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ABSTRACT X-ray imaging is one of the most widely used security measures for maintaining airport and

transportation security. Conventional X-ray imaging systems typically apply tone-mapping (TM) algorithms

to visualize high-dynamic-range (HDR) X-ray images on a standard 8-bit display device. However, X-ray

images obtained through traditional TM algorithms often suffer from halo artifacts or detail loss in inter-

object overlapping regions, which makes it difficult for an inspector to detect unsafe or hazardous objects.

To alleviate these problems, this paper proposes a deep learning-based TM method for X-ray inspection. The

proposed method consists of two networks called detail-recovery network (DR-Net) and TM network (TM-

Net). The goal of DR-Net is to restore the details in the input HDR image, whereas TM-Net aims to compress

the dynamic range while preserving the restored details and preventing halo artifacts. Since there are no

standard ground-truth images available for the TM of X-ray images, we propose a novel loss function for

unsupervised learning of TM-Net. We also introduce a dataset synthesis technique using the Beer-Lambert

law for supervised learning of DR-Net. Extensive experiments comparing the performance of our proposed

method with state-of-the-art TM methods demonstrate that the proposed method not only achieves visually

compelling results but also improves the quantitative performance measures such as FSITM and HDR-VDP-

2.2.

INDEX TERMS Convolutional neural network, high dynamic range, tone mapping, unsupervised learning,

X-ray imaging.

I. INTRODUCTION

To detect unsafe or hazardous objects quickly and in a non-

invasive manner, X-ray inspection systems have been exten-

sively used in many security applications [1]. Unlike conven-

tional imaging systems, which measure the light reflected by

an object, X-ray inspection systems capture high-dynamic-

range (HDR) images by measuring the amount of photons

passing through objects [2]. To visualize HDR X-ray images

that have 12- to 16-bit precision on a standard 8-bit display

device, X-ray inspection systems often apply tone mapping

(TM), which shrinks the intensities of the HDR image to the

target display range [1], [3].

In general, TM methods can be classified into global and

local TM methods. Global TM methods apply the same

mapping function to all the pixels in the HDR image [4]–[11].

Ward [5] used a simple linear function to compress image

contrast instead of the absolute luminance. Ferwerda et al. [6]

proposed a visual adaptation model based on psychophysical

experiments incorporating threshold visibility, color appear-

ance, visual acuity, and sensitivity over time. Larson et al. [4]

applied a histogram adjustment technique to preserve the

histogram distribution of the original HDR image. Drago et

al. [7] employed adaptive logarithmic mapping to preserve

details and contrast. Reinhard and Devlin [9] proposed a

global operator based on the photoreceptor response of the

cones in the human eye. Khan et al. [10] used a luminance

histogram to construct a lookup table for TM. Khan et al. [11]

applied a histogram-based TM after perceptual quantization

to enhance the dark regions and compress the bright ones.

Although global TM is simple, fast, and can preserve the
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intensity orders of the original scenes, it does not sufficiently

enhance local image contrast and often results in loss of

detail, which are fatal drawbacks in security inspection ap-

plications using X-ray images.

By contrast, local TM methods process each pixel differ-

ently according to its neighboring pixel values [12]–[26].

Fattal et al. [22] designed a novel local TM operator based

on gradient attenuation. They compressed the drastic irra-

diance changes by reducing large gradients under a multi-

scale framework. Reinhard et al. [23] proposed a local TM

algorithm based on an automated dodging and burning algo-

rithm. Li et al. [24] used a symmetrical analysis-synthesis

filter bank for local gain control and luminance compres-

sion. Ma et al. [20] presented a tone mapped image quality

index (TMQI) and performed dynamic range compression

by optimizing this index. Laparra et al. [21] proposed a

perceptually optimized image rendering method that mini-

mizes the loss of contrast between the input HDR and its

tone-mapped images. However, this method requires a high

computational complexity due to its iterative optimization

process. In contrast to global TM, local TM is generally

capable of improving contrast ratios while preserving local

details. However, local TM often yields annoying artifacts

called halo artifacts around the high-frequency edges, as well

as an imbalance in the global scene brightness.

