shadowed boxes represent latches, whereas the white boxes
represent combinational logic. Latches must alternate their
phases. Those with a label 0 (1) at the clock input represent the
even (odd) latches. All latches are transparent when the control
signal is high (CLK = 0 for even and CLK = 1 for odd). Data
transfers must always occur from even (master) to odd (slave)

1908 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 10, OCTOBER 2006

Fig. 3. Desynchronization model for linear pipeline and ring.

latches and vice versa. Usually, this latch-based scheme is
implemented with two nonoverlapping phases generated from
the same clock.

Initially, only the latches corresponding to one of the phases
store valid data. Without loss of generality, we assume that
these are the even latches. The odd latches store bubbles, in
the argot of asynchronous circuits.

B. Zero-Delay Model

This section presents a formal model for desynchronization.
The aim is to produce a set of distributed controllers that
communicate locally with their neighbors and generate the
control signals for the latches in such a way that the behavior
of the system is preserved. For simplicity, we assume that all
combinational blocks and latches have zero delay. Thus, the
only important thing about the model is the sequence of events
of the latch control signals. The impact of the datapath delays
on the model will be discussed during the implementation of
the model (Section VI).

For simplicity, we start by analyzing the behavior of a linear
pipeline [see Fig. 3(a)]. The generalization for any arbitrary
circuit will be discussed later. Black dots represent data tokens,
whereas white dots represent bubbles. In the model, we assume
that all latches become transparent when the control signal
is high. The events A+ and A− represent rising and falling
transitions of the control signal A, respectively.

Fig. 4. Timing diagram of linear pipeline in Fig. 3(a)–(d).

Fig. 3(b) depicts a fragment of the unfolded MG representing
the behavior of the latches. There are three types of arcs in this
model (we only refer to those in the first stage of the pipeline).

1) A+→ A− → A+, which simply denotes that the rising
and falling transitions of each signal must alternate.

2) B− → A+, which denotes the fact that for latch A
to read a new data token, B must have completed the
reading of the previous token coming from A. If this arc is
not present, data overwriting can occur, or in other words,
hold constraints can be violated.

3) A+→ B−, which denotes the fact that for latch B to
complete the reading of a data token coming from A, it
must first wait for the data token to be stored in A. If this
arc is not present, B can “read a bubble” and a data token
can be lost, or in other words, setup constraints can be
violated.

The marking in Fig. 3(b) represents a state in which all latch
control signals are low and the events B+ and D+ are enabled,
i.e., the latches B and D are ready to read the data tokens from
A and C, respectively.

Fig. 3(c) shows the MG that derives from the unfolded
graph in Fig. 3(b). A simplified notation is used in Fig. 3(d)
to represent the same graph, substituting each cycle x −→•

←−y by
a double arc x←→• y, where the token is located close to the
enabled event in the cycle (y in this example).

It is interesting to notice that the previous model is more
aggressive than the classical one generating nonoverlapping
phases for latch-based designs. As an example, the following
sequence can be fired in the model of Fig. 3(a)–(d)

D+ D− C+ B+ B− A+ C− · · · .

After the events 〈D+ D− C+ B+〉, a state in which B = C =
1 and A = D = 0 is reached, where the data token stored in
A is rippling through the latches B and C. A timing diagram
illustrating this sequence is shown in Fig. 4.

But can this model be generalized beyond linear pipelines? Is
it valid for any arbitrary netlist? Which properties does it have?
We now show that this model can be extended to any arbitrary
netlist while preserving a property that makes the circuits
observationally equivalent to their synchronous versions: flow
equivalence [17].

CORTADELLA et al.: DESYNCHRONIZATION: ASYNCHRONOUS CIRCUITS FROM SYNCHRONOUS SPECIFICATIONS 1909

Fig. 5. Synchronization between latches: A → B.

Fig. 6. Desynchronization model for circuit in Fig. 2.

C. General Desynchronization Model

The general desynchronization model is shown in Fig. 5.
For each communication between an even latch and an odd
latch, the synchronization depicted in Fig. 5(a) must be defined.
If the communication is between odd and even, the one in
Fig. 5(b) must be defined. Note that the only difference is the
initialization. The odd latches are always enabled in the initial
state to read the data tokens from the even latches.

By abutting the previous synchronization models, it is pos-
sible to build the model for any arbitrary netlist, as shown in
Fig. 6. The MGs obtained by properly abutting the models in
Fig. 5 are called circuit MGs (CMGs).

We now show that a desynchronized circuit mimics the
behavior of its synchronous counterpart. For that, it must be
proven that:

• a desynchronized circuit never halts (liveness);
• all computations performed by a desynchronized circuit

are the same as the ones performed by the synchronous
counterpart (flow equivalence).

The remainder of this section is devoted to prove these two
statements.

D. Liveness

For the proof of liveness, the reader must bear in mind the
meaning of the double arcs x←→• y, which represent x −→•

←−y
Theorem 4.1: Any CMG is live.
Proof: By Theorem 3.1, it is enough to prove that there is

no directed circuit in the CMG without any token. Rather than
giving a formal proof, we merely give hints that can easily lead
the reader to a complete proof. It is easy to see that there is no
way to build an unmarked path longer than three arcs. As an
example, let us try to find the longest unmarked path from D+
in the CMG of Fig. 3(c). After building the path D+→ D− →

Fig. 7. Synchronization of ring. (a) Live model. (b) Nonlive model.

C+→ C−, it is not possible to extend it unless a marked arc
is included, either C −→• C+ or C −→• B+. A case-by-case
study leads to a complete proof. �

Liveness guarantees something crucial for the model: ab-
sence of deadlocks. This property does not hold automatically
for every “reasonable” model. Fig. 7 depicts two different
desynchronization models for a ring, which can be obtained
by connecting the output of latch D with the input of latch A
in Fig. 3(a). Fig. 7(a) depicts a nonoverlapping model between
adjacent latches, whereas Fig. 7(b) uses a four-phase handshake
with the sequence A+ B+ A− B− for each pair of adjacent
latches.

When building the protocol for a ring, the second model is
not live due to the unmarked cycle

A− → B− → C− → D− → A− .

One can easily understand that after firing events A+ and C+,
the system enters a deadlock state. It is also easy to prove that
this model is live for acyclic netlists.

The acid test of liveness for a handshake protocol consists
of connecting two controllers back to back for a two-stage
ring [see Fig. 3(e)]. Fig. 3(f) depicts the unfolded behavior
after including all causality constraints for the communications
A→ B and B → A. The folded behavior is shown in Fig. 3(g),
which can also be obtained by combining the synchronization
models of Fig. 5(a) and (b). Several arcs become redundant,
thus, deriving the simplified model shown in Fig. 5(h).

Interestingly, the resulting protocol derived from the “aggres-
sive” concurrent model is “naturally” transformed into one that
is nonoverlapping, live, and safe. Note that a two-stage ring is
typically derived from the implementation of a finite-state ma-
chine, in which the current state stored in a register is fed back
to the same register after going through the combinational logic
that calculates the next state. As an example, the handshake
protocol between latches C and D in Fig. 2 (see Fig. 6 also)
becomes nonoverlapping.

