Smart Depiction for Visual Communication

Detail Preserving
Reproduction of
Color Images for
Monochromats and
Dichromats

n spite of the ever increasing prevalence of
low-cost, color printing devices, gray-scale
printers remain in widespread use. Authors producing
documents with color images for any venue must

An algorithm that
transforms color to gray
scale preserves image detail
by maintaining distance
ratios during the reduction
process. An extension of the
transformation can aid

color-deficient observers.

account for the possibility that the
color images might be reduced to
gray scale before they are viewed.
Because conversion to gray scale
reduces the number of color dimen-
sions, some loss of visual informa-
tion is generally unavoidable.
Ideally, we can restrict this loss to
features that vary minimally within
the color image. Nevertheless, with
standard procedures in widespread
use, this objective is not often
achieved, and important image
detail is often lost. Consequently,
algorithms that convert color images
to gray scale in a way that preserves
information remain important.
Human observers with color-defi-

cient vision may experience the same problem, in that
they may perceive distinct colors to be indistinguishable
and thus lose image detail. The same strategy that is
used in converting color images to gray scale provides a
method for recoloring the images to deliver increased
information content to such observers.

Gray-scale conversion

A gray-scale conversion algorithm is a dimension-
reducing function that maps points in color space—typ-
ically RGB tristimulus values (&, G, B) € R>—to a subset
of R*. Any such mapping assumes a color model, which
includes specification of chromaticity values for red,
green, and blue primaries as well as a reference white
spectrum and a linearizing gamma value. The most
common RGB model is probably the National Television
Standards Committee (NTSC) standard, and the most
common gray-scale conversion algorithm is mapping to
luminance, Y, as follows:
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¥=0.299 x B2+ 0.587 x G2+ 0.114 x B** (@D)]

Here the gamma value for the model is 2.2, and the coef-
ficients are derived from the chromaticity values for the
primaries as well as the reference white, which for this
model is CIE Illuminant C, designed to represent day-
light. Chromaticity values are defined in terms of the CIE
X¥Zcolor space of the standard observer. The X¥Z color
space was designed in 1931 by the Commission Interna-
tionale de I'Eclairage (International Commission on Illu-
mination) for matching the perceived color of any given
spectral energy distribution. Three primaries, X, Y, and
Z, and three associated matching functions, X, 7, 2,
were identified with the property that, given any spec-
tral energy distribution, 2()), the nonnegative weights

X=k [POIT,d,

v=k[PO05,d,

2=k [ POz,
can be used to construct a color, c=XX + ¥Y + ZZ, that
will match P(A) up to human perception. The scaling
constant, 4, depends on the spectrum of the reference

white. Chromaticity values are then 2D, normalized
coordinates (x, y) given by

X Y
X= y=
X+Y+Z X+Y+2Z

Different color models—such as the SRGB model com-
monly used to describe color monitors—with different
chromaticities (or reference white or gamma) will yield
mappings to luminance that differ slightly from Equa-
tion 1. Details on color space definitions are available
elsewhere.’

When mappings such as Equation 1 are used, colors
that have extremely small differences in luminance but
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(a)

1 Conversion to gray scale: Substantial image detail is lost when the (a) color photo is converted to (b) gray scale using the standard
NTSC map to luminance. (c) An alternative mapping preserves some of the detail.

2 Conversion to gray scale: All image detail is lost when the (a) color image is converted to (b) gray scale using the
standard NTSC map to luminance. (c) An alternative mapping preserves some of the detail.

large differences in chrominance are mapped to similar
shades of gray. Colors that were easily distinguishable in
the original image, due to chrominance variation, can
become indistinguishable in the gray-scale image. Fig-
ure 1 shows an example of this situation. Figure 1ais an
RGB digital photograph. For Figure 1b, we applied Equa-
tion 1 to the image of Figure 1a to produce an encoded
luminance, ¥, and then linearly mapped the ¥values to
pixel gray levels. The red berries, which stand out
markedly from the green leaves in the color image, are
effectively lost in the gray image. Figure 1c shows an
alternative mapping, which preserves some of the detail
from Figure 1a.

