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Abstract

Lane extraction is a basic yet necessary task for au-

tonomous driving. Although past years have witnessed ma-

jor advances in lane extraction with deep learning models,

they all aim at ordinary RGB images generated by frame-

based cameras, which limits their performance in nature.

To tackle this problem, we introduce Dynamic Vision Sen-

sor (DVS), a type of event-based sensor to lane extraction

task and build a high-resolution DVS dataset for lane ex-

traction (DET). We collect the raw event data and gener-

ate 5,424 event-based sensor images with a resolution of

1280×800, the highest one among all DVS datasets avail-

able now. These images include complex traffic scenes and

various lane types. All images of DET are annotated with

multi-class segmentation format. The fully annotated DET

images contains 17,103 lane instances, each of which is la-

beled pixel by pixel manually. We evaluate state-of-the-art

lane extraction models on DET to build a benchmark for

lane extraction task with event-based sensor images. Ex-

perimental results demonstrate that DET is quite challeng-

ing for even state-of-the-art lane extraction methods. DET

is made publicly available, including the raw event data,

accumulated images and labels1.

1. Introduction

Autonomous driving has received much attention in both

academia and industry. The goal is to understand the en-

vironment of the car comprehensively through the use of

various sensors and control modules. It consists of many

challenging tasks, including lane extraction, traffic marks

recognition, pedestrians detection [35, 19, 31], etc. Among

them, lane extraction is a fundamental yet important one,

as it helps car to adjust its position according to lanes pre-

∗Equal contribution.
1DET website is https://spritea.github.io/DET/

Figure 1. Visualization of the event output in space-time. Blue

dots represent individual asynchronous events.

cisely. It becomes the basis for following applications, in-

cluding lane departure and trajectory planning functions.

Hence performing accurate lane extraction is a key factor

of autonomous driving.

Researchers have proposed lots of methods for this task.

These methods are either based on handcrafted features and

heuristic algorithms [3, 6, 11, 13, 29, 34] or end-to-end Con-

volutional Neural Network (CNN) models [7, 14, 12, 9, 20,

17]. Although they have achieved promising results, there

still exist problems in practice.

In real situation, cars would meet various complex and

extreme scenes. For instance, these methods can not work

well when the light is extremely dark or changes rapidly.

In these situations, frame-based cameras can not capture

scenes clearly and these methods fail due to the terrible in-

put [2]. In nature, these difficulties come from RGB images

generated by these standard cameras. Therefore, we turn to

event-based camera. Event-based camera is a novel vision

sensor developed in recent years. Fig.1 shows a visualiza-

tion of the event output. It has two key characteristics: low

latency and high dynamic range. Latency is based on the

sensor sampling rate and data process time. Since event-

based camera transmits data with events, which denotes il-

lumination change, it has a latency of microseconds (µs),

compared with 50-200 millisecond (ms) of standard cam-

eras [24]. With such low latency, event-based camera can

capture the environment and generate image much faster

than standard cameras. This property ensures that it won’t



be affected by motion blur, which is a troublesome prob-

lem for frame-based cameras. Besides, with much shorter

response time brought by low latency, it also makes the au-

tonomous cars much more agile than others.

As for dynamic range, event-based sensor owns a typi-

cal dynamic range of 130 dB v.s. 60 dB of standard ones,

which is 7 orders of magnitude larger [24]. This charac-

ter makes it able to deal with scenes featured by large illu-

mination changes, which is a crucial point in autonomous

driving. Suppose a car is going through the tunnel, the mo-

ments it enters and leaves the tunnel would result in such

illumination change and corresponding images would be-

come highly dark or light. This makes it almost impossible

to recognize lanes from these images. But for event-based

camera, lanes are still clear due to the high dynamic range.

This is illustrated in Fig.2.

Furthermore, event-based sensor generates semi-dense

images, due to the event stream data. Hence images pro-

duced by the sensor only contain pixels whose brightness

changes, which are usually moving objects. These objects

are exactly what we care in autonomous driving, includ-

ing cars, pedestrians, traffic marks and lanes. Background

things, or redundant information like sky, road surface, etc.,

are removed in nature, which benefits following processes.