E. Flow Equivalence

In this section, we prove that a desynchronized circuit mim-
ics its synchronous counterpart. We show that, for each latch,
the value stored at the ith pulse of the control signal is the same
as the value stored at the ith cycle of the synchronous circuit.

We first present some definitions that are relevant for syn-
chronous circuits.
Definition 4.1 (Synchronous Behavior): Given a block A

(combinational logic and latch), we call FA the logic function

1910 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 10, OCTOBER 2006

TABLE I
OBSERVABLE TRACES AT LATCHES OF SYNCHRONOUS CIRCUIT

calculated by the combinational logic. We call Ai the value
stored in A’s latch after the ith clock cycle. Let us call
E1 . . . Ep the (even) predecessor latches of an odd latch O,
and O1 . . . Op the (odd) predecessor latches of an even latch
E. Then

1) Oi = FO(E1
i−1, . . . , E

p
i−1);

2) Ei = FE(O1
i , . . . , Op

i);

where all even blocks store a known initial value at cycle zero.
For the sake of simplicity here, we model a closed circuit,

i.e., one without primary inputs from the environment. The
environment can be considered explicitly either by slightly
changing the proofs, or by modeling it as a nondeterministic
function. The latter mechanism also allows us to show how a
desynchronized circuit can be interfaced with a synchronous
one (the environment), namely by driving its input handshake
signals with the global clock and ignoring its output handshake
signals. The latter must be shown to follow the correct protocol
by means of appropriate timing assumptions.

The behavior of a synchronous circuit can be defined as the
set of traces observable at the latches. If we call E1 . . . En

and O1 . . . Om the set of even and odd latches, respectively,
the behavior of the circuit can be modeled by an infinite trace
in which each element of the alphabet is an (n + m)-tuple of
Table I.

If we project the trace onto one of the latches, say A, we
obtain a trace A0A1 . . . Ai . . ., i.e., the sequence of values
stored in latch A at each cycle.

We now present a lemma that guarantees a good alternation
of pulses between adjacent latches.
Lemma 4.1 (Synchronic Distance): Let (Σ,→,M0) be a

CMG, E and O two adjacent blocks such that E is even and
O is odd, and σ a sequence fireable from M0.

1) If E transfers data to O, then

σ(E+) ≤ σ(O−) ≤ σ(E+) + 1.

2) If O transfers data to E, then

σ(E−) ≤ σ(O+) ≤ σ(E−) + 1.

Proof: Both inequalities hold by the existence of the
double arcs E+↔ O− or O+↔ E− that guarantee the

Fig. 8. Flow equivalence.

alternation between both events. The initial marking is the one
that makes the difference between the even-to-odd and odd-to-
even connections. �

This lemma states that adjacent latches alternate their pulses
correctly, which is crucial to preserve flow equivalence.1

We now present the notion of flow equivalence [17], which
is related to that of the synchronous behavior in [24], in terms
of the projection of traces onto the latches of the circuit.
Definition 4.2 (Flow Equivalence): Two circuits are flow

equivalent if:

1) they have the same set of latches;
2) for each latch A, the projections of the traces onto A are

the same in both circuits.

Intuitively, two circuits are flow equivalent if their behavior
cannot be distinguished by observing the sequence of values
stored at each latch. This observation is done individually for
each latch and, thus, the relative order with which values are
stored in different latches can change, as illustrated in Fig. 8.
The top diagram depicts the behavior of a synchronous system
by showing the values stored in two latches, A and B, at
each clock cycle. The diagram at the bottom shows a possible
desynchronization. From the diagram, one can deduce that
latches A and B cannot be adjacent (see Lemma 4.1), since
the synchronic distance of their pulses is sometimes greater
than 1 (e.g., B has received five pulses after having stored
the values 〈5, 1, 2, 3, 1〉, while A has only received two pulses
storing 〈1, 3〉).

The following theorem is the main theoretical result of this
paper.
Theorem 4.2: The desynchronization model preserves flow

equivalence.
Proof: By induction on the length of the trace.

Induction hypothesis: For any latch A, flow equivalence is
preserved for the first i− 1 occurrences of A− and until a
marking is reached with the ith occurrence of A− enabled
(see Fig. 9). The marking of the arcs Ek+→ Ek− → Ek+
or Ok+→ Ok− → Ok+ is irrelevant for the hypothesis.
Basis: The induction hypothesis immediately holds for odd

latches in the initial state [Fig. 9(a)]. For even latches [see
Fig. 9(b)], it holds after having fired O1 + . . . Op+ once from

1A similar result was derived in [24], also based on the Marked Graph
Theory, using, however, a very different circuit structure and implementation
philosophy.

CORTADELLA et al.: DESYNCHRONIZATION: ASYNCHRONOUS CIRCUITS FROM SYNCHRONOUS SPECIFICATIONS 1911

Fig. 9. Illustration of Theorem 4.2.

the initial state. This single firing preserves flow equivalence
since each latch Ok receives the value

Ok
1 = FOk

(
E1

0 , . . . , Em
0

)

obtained from the initial value of E1, . . . , Em, the (even)
predecessor latches of Ok.
Induction step (case O odd): Since the ith firing of O− is

enabled, we know that each Ek+ transition has fired i− 1 times
(see Lemma 4.1) and, by the induction hypothesis, stores the
value Ek

i−1. Therefore, the next firing of O−will store the value

Oi = FO

(
E1

i−1, . . . , E
p
i−1

)

which preserves flow equivalence. Moreover, the ith firing
of Ek+ will occur after O has been closed, since the arc
O− → Ek+ forces that ordering. This guarantees that no data
overwriting occurs on latch O.
Induction step (caseE even): Since E− has fired i− 1 times,

then Ok+ has fired i times, according to Lemma 4.1. Since the
Ok latches are odd, they store the values Ok

i , by the induction
hypothesis and the previous induction step for odd latches. The
proof now is reduced to case of O being even, in which

Oi = FO

(
E1

i , . . . , Ep
i

)
.

This concludes the proof, since induction guarantees flow
equivalence for any latch A and for any number firings
of A−. �

V. HANDSHAKE PROTOCOLS FOR DESYNCHRONIZATION

Section IV presented a model for desynchronization that
defines the causality relations among the latch control signals
for a correct flow of data in the datapath. Now, it is time to
design the controllers that implement that behavior.

Several handshake protocols have been proposed in the lit-
erature for such purpose. The questions are as follows: Are
they suitable for a fully automatic desynchronization approach?
Is there any controller that manifests the concurrency of the
desynchronization model proposed in this paper?

We now review the classical four-phase micropipeline latch
control circuits presented in [15]. For that, the specification of
each controller [15, Figs. 5, 7, and 11] has been projected onto
the handshake signals (Ri, Ai, Ro, Ao) and the latch control
signal (A), thus, abstracting away the behavior of the internal

state signals.2 The projection has been performed by preserving
observational equivalence.3

Fig. 10(a)–(c) shows the projections of the controllers from
[15]. The leftmost part of the figure depicts the connection
between an even and an odd controller generating the latch
control signals A and B, respectively. The rightmost part de-
picts only the projection on the latch control signals when three
controllers are connected in a row.