Figure 2 shows a more dramatic, if contrived, exam-
ple where the colored blocks in Figure 2a (the original
image) were chosen to have nearly identical luminance.
All image detail is lost (see Figure 2b) when we apply
the luminance mapping of Equation 1. Figure 2c shows
an alternative mapping, which preserves some of the
detail from Figure 2a.

An effective gray-scale conversion method should pre-
serve the detail in the original color image. Our funda-
mental premise is that this is best achieved by a perceptual
match of relative color differences between the color and
the gray-scale images. In particular, the perceived color
difference between any pair of colors should be propor-
tional to their perceived gray difference. In this article we
describe a new approach to the gray-scale conversion
problem that is built on this premise.

Our method automatically constructs a linear map-
ping from %3 to R! that preserves, to the extent possible,
the perceived distances between those points in R° that
comprise a specific color image and their mapped val-
ues in K. The derived mapping function depends on
the characteristics of the input image and incorporates
information from all three dimensions of the color
space. After describing our detail-preserving gray-scale
transform, we show how a straightforward extension
recolors images in a way that preserves detail for view-
ers with color-deficient vision.

Work related to gray-scale conversion

The gray-scale conversion problem resembles the
tone mapping problem of displaying high dynamic
range images on low dynamic range displays.? In both
cases, the objective is to preserve an abundance of visu-
al information within the constraints of a limited gamut.
Our approach to gray-scale conversion, like Tumblin and
Rushmeier’s tone mapping, seeks a perceptual match.
Nevertheless, tone mapping is generally concerned with
compression of the gamut range, whereas we are inter-
ested in compression of gamut dimensionality.

The problem might also be compared to color quanti-
zation, as it attempts to display a large number of colors
with a small palette. Nevertheless, palette selection is an
integral part of color quantization methods. Palette col-
ors are most often selected from a large gamut, which at
least includes the gamut of the original image. In our
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be perceived. Figure 3 shows the
projection of the colored photo-
graph of Figure 1 along the first two
principal components in CIELab
space. CIELab color space is an alter-
native 3D (Z, a, b) color model
aimed at perceptual uniformity.
That is, pairs of colors at equal mea-
sured distances from one another in
CIELab space are perceived to be at
approximately equal distances from
one another. In this model, the Z
component is luminance, the @ com-
ponent is a red—green opponent
value, and the » component is a

3 Principal components: (a) Projection of the image of Figure 1 along the first principal com- blue-yellow opponent value.*

ponent in CIELab space and (b) along the second principal component.
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problem, the palette is fixed to a gray ramp, and so the
principal task, as well as the flexibility available, for any
color quantization method has been removed. Mapping
image colors to the selected palette in color quantization
methods is usually a variation on pixel error-diffusion,?
but such diffusion does not compensate for a problematic
palette. When a standard error diffusion mapping is
applied to the color image of Figure 1a, the result is visu-
ally indistinguishable from the image of Figure 1b.

Color gamut mapping for printing with a small set of
inks also resembles our problem. Here, colors are repro-
duced using only one or two base ink colors. The entire
color gamut of an image to be printed is generally not
available, and an image must be mapped into the avail-
able gamut in a meaningful way. Stollnitz, Ostro-
moukhov, and Salesin* examine the case of printing
with an arbitrary number of base ink colors. For the case
of a single ink, they seek to preserve luminance contrast
by using a monotonic mapping of input luminance to
ink density. This method ignores chrominance of the
input image and thus will suffer the same loss of chromi-
nance-based detail that Equation 1 does.

The reduction of high-dimensional data to a lower
dimension is also a well-studied problem. A standard
linear technique is principal component analysis (PCA).
InPCA, a set of orthogonal vectors—the principal com-
ponents—lying along the directions of maximal data
variation is found. To reduce the dimensions of the data,
a subset of the principal components form a subspace
onto which the original data is projected. While pre-
serving the color variation is necessary for pleasing gray-
scale images, it is not sufficient. Consider again the
example color image in Figure 1. If we have an image
with most of the colors clustered in two regions, here
red and green, we can envision a dumbbell-shaped dis-
tribution of pixels in color space. By preserving variance,
one end of the dumbbell will be mapped to the light end
of the gray-scale gamut while the other will be mapped
to the dark end. If we then examine the histogram of the
resulting gray-scale image, we will find a large number
of empty gray bins in the center of the range. As such,
any detail within the red and green dumbbell clusters
will be reproduced over a small gray range and may not

In the first principal component,
the red berries contrast with the
green leaves, as expected. Neverthe-

less, we find significant detail in the leaves from the pro-
jection along the second principal component. A
PCA-based approach would appear to require optimiza-
tion between contrast and detail by mixing principal
components.