A potential problem for adopting event-based sensor to

lane extraction task is the image resolution. Ordinary event-

based camera generates images with resolution as low as

240×180, which is definitely insufficient for this task re-

quiring rich details.

For reasons above, we construct a high-resolution DVS

dataset for lane extraction (DET). There are 5,424 event-

based sensor images of 1280×800 pixels with correspond-

ing labels. Note that the raw event data is also provided for

those algorithms using event data directly [28, 16]. These

images are split into training set of 2,716 images, validation

set of 873 images and test set of 1,835 images. We pro-

vide two kinds of event-based sensor images, raw images

generated by the sensor directly and images after filtering.

Because the sensor is sensitive to illumination changes and

there would be lots of noise pixels in raw image. We fur-

ther offer two kinds of labels, per-pixel label without dis-

tinguishing different lanes and per-pixel label with distin-

guishable lanes. The reason is state-of-the-art models for

lane extraction are either based on semantic segmentation

or instance segmentation, which requires different labels.

We then test state-of-the-art models on DET and report the

results. As far as we know, this is the first dataset for lane

extraction with event-based sensor images. It’s also the first

DVS dataset with such high resolution.

In summary, our contributions are:

• We provide a DVS dataset for lane extraction, includ-

ing the raw event data and accumulated images with la-

bels. To our knowledge, DET is the first event camera

dataset for this task and the first event camera dataset

with such high resolution images of 1280×800 pixels.

• We benchmark state-of-the-art lane extraction algo-

rithms on DET comprehensively, which becomes the

baseline for future research.

The purpose of this work is to exploit event-based sen-

sor usage in lane extraction, a major aspect of autonomous

driving, provide a benchmark for this task, and draw au-

tonomous driving community’s attention to this promising

camera.

2. Related Work

2.1. Event Camera Dataset

Synthesized Dataset. [24] have proposed a Dynamic

and Active-pixel Vision sensor (DAVIS) dataset and sim-

ulator. DAVIS combines a global-shutter camera with an

event-based sensor. The collection of datasets are captured

with event-based sensor in a variety of synthetic and real

environments. It contains not only global-shutter intensity

images and asynchronous events, but also movement and

pose parameters. It consists of various scenes, such as wall

poster, outdoors, office and urban. The dataset is used for

pose estimation, visual odometry and SLAM. It has a reso-

lution of 240×180.

Classification Dataset. CIFAR10-DVS [18] is an event-

stream dataset for object classification. They convert 10,000

frame-based images of CIFAR-10 dataset into 10,000 event

streams using a event-based sensor with 128×128 resolu-

tion, which becomes an event-stream dataset of intermedi-

ate difficulty in 10 different classes. They adopt a repeated

closed-loop smooth (RCLS) movement of frame-based

images to convert frame-based images to event streams.

With this transformation, they generate rich local intensity

changes in continuous time which are quantized by each

pixel of the event-based camera.

Recognition Dataset. [10] releases a series of DVS

benchmark datasets. They convert established visual

video benchmarks for object tracking, action recognition

and object recognition into spiking neuromorphic datasets,

recorded with DAViS240C camera of 240×180 resolu-

tion. They transform four widely used dynamic datasets:

the VOT challenge 2015 Dataset [33], Tracking Dataset

[32], the UCF-50 Action Recognition Dataset [27] and the

Caltech-256 Object Category Dataset [8].

Driving Dataset. DDD17 [2] is an open dataset of an-

notated DAVIS driving recordings. It has 12 hours of a

346×260 pixel DAVIS sensor recording highway and city

driving in various weather conditions, along with vehicle

speed and GPS position. It also includes driver steering,

throttle and brake captured from the car’s on-board diagnos-

tics interface. This dataset owns data coming from a variety



Figure 2. The process of coming out of the tunnel (T1 < T2 < T3 < T4 < T5). The first row shows gray images captured by

frame-based camera. The second row shows corresponding event-based sensor images captured the same moment. Traditional cameras are

largely affected by the sudden light change due to the low dynamic range, while event-based camera doesn’t suffer from that with much

higher dynamic range.

(a) Raw DVS image

(b) Filtered DVS image

Figure 3. Comparison of raw DVS image and corresponding fil-

tered DVS image. Although (b) is clearer, it contains less details

than (a).

of sensors and devices, which has a great significance for

autonomous driving.