The controllers from [15] show less concurrency than the
desynchronization model. For this reason, we also propose a
new controller implementing the protocol with maximum con-
currency proposed in this paper [Fig. 10(e)]. For completeness,
a handshake decoupling the falling events of the control signals
(fall decoupled) is also described in Fig. 10(d).

In all cases, it is crucial to properly define the initial state
of each controller, which turns out to be different for the even
and odd controllers. This is an important detail often missed in
many papers describing asynchronous controllers.

The question now is: Which ones of these controllers are
suitable for desynchronization? Instead of studying them one
by one, we present a general study of four-phase protocols,
illustrated in Fig. 11. The figure describes a partial order
defined by the degree of concurrency of different protocols.
Each protocol has been annotated with the number of states of
the corresponding state graph. The MGs in the figure do not
contain redundant arcs.

An arc in the partial order indicates that one protocol can
be obtained from the other by a local transformation (i.e., by
moving the target of one of the arcs of the model). The arcs
A+↔ A− and B+↔ B− cannot be removed for obvious
reasons (they can only become redundant). For example, the
semi-decoupled protocol (five states) can be obtained from
the rise-decoupled protocol (six states) by changing the arc4

A+−→• B− to the arc A+−→• B+, thus, reducing concurrency.
The model with eight states, labeled as “desynchronization

model,” corresponds to the most concurrent model presented
earlier in this paper, for which liveness and flow equivalence
have been proven in Section IV. The other models are obtained
by successive reductions or increases of concurrency.

The nomenclature rise and fall decoupled has been intro-
duced to designate the protocols in which the rising or falling
edges of the pulses have been decoupled, respectively. The
rise-decoupled protocol corresponds to the fully decoupled one
proposed in [15].

In [6], the following results were proven for the models
shown in Fig 11.

1) All models except the simple four-phase protocol (top left
corner) are live.

2) All models except the two models at the bottom are flow
equivalent.

2In fact, A is the signal preceding the buffer that feeds the latch control
signal. The polarity of the signal has been changed to make the latch transparent
when A is high.

3For those users familiar with petrify, the projection can be obtained by
hiding signals with the option −hide.

4Note that this arc is not explicitly drawn in the picture, because it is
redundant.

1912 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 10, OCTOBER 2006

Fig. 10. Handshake protocols. (a) Simple four-phase control (Furber and
Day). (b) Semi-decoupled four-phase control (Furber and Day). (c) Fully
decoupled four-phase control (Furber and Day). (d) Fall-decoupled control.
(e) De-synchronization control (this paper).

3) Desynchronization can be performed by using any hybrid
combination of the live and flow equivalent models shown
in the figure (i.e., using different types of controllers for
different latches).

These results offer a great flexibility to design different
schemes for desynchronized circuits.

Fig. 11. Different degrees of concurrency in handshake protocols for
desynchronization.

VI. IMPLEMENTATION OF DESYNCHRONIZATION

CONTROLLERS

The protocols described in Section V can be implemented
in different ways using different design styles. In this section,
we describe a possible implementation of the semi-decoupled
four-phase handshake protocol proposed by Furber and
Day [15]. We present an implementation with static comple-
mentary metal–oxide–semiconductor (CMOS) gates, while the
original one was designed at transistor level. There are several
reasons for the selection of this protocol with this particular
design style.

1) We pursue an approach suitable for semicustom design
using automatic physical layout tools.

2) The semi-decoupled protocol is a good tradeoff between
simplicity and performance.

3) The pulsewidth of the latch control signals will be sim-
ilar if all controllers are similar. Moreover, the depth
of the datapath logic usually has a delay that can be
overlapped with the controller’s delay. Therefore, the arcs
A+→ B+ and A− → B− do not impose performance
constraints in most cases.

In case of time-critical applications, other controllers can be
used, including hybrid approaches combining protocols differ-
ent from the ones shown in Fig. 11.

Fig. 12 depicts an implementation of a pair of controllers
(even and odd) for a fragment of datapath. The figure also
shows the MGs modeling the behavior of each controller. The

CORTADELLA et al.: DESYNCHRONIZATION: ASYNCHRONOUS CIRCUITS FROM SYNCHRONOUS SPECIFICATIONS 1913

Fig. 12. Implementation of semidecoupled controllers for even (E) and odd (O) latches.

only difference is the initial marking, which determines the
reset logic (signal RST).

Resetting the controllers is crucial for a correct behavior. In
this case, the even latches are transparent and the odd latches
are opaque in the initial state. With this strategy, only the odd
latches must be reset in the datapath. The implementation also
assumes a relative timing constraint (arc Ro− → Ri+) that can
be easily met in the actual design.5

The controllers also include a delay that must match the
delay of the combinational logic and the pulsewidth of the latch
control signal.

Each latch control signal (E and O) is produced by a buffer
(tree) that drives all the latches. If all the buffer delays are sim-
ilar, they can be neglected during timing analysis. Otherwise,
they can be included in the matched delays, with a similar but
slightly more complex analysis.

In particular, the delay of the sequence of events

E+→ Ro

Ri
− → logic delay → O+

is the one that must be matched with the delay of the combi-
national logic plus the clock-to-output delay of a latch. The
event Ro/Ri− corresponds to the falling transition of the signal

5This assumption also allows us to simplify the implementation proposed in
[15]: The equation for A+ becomes Rin instead of Rin ∧ ¬Rout.

Ro/Ri between the E− and O− controllers. On the other hand,
the delay of the sequence

O+→ Ai

Ao
− → Ro

Ri
+→ pulse delay → O−

is the one that must be matched with the minimum pulsewidth.
It is interesting to note that both delays appear between tran-
sitions of the control signals of Ri and O, and can be imple-
mented with just one asymmetric delay.

The control can be generalized for multiple-input/multiple-
output blocks. In that case, the req/ack signals of the protocols
must be implemented as a conjunction of those coming from the
predecessor and successor controllers, by using C-elements. As
an example, Fig. 13 shows the desynchronization control for the
circuit depicted in Fig. 2.

VII. TIMED MODEL

The model presented in Section IV guarantees synchronous
equivalence with zero-delay components. However, computa-
tional blocks and latches have delays that impose a set of timing
constraints for the model to be valid.

Fig. 14 depicts the timing diagram for the behavior of two
latches in a pipeline. The signals I and O represent the inputs
and outputs of the latches. The signal L is the control of the
latch (L = 1 for transparent).

We focus our attention on latch A. As soon as OA becomes
valid, the computation for block B starts. Latch B can become

1914 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 10, OCTOBER 2006

Fig. 13. Desynchronized control for netlist in Fig. 2.

Fig. 14. Timing constraints for asynchronous controllers.

transparent before the computation completes. Opening a latch
in advance is beneficial for performance, because it eliminates
the time for capturing data from the critical path.

Once the computation is over, the local clock LB of the
destination latch B immediately falls. This is possible, because
modern latches have zero setup time [8].

Assuming that all controllers have similar delays, the follow-
ing constraint is required for correct operation

TT ≥ TCQ + TC + TL. (1)

The constraint (1) indicates that the cycle time of a local
clock (measured as a delay TT between two rising edges of
LA) must be greater than the delay of local clock propagation
though a latch (TCQ) plus the delay of the computational block
(TC) plus the latch controller delay (TL). The control overhead
in this scheme is reduced to a single delay TL, because the
control handshake overlaps with the computation cycle due
to the early rising of the local clock. The constraint assumes
that the depth of combinational logic is sufficiently large to
amortize the overlapping part of the handshake. The latter is
true for ASIC designs, which typically have more than 20 levels
of logic between adjacent registers.