We can characterize an alternative class of methods
for dimensional reduction as triangulation techniques,
in that selected sets of point triples are mapped to a
lower dimensional space in a way that maintains exact
distances within each triple. While this distance-pre-
serving feature is attractive for preserving detail in our
problem, distances across triples are not preserved, and
so the end result depends on which triples are selected.
We would like to preserve proportional differences
between all pairs of points.

Another class of dimensional reduction techniques
attempts to find a nonlinear transformation of the data
into the lower dimensional space. Examples of these
methods include local linear embedding (LLE)* and
Isomap.® These transforms work well with data that has
some inherent (although perhaps complex) parame-
terization. They attempt to maintain local distances, cor-
responding to the original data lying along a higher
dimensional manifold. As such, they generally require a
“magic number” defining the size of the neighborhood
of local distances to observe, and the results can be
somewhat sensitive to the neighborhood size. Further,
as they only work at a local level, it is not clear whether
they can reproduce both contrast and detail when reduc-
ing the dimension of the colors. It is also not clear that
the colors from an arbitrary image lie along a single
manifold. Roweis and Saul® examined the performance
of LLE with a dumbbell-shaped data set and achieved
results no better than with PCA.

Color vision deficiencies

Those who suffer from deficiencies in color vision deal
with reduced color gamuts on a daily basis. Our algo-
rithm can be used to produce images that convey
increased information content to such individuals.

Deficiencies in color vision arise from differences in
pigmentation of optical photoreceptors.” Normal
vision has three distinct pigmentations of cones—the



Simulating Color Deficient Vision

Researchers have done significant work in simulating
color deficient vision.'™ In these simulations, colors are
transformed into a color space based on cone response.
From this color space, we can simulate a cone deficiency by
collapsing one dimension to a constant value. From
empirical data, we can determine the value to which the
deficient cone dimension should be collapsed.

Walraven and Alferdinck* describe a color editor for
simulating a color-deficient view of a color palette. Their
editor determines pairs of colors in the palette whose
perceived differences in a deficient color space are smaller
than a critical threshold. If a difference is too small, the color
pair is deemed indistinguishable to a potential color-deficient
observer, and a different pair of colors should be used in the
design. This editor can assist by selecting a default palette for
which all distances meet the threshold criterion.

Daltonization is a procedure for recoloring an image for
viewing by a color-deficient viewer. Details of the method
are unpublished, but some discussion and an online
demonstration are available at http://www.vischeck.com. In
this method, contrast between red and green hues is
stretched and used to modulate luminance and contrast
between blue and yellow hues. Three user-specified
parameters are required, one for stretching red—green
contrast, one for modulation of luminance, and one for
modulation of blue—yellow contrast. The online
demonstration provides views of the original and recolored
images for a simulated deuteranope. There is no automatic
determination of optimal values for the required
parameters, but three sets of parameters, labeled low,
medium, and high (correction) are offered. The results
depend highly on the parameters.