Recently, deep learning-based TM operators have been

proposed, which are mainly based on the generative adver-

sarial network (GAN) [27]–[29]. GAN-based TM methods

convert the style of input HDR images into that of predefined

low-dynamic-range (LDR) target images. However, there is

no learning-based TM method specialized for X-ray images

to the best of our knowledge.

Indeed, applying existing TM algorithms developed for

natural scenery images to X-ray inspection systems is not

an ideal solution. X-ray inspection systems aim to detect

suspicious objects by scanning suitcases and luggage, which

often contain multiple objects stacked on top of each other

or overlapping [30]. In other words, when visualizing an

X-ray image on a display for a human inspector, the local

details should be preserved to allow the inspector to detect

unsafe or hazardous objects. However, as mentioned above,

the conventional global TM methods are prone to the loss

of local details, which makes visual inspection difficult.

The traditional and learning-based local TM methods can

preserve the local details, but they suffer from halo artifacts

which distract the inspector.

This paper presents a new deep learning-based TM method

for X-ray inspection systems. The proposed method consists

of two different networks called the detail-recovery network

(DR-Net) and the TM network (TM-Net). The goal of DR-

Net is to restore the details of the input HDR image. The

DR-Net, which is based on a convolutional neural network

(CNN), produces the HDR image with fine details by en-

hancing the detail layer of the input HDR image. To train

DR-Net in a supervised learning manner, we propose a data

synthesis technique. Our synthesis technique is motivated

by the previous technique called threat image projection

(TIP) [31], which generates synthesized X-ray images based

on the Beer-Lambert law [32]. In addition to the X-ray image

synthesis, we also generate ground-truth (GT) detail layers

for DR-Net training.

After restoring the detail layer of the input HDR image

by DR-Net, the output LDR image is generated using TM-

Net, which focuses on compressing the dynamic range while

preserving the restored details. However, it is also hard to

train TM-Net since there are no standard GT LDR images for

X-ray TM. If the LDR images obtained using traditional TM

methods are used as GT for TM-Net training, TM-Net cannot

behave very differently from traditional TM methods. To

overcome this problem, we introduce an unsupervised learn-

ing framework. Specifically, we design a loss function that

simultaneously optimizes the detail preservation of the input

HDR image and the prevention of halo artifacts. The results

of extensive experiments comparing the performance of the

proposed method with state-of-the-art TM methods demon-

strate that the proposed method achieves visually compelling

results by enhancing local details in heavily overlapped areas

while also preventing halo artifacts. In addition, the proposed

method improves the quantitative scores, including the fea-

ture similarity index for tone-mapped images (FSITM) [33]

and HDR-visible difference predictor (HDR-VDP)-2.2 [34].

In summary, this paper presents three major contributions.

(i) We propose a novel TM framework specialized for X-

ray inspection systems that achieves superior performance

compared to conventional TM methods. (ii) We introduce

a data synthesis technique to train DR-Net that restores the

detail layer of the HDR X-ray image in a supervised manner.

(iii) We present a novel loss function which guides TM-Net

to learn TM without requiring GT LDR images.

II. RELATED WORK

A detailed review of the traditional and recent TM meth-

ods can be found in [35], [36]. In this section, we briefly

review the TM methods closely related to ours, i.e., im-

age decomposition-based and learning-based methods. The

conventional X-ray image synthesis technique [31] that we

adopted and extended for our image synthesis is also ex-

plained.

A. IMAGE DECOMPOSITION-BASED TM

One of the most common choices for local TM is im-

age decomposition [35]. In image decomposition-based TM

methods, a smoothing filter is applied to the input image.

The filtered image is then used to extract the detail and

base layers. The detail layer is further refined to enhance

local image details, while the base layer is tone-mapped

for dynamic range compression. The LDR image is finally

obtained by recombining the refined base and detail layers.