DVS datasets listed above are proposed for general com-

puter vision or robotic control tasks. None of them is aimed

at lane extraction task. Besides, event-based images in these

datasets only have a low spatial resolution, like 128×128 or

240×180. The low resolution puts a hard bound on algo-

rithms’ performance on these datasets.

2.2. Lane Dataset

Caltech Lanes Dataset. This dataset[1] is composed of

clips on different types of urban streets, with/without shad-

ows and on straight and curved streets. It labels all visible

lanes in four clips, totaling 1,224 labeled frames containing

4,172 marked lanes. This is an early dataset published in

2008.

tuSimple Dataset. This dataset[30] has 6,408 labeled

images, which are split into 3,626 training images and 2,782

test images. These images are captured under good and

medium weather condition. They contain highway roads

with a different number of lanes, like 2 lanes, 4 lanes or

more. For each image, 19 previous frames are also pro-

vided, but without annotation.

CULane Dataset. This dataset[26] contains 133,235

frames extracted from 55 hours of video. They divide the

dataset into 88,880 training images, 9,675 validation im-

ages, and 34,680 test images. These images are undistorted

and have a resolution of 1640×590. The test set is further

split into normal and other challenging categories, includ-

ing crowded and shadow scenes.

These lane datasets are all based on RGB images gen-

erated by frame-based cameras. Illumination changes and

motion blur would affect model’s performance based on

theses images seriously, which should definitely be avoided

in real traffic situation.



Figure 4. Comparison of different label formats. (a) shows input images. (b) shows the label format that sets a fixed order and annotates

lanes from left to right. (c) shows our label format based on the relative distance between lane and event camera. (d) shows the binary label

format. For the left lane most close to event camera, it looks similar in different images and should be annotated with same label. (b) gives

it a label of 2 in the image above, but gives it a label of 1 in the image below. Our format (c) annotates it exactly in both images.

2.3. Event Camera in Autonomous Driving

Since event camera is still fairly new compared with

standard frame-based cameras, there are only a few projects

employing event camera in autonomous driving. Two typi-

cal applications would be introduced in this section.

Steering Prediction. [23] tries to make use of event

camera to predict a vehicle’s steering angle. They adapt

fancy convolutional architectures to the output of event sen-

sors and extensively evaluate the performance of their ap-

proach on public dataset. They further show that it is pos-

sible to leverage transfer learning from pretrained convolu-

tional networks on classification tasks, though the network

is trained on frames collected by traditional cameras.

Car Detection. [5] attempts to detect cars with event

camera and pseudo-labels coming from gray images gen-

erated by traditional cameras. They transferred discrimi-

native knowledge from a state-of-the-art frame-based CNN

to the event-based modality through intermediate pseudo-

labels, which are used as targets for supervised learning.

The model can even complement frame-based CNN detec-

tors, which suggests that it has learnt generalized visual rep-

resentations.

Although these works explore event camera’s usage in

autonomous driving, researchers haven’t paid attention to

the fundamental task, lane extraction. This is an area with

great potential for event cameras, which shows obvious ad-

vantage over traditional frame-based cameras on this task.

3. Construction of DET

3.1. Data Collection

To collect data, we mount the event-camera CeleX V

with high resolution 1280×800 on a car in different loca-

tions and record event streams by driving in Wuhan City

at different time. As a metropolis in China, Wuhan City

provides complex and various traffic scenes which are chal-

lenging for lane extraction.

We record over 5 hours of event stream with a sampling

rate of MHz, which equals a sampling interval of µs. We

compress the raw event stream along the time dimension

with △t = 30 ms. △t denotes the event stream time span

that one single image corresponds to. This is illustrated in

Fig.1. Then we get over 150,000 images from raw event

stream. We carefully choose 5,424 images containing vari-

ous scenes to label.

For these images, we found that there are some noise pix-

els due to the event camera imaging characteristic. We sim-

ply use median filter to remove these pixels and get clean

images. We provide both raw images and filtered images

publicly, as shown in Fig.3. We recommend researchers to

adopt raw images as they are more close to real world and

retain more details. Filtered images would lose some details

anyway.