Ishikawa et al.®> describe manipulation of Web page color
for color-deficient viewers. They first decompose the page

into a hierarchy of colored regions. These spatial relations
determine important pairs of colors to be modified. An
objective function is then chosen to maintain distances
between pairs of colors, as well as minimize the extent of
color remapping. This attempts to preserve both the
original “naturalness” of the colors and the detail in the
remapped color image. The objective function is minimized
using a genetic algorithm. The authors have extended this
method to full-color images.® They first quantize the image
to a small number of colors and construct a hierarchy of
like-colored regions. As before, a fitness function—designed
to preserve detail and minimize the distance between an
input color and its corresponding remapped color—is
minimized with an evolutionary algorithm.
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photoreceptors that contribute to color vision. Anom-
alous trichromatopia is a condition in which the pig-
ment in one cone is not sufficiently distinct from the
others. The viewer still has three distinct spectral sen-
sitivities, but the separation is reduced. Dichromatopia
results when the viewer has only two distinct pigments
in the cones. For both dichromatopia and anomalous
trichromatopia, there are three subclassifications
depending on which cone has the abnormal pigmen-
tation. Deficiencies in cones sensitive to long wave-
lengths are referred to as protanopic, while deficiencies
in those sensitive to medium and short wavelengths
are referred to as deuteranopic or tritanopic, respec-
tively. Protanopic and deuteranopic deficiencies, the
most common forms of color-deficient vision, are char-
acterized by difficulty distinguishing between red and
green tones. Tritanopic deficiencies are associated with
confusion between blue and yellow tones. Monochro-
matism is another form of color-deficient vision, but it
is rare. See the “Simulating Color Deficient Vision”
sidebar for more information on human color vision
deficiencies.

Monochromatic reproduction

Our fundamental premise dictates that the perceived
color difference between any pair of colors should be
proportional to their perceived gray difference. In for-
mal terms, for each pair of colors, ¢, and c,, we wish to
satisfy

e e.]_[re)-Tee |

range range

where 7(x) is the gray-scale mapping function, Gange is
the maximum distance between any pair of colors in the
image, 7iange is the maximum distance between any pair
of transformed colors, and ||_|| is a perceptual color dif-
ference metric. We use the CIE94 color difference,® as
itis more efficient to compute than the CIEDE2000 color
difference. CIE94 is a weighted Euclidean distance in
LCH(ab) (luminance, chroma, hue) color space, which
is closely related to CIELab color space:

L=L C=y/a®>+b?> H=tan™'(b/a)

Note that gray scale in either CIELab space or LCH(ab)
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4 Initial posi-
tions: The gray-
scale transform
found when
beginning at
the first princi-

pal component.

space is given by {(Z, 0, 0) | Z>0}.
A measure of the global error of the transformation
is then

)| freep-1ee)) 2 ®)

range

C;
c

range

33

i j=itl

where 7and jrange over image pixels, rather than dis-
tinct colors, to account for the frequency with which
each color occurs. This is similar to the error term for
multidimensional scaling, except that the differences
are normalized over different ranges. Our objective is
to minimize this total error.

For transformation to gray scale, we restrict our atten-
tion to linear transformations, 7, within CIELab color
space, in which case we determine 7{c) = (g - ¢, 0, 0)
for some vector g. Equation 2 is then

2@-Y Y “cci—ch_\

g-e,¢),00)]|

3)
i j=i+l range range
2
v [zl )
i j=i+l Crange Trange

From the CIE94 distance metric and a color image, we
can compute Crange directly, whereas Ziange depends on
g. Nevertheless, when producing monochromatic
images for a fixed display range, we can set 7jange to the
range of producible gray values.

To determine g, we minimize the error in Equation 3
using the well-known, Fletcher—Reeves conjugate-gra-
dient method. Such methods only ensure local minima,
and so the choice of an initial position can affect the
results. We have found, experimentally, that an initial
position that selects luminance, g = (1, 0, 0), usually
produces the best results. With this starting position, we
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obtained the images of Figure 1c and Figure 2c. We con-
jecture that viewer expectations for gray-scale images
include a bias toward luminance maps and that starting
from this position provides the desired contrast without
straying too far from expected values.

As an example of an alternative choice, Figure 4 shows,
for the color image of Figure 1, the results of using the
first principal component as the initial position.

The time required to evaluate Equation 2 for each iter-
ation of the Fletcher—Reeves optimization can become
excessive for images with a large number of colors. Our
test images often had between 10,000 and 100,000 col-
ors. Nevertheless, we have found that it is not necessary
to evaluate the error function over the entire set of col-
ors. We perform a simple equal-volume binning of col-
ors, replacing each bin with its mean, to reduce the
number of colors in each image to approximately 1,000.
When evaluating Equation 2 with a reduced color image,
care must be taken to weight each contribution by the
number of colors that map to the reduced ¢;and c;.