Durand et al. [15] proposed a method using a bilateral

filter to decompose the HDR image into the base and de-

tail layers. The method preserves image details but still

suffers from halo artifacts. Farbman et al. [16] proposed
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an edge-preserving decomposition method based on the

weighted least squares optimization framework. This global

optimization-based method tends to produce images with

higher quality than the bilateral filter-based method [15], but

it has high computational costs. He et al. [17] proposed a

guided filter which achieves good edge-preserving smoothing

properties by using a guidance image for filtering. Moreover,

the guided filter can be computed efficiently regardless of the

kernel size and intensity range. Liang et al. [37] compressed

the dynamic range in the gradient domain using a hybrid

l1 − l0 decomposition model. Bae et al. [25] proposed a

TM method that estimates an optimal detail layer and tone-

mapped image without iterative process. Miao et al. [26]

used multi-layer decomposition and reconstruction to model

the properties of brightness, structure, and detail for HDR

images. Different strategies were then adopted for each layer

to reduce the overall brightness contrast and retain as much

scene information.

B. LEARNING-BASED TM

Recent studies have proposed CNN-based TM operators,

which are based on GANs along with reference LDR image

datasets [27]–[29]. Zhang et al. [27] adopted the improved

Wasserstein GAN with gradient penalty, and presented a

dataset consisting of tone-mapped images that were manu-

ally adjusted by expert photographers. Montulet et al. [28]

introduced an end-to-end TM approach based on deep con-

volutional GANs using a dataset consisting of the HDR

images and their color corrected versions obtained by top-

ranked experts. Rana et al. [29] used a multi-scale conditional

GAN to solve the problems of conventional GAN-based TM

methods [27], [28], such as tiling patterns, local blurring,

and saturation. However, Zhang et al.’s and Montulet et al.’s

methods cannot be easily extended to other applications, such

as X-ray image inspection, due to their reliance upon experts

in dataset generation. Rana et al.’s method uses traditional

TM methods for generating target LDR images, and thus

their method cannot behave very differently from traditional

TM methods [29]. To train CNNs without requiring laborious

expert retouching or traditional TM methods, this paper

presents a dataset synthesis technique based on the Beer-

Lambert law [32] as well as a novel loss function that can be

used to train our networks without paired HDR-LDR images.

C. X-RAY IMAGE SYNTHESIS

Many studies assume that X-ray image formation obeys

the Beer-Lambert law. Based on this assumption, at image

location (x, y), the pixel intensity of the X-ray image I(x, y)
is defined as

I(x, y) = I0 exp

(

−

∫

µ(x, y, z)dz

)

, (1)

where I0 is the beam intensity, z represents the depth coor-

dinate, and µ is the effective attenuation coefficient of the

objects in the scene [32].

Based on this image formation model, Rogers et. al. [31]

introduced a data synthesis technique called TIP which gen-

erates synthesized threat images that have no significant

differences compared to real threat images. More specifically,

they synthesize images by multiplying the foreground mask

F (x, y) and background mask B(x, y) as follows:

I(x, y) = I0F (x, y)B(x, y), (2)

where

F (x, y) = exp
(

−
∫

µF (x, y, z)dz
)

,

B(x, y) = exp
(

−
∫

µB(x, y, z)dz
)

.
(3)

µF and µB represent the effective attenuation coefficients

of the foreground and background masks, respectively. It

is worth noting that when N foreground masks are over-

lapped in the image, F (x, y) in (2) can be replaced with
∏N

i=1
F i(x, y), where F i indicates the i-th foreground mask.

Although the aforementioned TIP technique [31] can gen-

erate various X-ray images containing multiple overlapped

objects, the details of the image are often lost during the

image projection process. To explicitly show this problem,

we extract the detail layer from the input HDR image using

image decomposition with the guided filter [17]. The decom-

posed layers are obtained as

Ib(x, y) = G(log(I(x, y))),

Id(x, y) = log(I(x, y))− Ib(x, y),
(4)

where Ib and Id are the base and detail layers of the input

image, respectively, and G denotes the guided filter. Fig. 1

illustrates the detail loss problem of the TIP technique1. As

depicted in Fig. 1(b), the detail layer lacks sufficient details

where the two objects overlapped. To alleviate this problem,

we propose a detail layer synthesis technique that effectively

preserves details as shown in Fig. 1(c).