3.2. Data Annotation

Task Definition. Lane extraction task has been defined

in two ways. One is to extract lanes without discriminat-

ing between lanes, and the other one is to differentiate lanes

from each other. We argue the latter is more practical, be-

cause it’s essential for autonomous driving system to use

the location of each lane to decide car’s position. There-

fore, we define lane extraction here as extracting lanes from

traffic scenes while discriminating between lanes.

For existing CNN-based lane extraction algorithms con-

sistent with this definition, we divide them into two types:

semantic segmentation method and instance segmentation

method. Semantic segmentation method regards lane ex-

traction problem as a multi-class segmentation task. It clas-



sifies each pixel into (n + 1) categories, where n denotes

lane types and 1 denotes background. Lanes with same la-

bel are supposed to be similar in some sense. Instance seg-

mentation method is same with that, except it doesn’t guar-

antee lanes with same label are similar. It only separates

lanes into individual ones, without considering the similar-

ity of lanes from different images. As a result, lanes with

same label generated by instance segmentation method in

different images may differ a lot.

Annotation Details. Both semantic segmentation

method and instance segmentation method in this task re-

quire multi-class label. In our dataset, there are 4 lanes at

most in one image. Hence it’s a five-class classification task.

We give each pixel one of five labels, i.e., {0, 1, 2, 3, 4}. 0 is

for background and others for lanes. Here comes the ques-

tion, that how we decide the label for each lane.

Generally, there are two kinds of rules to decide the spe-

cific label. One is to set a fixed order and label each lane

with this order. The other one is to give lanes with similar

characteristics same label. We argue that the latter is bet-

ter. The former label format is only related to the number of

lanes in the image, without considering lane’s appearance

at all. Under this format, we label each lane with a fixed

order, like 1 to 4 for lanes from left to right, and lanes with

same label from different images may differ a lot. A typi-

cal example is shown in Fig. 4 (b). The main cause is that

the relative instance between lanes with same label from

different images and event camera varies largely during the

process of driving. This would impede the training process

of multi-class semantic segmentation model obviously.

For reasons above, we choose the latter format to label

images. The key point is to define the similarity. We find

the shape and size of lanes in image mainly depend on the

relative distance between lanes and event camera. Lanes

whose distances from event camera are alike seem similarly.

Therefore, for the two lanes most close to event camera,

a.k.a. ego lanes [15], we give the left lane label of 2, and

the right lane label of 3, no matter the number of lanes in the

image. Then other lanes’ labels are confirmed by their dis-

tance to these two lanes, as Fig. 4 (c) illustrates. In this way,

we give lanes with similar appearances same label, which

is more reasonable for multi-class semantic segmentation

method. The lane width is fixed as 20 pixels.

Considering methods defining this task as extracting

lanes without discriminating between them, or extracting

lanes first then differentiating them in post-process stage,

we also provide binary labels for researchers interested in

this. This is shown in Fig. 4 (d).

3.3. Data Split

To ensure that the training data and test data distributions

match approximately, we randomly extract 1/2 of original

images as training set, 1/6 as validation set and 1/3 as test

Table 1. Distribution of images containing various number of

lanes. One represents the image containing only one lane, the same

with others. Quantity is the number of images containing certain

number of lanes. Percentage is the corresponding proportion.

Statistics One Two Three Four Total

Quantity 161 1,114 1,918 2,231 5,424

Percentage % 2.97 20.54 35.36 41.13 100

set. We would provide all original images, including raw

DVS images and filtered images with corresponding labels,

containing multi-class labels and binary labels publicly.

4. Properties of DET

4.1. High­resolution Image

Existing event camera datasets have a typical resolution

of 346×260 pixels, which is fairly low compared with RGB

images generated by frame-based cameras. For complex

scenes in autonomous driving, event camera images of this

resolution containing little information can not complete

this task well. Therefore, we adopt the CeleX-V DVS re-

leased in 2018 for our dataset. It is featured by the high-

est resolution of 1280×800 pixels among all event cameras

available now and a latency as low as 5ns. All images in

DET have the same resolution of 1280×800.

4.2. Various Lane Types

For dataset of lane extraction, the lane diversity plays

an important role. The more diverse lane type is, the more

close to real world dataset becomes. For this purpose, we

collect images containing various lane types, including sin-

gle dashed line, single solid line, parallel dashed lines, par-

allel solid line and dashed line, etc. Note that parallel lines

are labeled as one whole line for consistency. Samples of

these lane types are shown in Fig. 5.