Inequality (1) guarantees the satisfaction of setup constraints
for the latch. Note that hold constraints in a desynchronized
circuit are ensured automatically, because for any valid protocol
(see Fig. 11), the clock of any predecessor latch rises only
after the clock of its successor latch had fallen. This makes it
impossible to have races between two consecutive data items at
latch inputs.

A. Timing Compatibility

In Section IV, we showed that synchronous and desyn-
chronized circuit are indistinguishable when observing event
sequences at the outputs of corresponding latches. This section
shows that the temporal behaviors of these circuits are also
similar, i.e., the deadlines on computation imposed by a clock
are met in a desynchronized circuit as well. Based on these
two results (temporal and behavioral equivalence), one could
replace any synchronous circuit by its desynchronized counter-
part without visible changes. This makes the suggested design
methodology modular and compositional.

Note that this analysis uses the same models and margins
for both designs. However, as discussed in Section I, desyn-
chronized circuits behave much better than synchronous ones
with respect to tolerance of design, manufacturing, and envi-
ronmental uncertainties. Hence, a desynchronized circuit can
generally run at typical, as opposed to worst case speed, i.e.,
1.2–2× faster than its synchronous counterpart.

In a synchronous flip-flop-based circuit, the cycle time TS is
bounded by [8]

TS ≥ TC + Tsetup + Tskew + TCQ (2)

where TC, Tsetup, Tskew, and TCQ are maximum combinational
logic, setup, skew, and clock-to-output times, respectively.
Comparing inequalities (1) and (2) and bearing in mind that due
to retiming the maximal computation time in a desynchronized
circuit can only be reduced, one can conclude the difference
between the cycle time of desynchronized circuit TT and the
cycle time TS of the corresponding synchronous design is ap-
proximately TL − (Tsetup + Tskew). In all our design examples,
it is at most a few percent.

There is a small caveat in the above statement. The notion of
a cycle time is well defined only for a circuit with a periodic
clock. In a desynchronized system, the separation time between
adjacent rising edges of the same local clock might change dur-
ing operation (see, e.g., Fig. 8). Therefore, we should compare

CORTADELLA et al.: DESYNCHRONIZATION: ASYNCHRONOUS CIRCUITS FROM SYNCHRONOUS SPECIFICATIONS 1915

the perfect periodic behavior of the synchronous circuit with
the nonperiodic one of the desynchronized circuit.

The following properties provide a basis for relating these
two systems in a sound way. Informally, they show that latches
that belong to critical computational paths of a desynchronized
system have a well-defined constant cycle time, while the rest
of the latches operate in plesiochronous mode [14], in which
their local clocks have transitions at the same rate, only with
bounded time offsets from each other.
Property 7.1: If in a desynchronized circuit, the computation

delay TC is the same for every combinational block, then the
separation time between adjacent rising edges of every local
clock is also the same and equals TT.

The proof is trivial, because a perfectly balanced desynchro-
nized system behaves like a synchronous one with all local
clocks paced at the same rate.

Suppose that in the initial state of a desynchronized system,
local controllers for odd latches produce a rising transition.
Then Property 7.1 says that in a perfectly balanced desynchro-
nized system, the ith rising transition of the local clock of
any odd latch happens at time (i− 1) ∗ TT. Below, we show
that time stamps (i− 1) ∗ TT provide an upper bound for the
ith rising transition at an odd latch in an arbitrary (possibly
unbalanced) desynchronized system. A similar relationship can
be defined for the clocks of even latches by adding a constant
phase shift Tph to time stamps (i− 1) ∗ TT. Without losing
generality, one can, thus, consider only one type of latches only
(e.g., odd).
Property 7.2: In any desynchronized circuit, the ith rising

transition of a local clock of an odd latch cannot appear later
than (i− 1) ∗ TT.

Proof: Analysis of the firing time of the ith instance Ai

of event A in an MG G is reduced to the following procedure
[27]: 1) annotate each edge of the graph with the corresponding
delay; 2) construct the unfolding of the graph up to Ai; and
3) find the longest path from the set of events enabled initially
(fireable at time t = 0) to Ai.

From Property 7.1 it follows that, for a well-balanced de-
synchronized circuit, the length of the longest path to the ith
rising event at any odd latch is (i− 1) ∗ TT. For an arbitrary
unbalanced circuit, the weight of edges in G could only be
reduced from their worst case values. This immediately implies
that none of the odd latches could have the ith rising transition
happening later than (i− 1) ∗ TT. �

Let us call a latch critical if the delay of a combinational
block connected to its output is equal to the maximal com-
putational delay TC. From Properties 7.1 and 7.2, it follows
that the separation time between any successive pair of rising
edges of clocks for the same critical latch is constant and equal
to TT. The synchronic distance between adjacent latches does
not exceed 1 (Lemma 4.1). Therefore, after at most one cycle,
latches adjacent to a critical latch must adapt their cycle time to
TT (after one cycle, they are paced by a critical latch). Pushing
these arguments further implies that in a connected desynchro-
nized system, any latch sooner or later settles to the cycle time
TT. This shows that the behavior of a desynchronized circuit
has a well-defined periodicity, similar to that of a synchronous
one, paced by a common clock.

Embedding of a desynchronized circuit with clock cycle
TT into a synchronous environment with a clock cycle TS :
TS ≥ TT results in the latches at the asynchronous/synchronous
boundary becoming critical, since they are paced by a slower
external clock TS.This consideration shows that desynchro-
nized and synchronous systems are compatible in terms of
timing, because their external timed behavior is the same as
long as both use the same margins to ensure safe operation.

As argued above, when average performance matters more
than worst case, the desynchronized circuit can work faster than
the synchronous one, because it requires much smaller margins.

VIII. PHYSICAL DESIGN, VERIFICATION, AND TESTING

Physical design is a key step of our methodology. At this
stage, we insert the matched delay chains that ensure that
setup times are satisfied. This can no longer be done during
logic synthesis in the case of ASICs implemented using deep
submicron technologies, as the wire delay models are too
approximate before routing. Even placement information is no
longer sufficient for an accurate estimation in large chips.

The placement and global routing step is the ideal point in the
flow to compute the delay of the logic and wiring, since detailed
routers can exploit multiple layers of metal to ensure a close
correspondence with the requirements imposed by the global
router (including layer assignment). Unfortunately, inserting
large delay chains during placement may be problematic, since
it would significantly disrupt the circuit layout and force place-
ment information to be recomputed. In this paper, we take the
opposite approach. We propose to use very pessimistic delay
models for prelayout timing analysis, insert longer delay chains
than needed, and perform the placement. After that, the delay
chains can be resized in-place or reduced with minimal effect
on the placement.

Note that synchronous timing analysis can be used “as is,” by
providing the appropriate reference points between which de-
lays must be computed. For the datapath, this does not pose any
special problem. In case internal delays of asynchronous con-
trollers, which contain loops, need to be computed, this may be
achieved by specifying the path endpoints explicitly in order to
apply static analysis only to those linear portions of the circuit.