With this color reduction, the method is relatively
fast. On a 2.8-GHz Xeon PC, the optimization of Figure
larequired 2.96 seconds for a reduced color image con-
taining 317 colors. For another version of the same
image, containing 11,231 colors, the optimization
required 1,931.44 seconds. The resulting gray-scale
images for these two tests were visually indistinguish-
able. Figure 2a contains only 43 colors. Optimization
required 0.06 second.

There is not an explicit constraint on the direction of
g. Use of g or —g can yield vastly different results. If the
wrong sign is chosen, the image will resemble a photo-
graphic negative. To prevent this, we check the sign of
the Z component of final vector g. If this is negative, we
use —g in the conversion to gray scale. This choice is con-
sistent with our previous conjecture on viewer expecta-
tions.

Dichromatic reproduction

We can use the error function of Equation 2 to create
a false color image for viewing by a color-deficient
observer. The objective here is not to create an image that
contains the same level of detail for all viewers—that is,
for observers with normal vision and those with various
color deficiencies. Rather, we want to create multiple
versions of the image, each tailored to the viewer’s visu-
al characteristics. Unlike other researchers,”° we do not
constrain how closely a remapped color must match the
corresponding original color. Instead, we focus solely on
the differences between pairs of colors. Walraven and
Alferdinck™ note that for many applications, the differ-
entiation of colors is more important than the identifi-
cation of colors. For a pair of distinct colors, minimizing
the distance between the original and the remapped col-
ors can be detrimental to maintaining adequate contrast.
This is clearly the case if the original colors are nearly
indistinguishable to the color-deficient viewer. Unlike
Daltonization (see the sidebar), our method provides
recolored images without user intervention.

For dichromatic reproduction, 7(x) in Equation 2 isa
composition of two transformations. First, a linear trans-
formation in homogeneous CIELab coordinates, G



R* — N3, is applied to warp the original color distribu-
tion. Note that Gis

G=|8 8 & &
8 81 & &z
0O 0 O 1

and so we ultimately search a 12-dimensional space.
Nonzero values of g4, gs, and g12 allow for color transla-
tions. The warped colors are then input to a simulator of
a color-deficient viewer. From the simulator output, we
can compute the perceived distance between the simu-
lated deficient pairs of colors as before.

To simulate a color-deficient viewer, we followed
Meyer and Greenberg’s'? procedure. They note that
empirical studies on individuals who have normal vision
in one eye and color-deficient vision in the other sug-
gest that the 2D hue values of normal vision are reduced
to a single dimension that is linear in terms of the CIE
Uniform Chromaticity Scale coordinates:

. SRR ) ¢
X+15Y+3Z X+15Y+3Z

€]

For each type of deficiency, a pair of line segments in «v
space is identified, where each pair connects a reference
white value to two specific spectral energies, shown in
Table 1. To determine where, on such line segments, a
color-deficient viewer will perceive any specific color,
Meyer and Greenberg use another color space, called
SML, so named because the three components corre-
spond to cone sensitivities in the visible spectrum’s
short, medium, and long wavelength regions. They pro-
vide a linear transformation between CIE X¥Zspace and
SML space, given by

S 0.0000 0.0000 0.5609 || X
M |=[-0.4227 1.1723 0.0911 || Y 5
L 0.1150 0.9364 -0.0203]| Z

We can then express color deficiency as an inability to
recognize differences in one of these components. For
example, viewers with protanopic deficiency would be
unable to distinguish variations in the Z component, and
thus a line in SML color space determined by fixed val-
ues of Sand M/with varying values of Zwould represent
a confusion line for such viewers.

To obtain the perceived color corresponding to any
original color in RGB or CIELab or LCH(ab) space, the
original color is first converted to CIE X¥Zspace and then
mapped to SML space by Equation 5. This determines,
per deficiency, a specific confusion line in SML space. By
applying the inverse of the transformation (see Equation
5), we can then project the confusion line into zv space
(see Equation 4) and find its intersection with one of the
line segments, previously described, appropriate for this
type of deficiency. The resulting zv coordinates of the
intersection, together with the luminance of the origi-
nal color, suffice to construct the perceived color.