III. PROPOSED METHOD

As illustrated in Fig. 2, the proposed method is based on local

TM using image decomposition. Specifically, we propose

two networks: DR-Net and TM-Net. DR-Net first decom-

poses the input HDR X-ray image into a base layer and a

detail layer using the guided filter. Then, the detail layer

is passed through a CNN to restore the image details. The

base layer and the restored detail layer are recombined into a

single reconstructed image. Finally, the tone-mapped image

is obtained by applying TM-Net. Unlike most previous TM

methods [15], [16], [37], TM-Net applies TM not to the base

layer but to the restored HDR image to maintain the details

restored by DR-Net during the TM process.

U-Net [38] has achieved great success in solving pixel-

wise classification problems, including biomedical image

segmentation [39], remote sensing image segmentation [40],

and image restoration [41]. We adopted U-Net as the baseline

network architecture of DR-Net and TM-Net. We modi-

fied the convolutional layers to use reflection padding, and

1Unless otherwise mentioned, HDR images are linearly mapped to LDR
for visualization.
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FIGURE 1. Example of detail loss during the image projection process

compared with the proposed detail layer generation technique: (a) The

synthesized X-ray image, (b) detail layer obtained by the TIP method, and (c)

detail layer obtained by the proposed method.

changed the deconvolutional layers to bilinear upsampling

layers to mitigate the occurrence of checkerboard artifacts.

A. DR-NET

As explained previously, the detail layer Id obtained using (4)

can suffer from detail loss due to the overlapping of multiple

objects, which also happens in general X-ray imaging. Thus,

lost details cannot be recovered by directly applying TM to

the input HDR X-ray image. We therefore introduce DR-

Net to preprocess the input HDR image such that the final

tone-mapped LDR image can contain sharper details. To this

end, we first propose a method that synthesizes GT detail

layers. Specifically, the detail layers of the foreground and

background masks are obtained as follows:

Fd(x, y) = log(F (x, y))−G(log(F (x, y))),

Bd(x, y) = log(B(x, y))−G(log(B(x, y))),
(5)

where Fd and Bd represent the detail layers of the foreground

mask F and the background mask B, respectively. We then

define a GT detail layer Id,gt as follows:

Id,gt(x, y) = Fd(x, y) +Bd(x, y). (6)

Note the difference between the detail layer obtainable di-

rectly from the TIP technique as (4) and our definition in (6).

Because the detail layers are first individually extracted from

the foreground and background masks and then combined,

the proposed detail layer can preserve the details and can

thus be treated as GT for DR-Net training. When N fore-

ground masks are overlapped with each other, Fd(x, y) can

be defined as
∑N

i=1
F i
d(x, y), where F i

d indicates the detail

layer of the i-th foreground mask. As shown in Fig. 1(c),

the proposed method synthesizes the detail layer with distinct

object boundaries, even if there are several instances of inter-

object overlap.

During the training stage, DR-Net takes paired detail lay-

ers, i.e., Id from (4) and Id,gt from (6). The loss function Ldr

is defined to restore the detail layer of the X-ray image as

follows:

Ldr = ||Id,r − Id,gt||1, (7)

where || · || measures the L1 loss between the output of DR-

Net, denoted as Id,r, and the GT detail layer Id,gt. After

restoring the detail layer, we obtain the restored HDR image

Ir(x, y) as follows:

Ir(x, y) = Id,r(x, y) + Ib(x, y). (8)

Fig. 3 shows the resultant images of DR-Net. The image

regions inside the red boxes shown in Fig. 3 demonstrate

that the details of the heavily overlapped regions have been

successfully restored.

B. TM-NET

Because the output of DR-Net is still in HDR, TM is needed

to convert HDR to LDR. Without a loss of generality, our

TM-Net maps an input HDR image with 16-bit precision to

an output LDR image with 8-bit precision.