Controllers are generated for multibit registers in order to
reduce the area and wiring overhead. An optimal grouping tech-
nique would take into account both a cost function that favors
larger groups to reduce overhead, and a similarity function that
favors grouping registers with similar fanins and fanouts, as in
bit-slice datapaths. This issue is considered in detail in [13].

Contemporary placement tools are able to make incremental
modifications when some portions of the delay chains (less
than 5% of the total area for a typical design) are removed.
Thus, global routing and delay estimations are not significantly
affected, and single-iteration convergence can be achieved. This
is a very significant advantage in order to speed up design times.

A. Matched Delay Insertion

The flow that we used for the desynchronization approach
begins with a synthesizable HDL specification [e.g., Verilog/

1916 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 10, OCTOBER 2006

Fig. 15. Changes in standard synchronous design flow.

very-high-speed integrated circuit (VHSIC) HDL (VHDL)],
using the conventional synchronous HDL constructs. Next,
each datapath element is synthesized for the target cycle time
TT, using a conventional synthesis tool. Due to the load of the
local clock by the registers of the datapath block, buffers are
inserted at this stage.

The circuit is analyzed using conventional static timing
analysis (STA) tools to estimate the delay of each matched
delay element. These matched delay elements are generated
and embedded into latch controllers. At this stage, the datapath
blocks and their corresponding latch controllers are combined
to form the complete netlist of the desynchronized circuit. Once
the complete netlist is assembled, it may be simulated and its
correct operation verified using a gate-level simulator.

The circuit is then placed and routed, and the postlayout
delays are extracted. The pessimistic delays used for prelayout
timing analysis are now more precise, and redundant NOT

and NAND gate pairs can be removed from the delay chains
by exploiting the incremental place-and-route capabilities of
modern tools. The possible modifications of different stages in
conventional automatic design flow for doing desynchroniza-
tion are shown in Fig. 15.

B. Verification

Conventional equivalence checking tools can be used for the
verification of the datapath, since desynchronization keeps it
intact. Some extra effort is required to check that the matched
delays of the controllers generate the appropriate timing separa-
tions between the enable signal of the latches to accommodate
the delays of the combinational logic. This can be easily verified
after layout with static analysis tools.

C. Design for Testability

The datapath can be tested by using scan path insertion with
synchronous tools. A clock can be distributed to every register
and used only in test mode. Local acknowledge wires in test
mode allow one to build this network without skew problems.
Thus, it is considerably smaller than in the synchronous case,
where it must satisfy tight skew constraints. Moreover, it is kept
idle during normal operation.

Asynchronous handshake circuits can also be tested by using
a full-scan methodology, as discussed in [28]. This has a perfor-
mance and area overhead, but it is essential for the acceptance

of the methodology. The goal is to ensure full coverage. Hand-
shake circuits are self-checking, and the work in [22] showed
that 100% stuck-at coverage can be achieved for asynchronous
pipelines using conventional test pattern generation tools.

D. Binning (or Speed Grading) and Yield Improvement

One advantage of desynchronization is that it eases some
form of circuit binning (also called speed grading) based on
performance. If we assume that the performance of similar
objects (e.g., transistors, interconnects on the same layer) track
each other within relatively small regions of the layout, then
we can assume that the performance of a die is determined by
the delay chains, while the delay of the logic is proportionately
smaller, and, thus, setup constraints are automatically satisfied.
This means that the request and acknowledge wires at the
boundaries of the circuit can be used to measure the worst case
response time of every individual die.

In other terms, the maximum speed of a die can be estab-
lished by only looking at the timing of transitions of some
output signals with respect to the clock input, without the need
for expensive at-speed delay testing equipment. This allows one
to classify dies according to their maximum operational speed
(binning), which so far was only used for leading-edge central
processing units (CPUs; from Intel, AMD, Sun) due to the huge
cost of at-speed testing equipment. It also allows one to tune the
process, by observing the performance of whole circuits, not
just of small delay chains on test chips.

IX. EXPERIMENTS

In this section, we present results for the application of
desynchronization to two large realistic circuits, a DES core
and a DLX microprocessor. The DES core was designed using
a 0.18-µm standard-cell library from UMC. The DLX core was
designed 1) with the same UMC library and 2) with a 0.25-µm
library. The latter chip has been fabricated.

A. DES Core

A high-throughput DES core is essentially a 16-stage
pipeline, in which each stage implements a single iteration of
the DES algorithm. The algorithm operates on a 64-bit data
stream and 64-bit keys. It consists of permutations, shifts, and a
limited amount of logic. Thus, the depth of each of these stages
is small. DES constitutes a worst case for our methodology,
since controller overhead could be significant with respect to
datapath logic delays.

We first implemented a synchronous edge-triggered flip-flop
design for the 16-stage DES design in the 0.18-µm VST-UMC
standard-cell technology library. We compared our synchro-
nous implementation with available synchronous open-source
DES cores (from www.opencores.org) and verified that it has
indeed similar area and performance. We then employed the
method of desynchronization in order to derive a desynchro-
nized dual-latch design. The type of controllers used in this
design are based on the desynchronization model, i.e., with
the maximum possible concurrency. Table II contrasts the

CORTADELLA et al.: DESYNCHRONIZATION: ASYNCHRONOUS CIRCUITS FROM SYNCHRONOUS SPECIFICATIONS 1917

TABLE II
SYNCHRONOUS VERSUS DESYNCHRONOUS DES CASE STUDY

TABLE III
DESYNCHRONIZED DES: AREA BREAKDOWN

characteristics of the two designs. All data are postsynthesis
prelayout results based on gate-level simulations.

The DES cycle time is the time it takes to perform a single
iteration of the DES algorithm. A total of 16 iterations are
required to produce the 64-bit result, thus, resulting in the
latency value shown in the table. The power consumption of the
DES designs was measured by performing switching activity
annotation of the circuit during simulation.

As can be seen from these figures, the desynchronized de-
sign, despite an area increase of approximately 22%, presents
only a very slight difference in cycle time and a power improve-
ment of slightly over 12%.

Table III shows the area breakdown of the desynchronized
DES in terms of asynchronous control, delay elements, regis-
ters, and combinational logic. In fact, most of the area overhead
comes from using two latches instead of a single flip-flop.
The register area of the asynchronous design is approximately
218 560 µm2.

This example shows that, even for a design containing a
very limited amount of combinational logic, desynchronization
still manages to hide control overhead and achieve comparable
performance at lower power.

B. DLX ASIC Core

The second example that we discuss is a desynchronized
version of the DLX processor [19], called ASynchronous open-
source Processor Ip of the Dlx Architecture (ASPIDA), de-
signed using the semi-decoupled controllers depicted in Fig. 12.
Fig. 16 shows the overall structure, including the multiplexed
clocks and five architectural pipeline stages, four of which
actually correspond to circuit blocks (at the circuit level, WB
is merged with ID). Each block is controlled by its own latch
controller. The arrows of the latch controllers correspond to the
Ro and Ao signals, and illustrate the datapath dependencies.