Table 1. Spectral energies.

Energy 1 Energy 2
Deficiency (nanometers) (nanometers)
Protanopic 473 574
Deuteranopic 477 578
Tritanopic 490 610

Once again, to apply a conjugate-gradient search for
an optimal value of the matrix G, we must supply an ini-
tial position for G. In Figure 5 we show a slice of CIELab
space determined by fixing the Z component. The @-axis
is horizontal, and the 4-axis is vertical. If we apply a
color-deficient simulation to all colors shown, the 2D
space collapses, in each case, to a 1D curve. The red
curve shows the collapsed chromaticity for a simulated
protanopic viewer, the green curve for a simulated
deuteranopic viewer, and the blue curve for a simulat-
ed tritanopic viewer. As expected, the protanopic and
deuteranopic viewers have an extremely small response
in the a direction (horizontal axis) while the tritanopic
viewer has a narrow response in the 4 direction (verti-
cal axis). Based on this observation, we select an initial
transformation, G, that maps the first principal compo-
nent of the target image to 4 and the second principal
component to « for the protanopic and deuteranopic
cases. The opposite mapping is selected for the tri-
tanopic case. The Z axis is mapped to itself. As in the
transformation to gray scale, we then apply the Fletch-
er—Reeves conjugate-gradient method to Equation 2 to
obtain an optimal G and therefore an optimal recolor-
ing transformation, 7.

In Figure 6 (next page), we show the results of apply-
ing this method to the image of Figure 1 for the case of
protanopic deficiency. Figure 6a is the original, Figure
6b is the original as seen by a simulated observer with
protanopic deficiency, and Figure 6c is the original after
recoloring by 7; also as seen by a simulated observer with
protanopic deficiency. We see that the contrast between
the berries and the leaves in Figure 6a—which is lost in
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5 Confused
CIELab gamut:
ClELab chro-
maticity with
perceived chro-
maticity plots
for a simulated
protanopic
viewer (red),
deuteranopic
viewer (green),
and tritanopic
viewer (blue).
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6 Protanopic deficiencies: (a) The color image from Figure 1, (b) as seen by a simulated protanopic viewer, and (c) recolored for a
protanopic viewer as seen by a simulated protanopic viewer.

7 Deuteranopic deficiencies: (a) The color image from Figure 1, (b) as seen by a simulated deuteranopic viewer, and (c) recolored for
a deuteranopic viewer as seen by a simulated deuteranopic viewer.

Figure 6b—is preserved in Figure 6c¢, the recolored
image. We can choose Zrange to span the distance of the
color deficient gamut and maximize the range of colors
available to reproduce the contrast of the original image.

In Figure 7, we show similar results for a viewer with
deuteranopic deficiencies. The only input changes to
our method include using a projected confusion line
based on an inability to distinguish the /7component of
SML space and using the second row of Table 1 to deter-
mine the deuteranopic gamut. Again, we see that the
color contrast between the berries and the leaves in Fig-
ure 7a—which is lost in Figure 7b—is preserved in Fig-
ure 7c, the recolored image.

Tritanopic deficiencies are associated with confusion
between blue and yellow tones, rather than red and green
tones, and as such, the color image of Figure 1 does not
provide a good test case for our algorithm. (All variants
are nearly indistinguishable from the original.) Instead,
we select an image with significant blue-yellow informa-
tion content. Figure 8 (next page) shows the results. As
expected, here we use a confusion line determined by an
inability to distinguish the Scomponent in SML space and
the third row of Table 1 to determine the tritanopic gamut.

Like the monochromatic case, the time required for the
Fletcher-Reeves optimization of Equation 2 in the dichro-
matic case can become excessive for images with large
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numbers of colors. We use the same color reduction tech-
nique as a preprocessing step. For the 317-color image of
Figure 6, optimization required 6.95 seconds on a 2.8-
GHz Xeon. The 11,231-color version of the same image
required 8,651.34 seconds. For Figure 7, the 317-color
image required 6.91 seconds. The 11,231-color version
required 8,617.85 seconds. We optimized a quantized ver-
sion of the color image in Figure 8, containing 233 col-
ors, in 23.51 seconds. A 6,515-color version of this image
required 11,432.86 seconds. In all cases, the resulting
pairs of images were visually indistinguishable.