4.3. Various Lane Number

About images containing various numbers of lanes, lanes

would look different due to the relative distance between

some lane and event camera, as explained in Sec. 3.2.

Therefore, we gather images including different numbers

of lanes by driving on roads with various numbers of car-

riageways. Samples containing different numbers of lanes

are shown in Fig. 5. Tab. 1 summarizes the lane number

distribution.

4.4. Various Traffic Scenes

In addition to the diversity of lane itself, we consider the

diversity of scenes as important too. Because a robust lane

extraction is supposed to recognize lanes under various traf-

fic scenes, which is exactly what autonomous driving re-

quires. Due to this, we record images containing various



Figure 5. Samples of DVS images and labels in DET. First rows show various line types, including single dotted line, single solid line,

parallel dotted line, parallel solid line and dotted line. Middle rows show various lane number, from 1 to 4. Last rows show various traffic

scenes, urban, tunnel, bridge and overpass.

traffic scenes by driving on tunnels, bridges, overpasses, ur-

ban areas, etc. These traffic scenes are presented in Fig. 5.

4.5. Various Camera Views

To simulate the real situation, we further mount event-

based sensor with different locations on our car. In this way,

even lanes with same label in different images would dif-

fer to some extent. In other words, we increase intraclass

variance of DET. Although this would make it more dif-

ficult to train lane extraction models, models trained with

this dataset would handle complex scenes better than those

with single camera view. We argue this is necessary for

complicated real traffic scenes, which might be even more

complex than DET.

5. Evaluation

5.1. Evaluation Settings

Dataset Setting. We conduct evaluations with two kinds

of lane extraction methods, semantic segmentation based

method and instance segmentation based method. To fully

take use of labeled data, we use training set and validation

set together to train these models, and test set to check their

performance.



Training Details. All models are trained on one Titan

Xp GPU with 12 GB memory. The batch size is set as

4. Stochastic gradient descent (SGD) with momentum is

adopted to train this network. Momentum is set as 0.9. We

apply poly learning rate policy to adjust learning rate, which

reduces the learning rate per iteration. This could be ex-

pressed as:

LR = initial LR× (1−
current iter

max iter
)power (1)

where LR is current learning rate, initial LR is initial

learning rate, current iter is current iteration step, and

max iter is the max iteration step. The initial LR is set

as 0.01 and power is set as 0.9. For all models, max iter is

set to 50,000 in our experiment to make sure these networks

converge.

Metrics. As there exist some differences between the

metric of semantic segmentation and instance segmentation,

we choose two metrics for both of them to compare numer-

ically. Specifically, we adopt widely used F1 score (F1) and

intersection over union (IoU) as metric.

F1 is defined as

F1 = 2×
Precision× Recall

Precision + Recall
(2)

and

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(3)

where TP, FP, TN, FN are the number of true positive,

false positive, true negative, false negative separately. They

all count the number of pixels. IoU is defined as:

IoU(Pm, Pgt) =
N(Pm ∩ Pgt)

N(Pm ∪ Pgt)
(4)

where Pm is the prediction pixels set and Pgt is the ground

truth pixels set. ∩ and ∪ mean the intersection and union

set respectively. N denotes the number of pixels in the in-

tersection or union set.

For semantic segmentation methods, F1 and IoU are cal-

culated across all five classes. But for instance segmenta-

tion method, they don’t correspond with manual annota-

tions strictly, because lane label predictions of this method

are generated by clustering. They are in nature binary clas-

sification task. Hence we consider all lanes the same and

regard this as a binary classification task to evaluate.

Besides, we use precision-recall (PR) curve to assess

the relation between precision and recall for lane extraction

task. To be specific, we adopt different thresholds from 0 to

1 to predicted score map. Then we get several precision val-

ues with corresponding recall values and plot the PR curve.

Note that for semantic segmentation method, we ignore the

difference between lanes for comparison with instance seg-

mentation method.

Table 2. Evaluation results of lane extraction methods on DET.

Mean F1 (%) and Mean IoU (%) are the average F1 score and IoU

of all classes, respectively. Values in bold are the best and values

underlined are the second best.