Stages ID, EX, and MEM form a ring. ID is the heart of the
processor containing the register file and all hazard-detection
logic. It also synchronizes instructions leaving MEM (for WB)
with instructions coming from IF. Data hazard detection takes
place by ID comparing the output register of instructions in
other pipeline stages and their opcodes, and deciding on insert-
ing the correct number of NOPs.

After the initial synthesis of each circuit block using latches
(without retiming), the whole design is optimized incrementally
to meet all timing requirements. Max-delay constraints between
latches are used to ensure cycle time in the datapaths. The
control blocks are left untouched by the synthesis tool. Then
the gate-level netlist and matching timing constraints are placed
and routed.

Table IV shows the post-place-and-route results for both a
reference synchronous implementation (without controllers and
delay lines) and for the asynchronous implementation (includ-
ing the overhead due to synchronous test mode). Table IV
compares the two different designs after placement and routing
in the UMC 0.18-µm CMOS process.

Both designs have approximately the same area, speed,
and power consumption. Differences between them can be
attributed more to the different abilities of the two flows to
optimize for different objectives (area versus performance,
latches versus flip-flops), rather than to the synchronous or
asynchronous implementation of each circuit.

If delay line gates are placed away from each other in the
floor plan, then the routing delay becomes unpredictable at
synthesis time. Hence, we extensively used floor planning in
order to control the routing delay.

C. ASPIDA Fabrication

The ASPIDA fabricated chip contains a DLX processor core
and two on-chip memories. It supports multiplexed clocking,
i.e., the chip can be operated in the fully synchronous mode,
or in the desynchronized mode. Clock multiplexing is im-
plemented at the leaf level, i.e., at every single latch. The
advantage of multiplexing internally at the leaves is that no
changes in the design flow are necessary. This is because the
circuit netlist does not change, except for the introduction
of local and global latch drivers, and this makes it possible
to automatically generate both the global clock trees and the
local low-skew buffers independently and automatically. The
disadvantage of this approach is the area increase implied by
adding a multiplexer to every latch. An alternative approach
would be to multiplex clocks externally, which would require
more intervention and cause problems with clock generation
tools as the global clocks and the local buffer signals would
converge outside leaves.

In the synchronous mode (used essentially for scan testing),
the M and S latches are driven by two nonoverlapping clocks
from two global clock trees. In the desynchronized mode,
the signals that open and close the latches are generated by
asynchronous handshaking controllers. We used a coarse-grain
partitioning for ASPIDA, as each controller drives the M or S
latches of one of the four physical pipeline stages, including the
processor’s register file, which resides internally within the ID
pipeline stage.

The outputs of latch controllers must use low-skew buffering,
much like a local clock tree. The synchronous and asynchro-
nous modes are controlled by a global input, which multiplexes
the enable clock input (g) of every latch.

The delay elements for the ASIC design were implemented
with multiple taps in order to control their magnitude after

1918 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 10, OCTOBER 2006

Fig. 16. Desynchronized DLX with multiplexed clocking.

TABLE IV
SYNCHRONOUS VERSUS DESYNCHRONOUS DLX DESIGNS

(IN UMC 0.18-µm CMOS)

TABLE V
ASPIDA POSTLAYOUT SIMULATION RESULTS

(IHP 0.25 µm CMOS)

fabrication. One of the goals of postfabrication tests is to
progressively reduce their delay (and the clock period, in syn-
chronous mode) in order to see up to what frequency the design
still works. Four taps are implemented, with the longest delay
set to 120% of the results of STA using typical gate delays (i.e.,
we took a 20% margin). Other taps are at 1/2, 1/4, and 1/8 of
that delay.

Table V compares simulation results for speed and power
for the two modes of operation of the chip. The area of
the entire chip, including instruction and data memories, is
13.88 µm2. As it can be seen from the table, in the synchro-
nous mode, the circuit can reach a higher frequency using the
external two phase nonoverlapping clocks by controlling indi-
vidually the waveform of the two global clocks to the optimal
frequency and phase relationship at the current supply voltage
and temperature for each individual chip. This is not part of the
standard ASIC methodology, which relies on margins and STA
to ensure correct operation under any operating conditions. If
we relied only on STA, the synchronous circuit would work at
about 50 MHz.

Root mean square (rms) power at 50 MHz is slightly higher
for the desynchronized operation mode. Table VI shows the

TABLE VI
ASPIDA POSTLAYOUT POWER BREAKDOWN (IN MW)

power breakdown for both designs at 50 MHz. The total power
is divided into the power consumed by the latches (including
the register file), matched delays, low-skew clocking nets, and
combinational logic. The clocking nets are synchronous mode,
the two global clock trees in the synchronous mode, and the
low-skew buffer trees of the handshake controllers for the
desynchronized mode.

As shown in the table, the desynchronized mode of operation
consumes slightly more power due to the higher number of low-
skew nets, i.e., eight [two per controller output (Fig. 16)]. This
result leads us to believe that using larger groups of latches
with a single controller would be beneficial for this design. It
also suggests that by incorporating explicit knowledge of the
desynchronized design style into clock tree generation would
lead to better performance and lower power.

A slight reduction in the consumption of the combinational
logic due to the smaller propagation of glitches through the
latches can also be observed.

For the desynchronized mode of operation, which adapts
to the scaling of the supply voltage, we performed postlayout
power measurements at different supply values. As standard-
cell libraries and tools do not support scaling of delays for
different voltage values, we performed SPICE level simulations
on a small number of transistor-level cells in order to estimate
and verify the effect of voltage scaling. As expected, for voltage
values safely above threshold voltage, gate delay was found to
be proportional to the inverse of the supply voltage. As the
supply voltage approaches the threshold voltage, gate delay
becomes proportional to 1/Vddn for n between 2 and 3,
while wire delay scales linearly. By introducing appropriate
delay scaling factors in the technology for gates and wires, we

CORTADELLA et al.: DESYNCHRONIZATION: ASYNCHRONOUS CIRCUITS FROM SYNCHRONOUS SPECIFICATIONS 1919

TABLE VII
ASPIDA POSTLAYOUT POWER SCALING FOR DESYNCHRONOUS MODE

Fig. 17. ASPIDA die photo.

obtained the results shown in Table VII. Thus, the potential
power savings by voltage scaling that are made much easier
by desynchronization are demonstrated.

The performance difference between synchronous and de-
synchronized modes stems from the fact that in ASPIDA delay
elements were neither optimally tuned nor physically controlled
so as to constrain their physical spread or placement location.
With ASPIDA being the first desynchronized design being
fabricated, the key idea was to demonstrate working silicon
and to assess its characteristics with the minimum amount of
tuning, both the delay elements and the P&R process. Thus,
the synchronous mode showed slightly better performance. The
postlayout simulations of a second run of the ASPIDA chip,
with more accurately tuned matched delays, showed that the
same performance can be obtained for synchronous and de-
synchronized operation, with the desynchronized version being
more robust due to the easier tracking of environment condi-
tions (supply voltage and temperature) ensured by delay chains.