Direct comparison of our method with Daltonization
is difficult in that, as noted in the “Simulating Color
Deficient Vision” sidebar, the latter requires user-sup-
plied parameters. For most images, parameters that
yield recolored images comparable to those produced
by our method can be found with modest effort. Nev-
ertheless, there are cases for which suitable parameter
choices are more difficult to find. In Figure 9 (next
page) we show such a case. The Daltonized version
selected, that with low correction, suffers from a loss
of contrast along the curved edge.

Discussion
Our linear method for both monochromatic and dichro-
matic color image reduction has several advantages. First,



8 Tritanopic deficiencies: (a) A color image with significant blue-yellow content, (b) as seen by a simulated tritanopic viewer, and (c)

recolored for a tritanopic viewer as seen by a simulated tritanopic viewer.

9 Comparison with Daltonization: (a) A multigradient color image, (b) recolored by our method for a deuteranopic
viewer as seen by a simulated deuteranopic viewer. (c) Daltonized with low correction for a deuteranopic viewer as

seen by a simulated deuteranopic viewer.

we can use color quantization to quickly and easily reduce
the size of the data set. It is not necessary to operate on
the entire data set, as it is with traditional nonlinear meth-
ods. Nevertheless, work is progressing to extend proce-
dures such as local linear embedding (LLE) and Isomap
to operate on partial data sets. Second, the linear opera-
tions are extremely fast to compute and easy to implement,
as opposed to procedures, such as LLE, that require find-
ing eigenvectors of very large, sparse matrices. It is also
straightforward to incorporate alternative perceptual dis-
tance metrics. Finally, our linear method does not require
tuning, in the form of a neighborhood-size parameter,
which frequently appears in nonlinear methods.

In some cases, our method produces results of ques-
tionable value. If we apply the gray-scale transform to
the CIELab gamut of Figure 5, the result is a smooth, gray
ramp from the lower left to upper right of the image. The
cyan corner is mapped to white, and the orange corner
is mapped to black, but the green and magenta corners
receive almost identical grays. It is impossible for a linear
gray scale transform to handle multiple modes of con-
trasting gradients in the image. Nevertheless, this is a
fairly contrived example, and it is unclear what a pleas-
ing gray-scale version of this image would look like.

The linear gray-scale transform also breaks down

when the image contains large patches of black and
white. Here the gray-scale transform maps black to low
luminance and white to high luminance, resulting in a
direct mapping from Z to gray. To combat this problem,
itis straightforward to allow the user to mask off regions
of the image containing relevant color details.

Our method does not explicitly account for the extent
to which the final gray-scale or recolored images differ
from the originals. In the gray-scale transformation, we
implicitly handle this by initializing the optimization
with a gray vector pointing along the luminance axis. A
generalization to the dichromatic case is still an open
problem. This can result in extremely unnatural colors
in the image, such as the blue leaves in Figure 6c, or the
orange jelly beans in Figure 8c. There is also no consid-
eration given to spatial surround or local color adaption.
A colored box on a light surround and the same box on
adark surround are treated the same, even though they
may be perceived differently. This would be useful to
include for computing images for display on specific
media. Finally, the perceptual color difference metrics
we use are designed for cases where large areas of color
are being compared to one another. There may be a
more meaningful way to compare perceived color dif-
ferences in high color frequency cases.

IEEE Computer Graphics and Applications




Smart Depiction for Visual Communication

10

Future directions

We are currently examining the behavior of our con-
version algorithm with respect to the luminance of the
original image. We might need to introduce constraints
on the ordering of some luminance values to preserve
effects such as shadow gradients and specular highlights.
Investigation into nonlinear transformations may also
prove useful. While they are more difficult to use in con-
junction with color quantization, they are better suited
for handling complex variation, such asin Figure 5. W
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