Methods Mean F1 Mean IoU

FCN 60.39 47.36

DeepLabv3 59.76 47.30

RefineNet 63.52 50.29

LaneNet 69.79 53.59

SCNN 70.04 56.29

5.2. Lane Extraction Baselines

We benchmark typical lane extraction methods, includ-

ing semantic segmentation based method, like FCN [22],

DeepLabv3 [4], RefineNet [21], SCNN [26] and instance

segmentation based method LaneNet [25]. FCN, RefineNet

and DeepLabv3 are typical semantic segmentation methods

for general computer vision tasks. FCN is the first work re-

garding semantic segmentation as pixel-level classification

task. It builds fully convolutional neural network first and

utilizes skip architecture to combine shallow layer semantic

information with deep one. DeepLabv3 combines atrous

spatial pyramid pooling with global pooling to introduce

image-level global context. RefineNet explicitly exploits in-

formation along the down-sampling process to enable high-

resolution prediction using long-range residual connections.

SCNN and LaneNet are specialized models for lane ex-

traction task. SCNN generalizes traditional deep layer-by-

layer convolutions to slice-by-slice convolutions within fea-

ture map, which enables message passings between pixels

across rows and columns in a layer. This makes it particu-

lar suitable for long continuous shape structure recognition,

like lane extraction. SCNN achieves state-of-the-art perfor-

mance on tuSimple [30] dataset. LaneNet casts the lane ex-

traction problem as an instance segmentation problem, and

applies a learned perspective transformation based on the

image instead of a fixed “bird’s-eye view” transformation.

It generates each lane instance by clustering. Hence it can

handle scenes where lane category varies, although it can

not assign similar lanes same label. Tab.2 is the result of

lane extraction baselines. Fig.6 presents visual comparison

of these methods. Fig.7 shows PR curves of these methods.

5.3. Experimental Analysis

Tab.2 shows that LaneNet and SCNN outperforms other

semantic segmentation methods significantly. We argue that

FCN, DeepLabv3 and RefineNet are general semantic seg-

mentation methods, and they do not design specific modules

for lane extraction task particularly. They do not apply any

prior information or structural feature neither, which is of

significant importance for lane extraction task. SCNN and



Figure 6. Visual comparison of lane extraction methods. (a) shows input images. (b) shows the corresponding label. (c-g) show results of

FCN, DeepLabv3, RefineNet, SCNN and LaneNet. The label of (g) is random because it is generated by clustering. Note that they are all

multi-class labels and lanes with same label are different from those with other labels in the gray value.

Figure 7. Precision-recall (PR) curves of lane extraction baselines.

LaneNet either adopts slice-by-slice convolution for contin-

uous structure, or learns a perspective transformation to fit

the lane into image. These special modules benefits their

performance greatly for this problem.

Fig.7 shows that the area under LaneNet PR curve is

larger than SCNN, which seems in conflict with Tab.2. We

assume that methods except LaneNet are in nature multi-

class classification task, but we draw the PR curve by

dealing with their multi-class classification results as bi-

nary classification results for comparison with LaneNet,

as Sec. 5.1 illustrates. This makes them seem worse than

LaneNet, which is in fact not exactly. Evaluation results

show this dataset is challenging, even for state-of-the-art

lane extraction models.

6. Conclusion

In this paper, a high-resolution DVS dataset for lane ex-

traction task, DET, is constructed. It consists of the raw

event data, accumulated images and corresponding labels.

5,424 event-based images with resolution of 1280×800 are

extracted from 5 hours of event streams with sampling rate

of MHz. To provide a comprehensive labeled pairs, two

types of annotations for lanes in the images are given, multi-

class format and binary format. We also benchmark the

state-of-the-art models for lane extraction and analyze the

experimental results. Evaluation results of various lane ex-

traction methods show this dataset is challenging.

To the best of our knowledge, DET is the first dataset

of event-based sensor for lane extraction task, which is a

fundamental yet important problem in autonomous driv-

ing. Furthermore, taking use of event-based sensor in au-

tonomous driving is a rising area with great potential and

we believe that DET would inspire community’s enthusi-

asm for adopting event-based sensor to autonomous driving

and exploring its usage in more applications.
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