The ASPIDA chip, shown in Fig. 17, was fabricated in
early 2005, and postmanufacturing measurements verified the
correct operation of the first silicon. Extensive tests over about
90 fabricated chips yielded very interesting results. The de-
synchronized mode of operation was demonstrated to be an
average of 25% faster, over the range of chips, than the worst
case synchronous operation predicted by EDA tools. This mis-

Fig. 18. ASPIDA: schmoo plot in asynchronous operation.

match demonstrates the inability of existing EDA tools, flows,
and technology libraries to accurately predict and characterize
silicon performance postmanufacturing, even at 0.25 µm. The
current models are simply too pessimistic. With technology
scaling in the nanometer era, this problem will get worse.

In addition, the desynchronized mode of operation demon-
strated excellent coping with variability. This was demonstrated
by experiments, where the power supply was varied over an
extensive range of voltages, as shown in the schmoo plot of
Fig. 18.

Fig. 18 plots voltage on the x-axis. Light gray dots indicate
chips that pass the functional test, whereas dark gray dots
indicate chips that fail. The plot indicates correct operation in
desynchronized mode all the way down to 0.95 V, which is only
0.35 V away from the threshold voltage of the process, which
is 0.6 V. This is strong evidence that the desynchronization
approach handles variability very well, as at the very low opera-
tional voltage of 0.95 V all second- and third-order phenomena
of transistor behavior are in full effect.

In desynchronized operation, both the processor speed and
voltage can be controlled using a single variable, i.e., supply
voltage, whereas in the synchronous mode, two variables must
be controlled externally, in a tightly coordinated manner, i.e.,
both voltage and frequency. ASPIDA has demonstrated the
effective single-variable control that desynchronized operation
allows. In addition, tests over a range of 90 chips demonstrated,
as shown in Fig. 19, that the desynchronized circuit operates
much more efficiently when the voltage is varied, compared
to its synchronous mode of operation. This is due to the
self-adapting nature of the desynchronized design, whereas in
synchronous mode, the external clocks must be adjusted ac-
cording to the capabilities of the external circuits and extensive
experimentation.

1920 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 10, OCTOBER 2006

Fig. 19. ASPIDA: period in synchronous (left) and desynchronized (right) operation versus supply voltage Vdd.

X. CONCLUSION

This paper presented a desynchronization design flow that
can be used to automatically substitute the clock network of a
synchronous circuit by a set of asynchronous controllers.

To the best of our knowledge, this is the first successful
attempt of delivering an automated design flow for asynchro-
nous circuits that does not introduce significant penalties with
respect to the corresponding synchronous designs. This opens
wide opportunities of exploring the implementation space (both
synchronous and asynchronous), by using the very same set
of industrial tools. This, we believe, is a valuable feature for
a designer.

The suggested methodology can result in easier silicon-on-
a-chip (SOC) integration and shorter design cycles. Due to the
partitioning of the clock trees, it also offers lower power and
possibly lower electromagnetic emission, which is important
both to reduce the cost of packaging, to increase security, and to
integrate analogue circuitry on-chip. Moreover, it provides the
foundation for achieving power savings by tolerating broader
performance variations. Early fabrication results confirm sim-
ulation results and increase our confidence in the widespread
applicability of desynchronization to real ASIC designs.

However, the true advantage of asynchronous implementa-
tion cannot be achieved unless one measures the true delay of
combinational logic, rather than estimate it by using delay lines
that still require margins in order to ensure slower propagation
than the longest logic path. This is left to future work, even
though preliminary results (e.g., [12]) are quite promising.

REFERENCES

[1] C. Amin, N. Menezes, K. Killpack, F. Dartu, U. Choudhury, N. Hakim,
and Y. Ismail, “Statistical static timing analysis: How simple can
we get?” in Proc. IEEE Design Automation Conf., Anaheim, CA, 2005,
pp. 652–657.

[2] A. Bardsley and D. Edwards, “Compiling the language Balsa to delay-
insensitive hardware,” in Computer Hardware Description Languages
and Applications (CHDL), C. D. Kloos and E. Cerny, Eds., Toledo, Spain,
Apr. 1997, pp. 89–91.

[3] A. Benveniste, B. Caillaud, and P. Le Guernic, “From synchrony
to asynchrony,” in Concurrency Theory, 10th Int. Conf. (CONCUR),
J. Baeten and S. Mauw, Eds. London, U.K.: Springer-Verlag, Aug. 1999,
vol. 1664, pp. 162–177.

[4] A. Benveniste, L. Carloni, P. Caspi, and A. Sangiovanni-Vincentelli,
“Heterogeneous reactive systems modeling and correct-by-construction

deployment,” in Embedded Software, 3rd Int. Conf., (EMSOFT), R. Alur
and I. Lee, Eds., Berlin, Germany, Oct. 2003, vol. 2855, pp. 35–50.

[5] K. van Berkel, Handshake Circuits: An Asynchronous Architecture
for VLSI Programming, vol. 5. New York: Cambridge Univ. Press,
1993.

[6] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and
C. Sotiriou, “Handshake protocols for de-synchronization,” in Proc. Int.
Symp. Advanced Research Asynchronous Circuits Systems, Crete, Greece,
2004, pp. 149–158.

[7] I. Blunno and L. Lavagno, “Automated synthesis of micro-pipelines from
behavioral Verilog HDL,” in Proc. Int. Symp. Advanced Research Asyn-
chronous Circuits Systems, Eilat, Israel, Apr. 2000, pp. 84–92.

[8] D. Chinnery and K. Keutzer, “Reducing the timing overhead,” in Closing
the Gap Between ASIC and Custom: Tools and Techniques for High-
Performance ASIC Design. Norwell, MA: Kluwer, 2002, ch. 3.

[9] F. Commoner, A. W. Holt, S. Even, and A. Pnueli, “Marked directed
graphs,” J. Comput. Syst. Sci., vol. 5, no. 5, pp. 511–523, Oct. 1971.

[10] J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou, “From
synchronous to asynchronous: An automatic approach,” in Proc. DATE,
Paris, France, 2004, vol. 2, pp. 1368–1369.

[11] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou, “A concurrent
model for de-synchronization,” in Proc. Int. Workshop Logic Synthesis,
Laguna Beach, CA, 2003, pp. 294–301.

[12] ——, “Coping with the variability of combinational logic delays,” in
Proc. IEEE Int. Conf. Computer Design, San Jose, CA, Oct. 2004,
pp. 505–508.

[13] A. Davare, K. Lwin, A. Kondratyev, and A. L. Sangiovanni-Vincentelli,
“The best of both worlds: The efficient asynchronous implementation
of synchronous specifications,” in Proc. IEEE Design Automation Conf.,
San Diego, CA, 2004, pp. 588–591.

[14] L. Dennison, W. Dally, and T. Xanthopoulos, “Low-latency plesiochro-
nous data retiming,” in Advanced Research VLSI, Chapel Hill, NC, 1995,
pp. 304–315.

[15] S. B. Furber and P. Day, “Four-phase micropipeline latch control cir-
cuits,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 4, no. 2,
pp. 247–253, Jun. 1996.

[16] S. B. Furber, J. D. Garside, and D. A. Gilbert, “AMULET3: A high-
performance self-timed ARM microprocessor,” in Proc. ICCD, Austin,
TX, Oct. 1998, pp. 247–252.

[17] P. L. Guernic, J.-P. Talpin, and J.-C. L. Lann, “Polychrony for system
design,” J. Circuits Syst. Comput., vol. 12, no. 3, pp. 261–304, Apr.
2003.

[18] N. Halbwachs, Synchronous Programming of Reactive Systems. Nor-
well, MA: Kluwer, 1993.

[19] J. L. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach. San Mateo, CA: Morgan Kaufmann, 1990.

[20] J. Kessels, A. Peeters, P. Wielage, and S.-J. Kim, “Clock synchronization
through handshake signalling,” Microprocess. Microsyst., vol. 27, no. 9,
pp. 447–460, Oct. 2003.

[21] R. Kol and R. Ginosar, “A doubly-latched asynchronous pipeline,” in Int.
ICCD, Austin, TX, Oct. 1996, pp. 706–711.

[22] A. Kondratyev, L. Sorenson, and A. Streich, “Testing of asynchronous de-
signs by inappropriate means: Synchronous approach,” in Proc. IEEE Int.
Symp. Advanced Research Asynchronous Circuits Systems, Manchester,
U.K., Mar. 2001, pp. 171–180.

CORTADELLA et al.: DESYNCHRONIZATION: ASYNCHRONOUS CIRCUITS FROM SYNCHRONOUS SPECIFICATIONS 1921

[23] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev, “Asyn-
chronous design using commercial HDL synthesis tools,” in Proc. Int.
Symp. Advanced Research Asynchronous Circuits Systems, Eilat, Israel,
Apr. 2000, pp. 114–125.

[24] D. H. Linder and J. C. Harden, “Phased logic: Supporting the synchronous
design paradigm with delay-insensitive circuitry,” IEEE Trans. Comput.,
vol. 45, no. 9, pp. 1031–1044, Sep. 1996.

[25] T. Murata, “Petri Nets: Properties, analysis and applications,” Proc. IEEE,
vol. 77, no. 4, pp. 541–580, Apr. 1989.

[26] S. Nassif, D. Boning, and N. Hakim, “The care and feeding of your
statistical static timer,” in Proc. IEEE Int. Conf. Computer-Aided Design,
San Jose, CA, 2004, pp. 138–139.

[27] C. D. Nielsen and M. Kishinevsky, “Performance analysis based on timing
simulation,” in Proc. ACM/IEEE Design Automation Conf., San Diego,
CA, Jun. 1994, pp. 70–76.

[28] O. A. Petlin and S. B. Furber, “Scan testing of micropipelines,” in Proc.
IEEE VLSI Test Symp., Princeton, NJ, May 1995, pp. 296–301.

[29] R. B. Reese and M. A. T. C. Traver, “A coarse-grain phased logic CPU,”
in Proc. Int. Symp. Advanced Research Asynchronous Circuits Systems,
Vancouver, Canada, May 2003, pp. 2–13.

[30] V. Varshavsky, V. Marakhovsky, and T.-A. Chu, “Logical timing (global
synchronization of asynchronous arrays),” in 1st Int. Symp. Parallel
Algorithm/Architecture Synthesis, Aizu-Wakamatsu, Japan, Mar. 1995,
pp. 130–138.

Jordi Cortadella (S’87–M’88) received the M.S.
and Ph.D. degrees in computer science from the Uni-
versitat Politécnica de Catalunya, Barcelona, Spain,
in 1985 and 1987, respectively.

He is a Professor in the Department of Software
of the same university. In 1988, he was a Visiting
Scholar at the University of California, Berkeley.
His research interests include formal methods and
computer-aided design of very large scale integration
(VLSI) systems with special emphasis on asynchro-
nous circuits, concurrent systems, and logic synthe-

sis. He has co-authored numerous research papers and has been invited to
present tutorials at various conferences.

Dr. Cortadella has served on the technical committees of several international
conferences in the field of design automation and concurrent systems. He
received Best Paper Awards at the International Symposium on Advanced
Research in Asynchronous Circuits and Systems (2004) and the Design Au-
tomation Conference (2004). In 2003, he was the recipient of a Distinction for
the Promotion of the University Research by the Generalitat de Catalunya.

Alex Kondratyev (M’94–SM’97) received the
M.S. and Ph.D. degrees in computer science from
the Electrotechnical University of St. Petersburg,
St. Petersburg, Russia, in 1983 and 1987,
respectively.

From 1993 to 1999, he was an Associate Professor
of the Hardware Department, University of Aizu,
Aizu-Wakamatsu, Fukushima, Japan. In 2000, he
joined Theseus Logic as a Senior Scientist. Since
2001, he has been working as a Research Scientist
in Cadence Berkeley Laboratories, Berkeley, CA. He

has published over 90 journal and conference papers. His research interests
include formal methods in system design, synthesis of asynchronous circuits,
and computer-aided design methodology.

Dr. Kondratyev was a Co-Chair of the Async’96 Symposium and the CSD’98
Conference and has served as a member of program committees for several
conferences.

Luciano Lavagno (S’88–M’93) received the B.S.
degree (magna cum laude) in electrical engineering
from Politecnico di Torino, Torino, Italy, in 1983,
and the Ph.D. degree in electrical engineering and
computer science from the University of California,
Berkeley, in 1992.

From 1984 to 1988, he was with CSELT Laborato-
ries, Torino, Italy. In 1988, he joined the Department
of Electrical Engineering and Computer Science,
University of California, Berkeley, where he worked
on logic synthesis and testing of synchronous and

asynchronous circuits. He is a coauthor of two books on asynchronous circuit
design and a book on hardware/software co-design of embedded systems and
has published over 100 journal and conference papers. Between 1993 and
1998, he was an Assistant Professor at Politecnico di Torino, and between
1998 and 2001, he was an Associate Professor at the University of Udine.
Between 1993 and 2000, he was the architect of the POLIS project (a
cooperation between University of California at Berkeley, Cadence Design
Systems, Magneti Marelli, and Politecnico di Torino), developing a complete
hardware/software co-design environment for control-dominated embedded
systems. He is currently an Associate Professor at Politecnico di Torino and
a Research Scientist at Cadence Berkeley Laboratories, Berkeley, CA. His
research interests include the synthesis of asynchronous and low-power circuits,
the concurrent design of mixed hardware and software embedded systems, and
dynamically reconfigurable processors.

Dr. Lavagno received the Best Paper Award at the 28th Design Automation
Conference, San Francisco, CA, in 1991. He has served on the technical
committees of several international conferences in his field (e.g., the Design
Automation Conference, the International Conference on Computer-Aided
Design, the International Conference on Computer Design, and Design Au-
tomation and Test in Europe) and of various other workshops and symposia.

Christos P. Sotiriou (M’00) received the Ph.D. de-
gree in computer science from the University of
Edinburgh, Edinburgh, U.K., in 2001.

He is a Research Associate with the Institute
of Computer Science (ICS) at the Foundation for
Research and Technology-Hellas (FORTH), Crete,
Greece, and a Visiting Assistant Professor at the Uni-
versity of Crete. His research interests include very
large scale integration (VLSI) design, computer-
aided design (CAD) algorithms and tools, and design
methods and approaches for asynchronous timing.

Dr. Sotiriou served as the General Chair of the International Symposium on
Advanced Research in Asynchronous Circuits and Systems, where he received
the Best Paper Award, in 2004.