Since TM is content-dependent, environment-dependent,

and application-dependent, it is difficult to define GT LDR

images to train TM-Net in a supervised manner. We instead

define three different loss terms that can be measured without

the need for GT LDR images: structural similarity loss Lss,

detail preservation loss Ldp, and relative thickness loss Lrt.

The total loss function Ltotal is defined as a weighted sum of

the three loss terms:

Ltotal = λssLss + λdpLdp + λrtLrt, (9)

where λss, λdp, and λrt are the weight parameters that

control the importance of the three loss terms.

1) Structural similarity loss

To preserve the overall structure of the input image, we

measure the structural similarity [42] between the input and

output of TM-Net. The use of the structural similarity loss

can drive TM-Net to preserve the image structures of the

HDR image while reducing the dynamic range. Lss is defined

as follows:

Lss = 1− SSIM(Ir, Io), (10)

where SSIM measures the structural similarity [42] between

the restored HDR image Ir and the output of TM-Net, de-

noted as Io. Note that in our implementation, the pixel values

of Ir and Io are normalized to be in the range of [0, 1] so that

Lss can be directly measured between the two images. This

loss term has also been used in other unsupervised learning

tasks [43]–[45].
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FIGURE 2. Overall block diagram of the proposed method.

FIGURE 3. Example of DR-Net results: (a), (c) The input HDR images and

(b), (d) their corresponding resultant images obtained by DR-Net.

2) Detail preservation loss

Detail loss is inevitable when performing dynamic range

compression. To preserve details in the output LDR image,

we define the detail preservation loss as follows:

Ldp = −
∑

x,y

(Gx(Ir)Gx(Io) +Gy(Ir)Gy(Io)), (11)

where
Gx(Ir) = Ir(x+ 1, y)− Ir(x, y),
Gy(Ir) = Ir(x, y + 1)− Ir(x, y),
Gx(Io) = Io(x+ 1, y)− Io(x, y),
Gy(Io) = Io(x, y + 1)− Io(x, y).

(12)

This detail preservation loss is designed to strengthen the

details of the resultant LDR images in a spatially adaptive

manner. Specifically, since the gradient of the restored HDR

image is used as a weighting factor, the resultant LDR images

can have pixels with high gradients where their correspond-

ing HDR pixels have high gradients.

3) Relative thickness loss

Excessive contrast enhancement can cause a gradient rever-

sal problem, which can lead to halo artifacts. The relative

thickness loss is thus presented to maintain the sign of the

image gradients before and after TM operation. This loss

plays an important role in avoiding over-enhancement, which

is a crucial factor for the inspector to estimate the relative

thickness of the objects [1]. Lrt is defined as follows:

Lrt =
∑

x,y

tanh (λsGx(Ir))− tanh (λsGx(Io))

+ tanh (λsGy(Ir))− tanh (λsGy(Io)) .

(13)

As the sign function is non-differentiable, we use the tanh
function instead [46]. The parameter λs is used to make the

tanh function steeper, which makes the tanh function similar

to the sign function.

IV. EXPERIMENTAL RESULTS

In this section, we present qualitative and quantitative per-

formance comparison results to demonstrate the superiority

of the proposed method compared to the state-of-the-art TM

methods [10], [21], [24], [29], [37].

A. DATASET AND IMPLEMENTATION DETAILS

There are several X-ray security imaging datasets avail-

able [30], [47], [48], but these datasets were developed for

computer vision tasks including object classification, detec-

tion, segmentation, and unsupervised anomaly detection. To

the best of our knowledge, there is no publicly available

dataset for TM of X-ray images. We thus first constructed

a synthetic dataset. To simulate X-ray images for our target

applications, we used knives and firearms as representative

threatening objects. Other objects were also included and

cluttered inside suitcases to make visual inspection more dif-

ficult. Using each object inside the suitcases as an individual

foreground mask, we synthesized 10,000 X-ray images and

corresponding GT detail layers to train DR-Net as explained

in Section III-A. Another 100 synthesized images were used

for quantitative performance evaluation.

For the test on real image samples, we captured 16-

bit HDR X-ray images2. Fig. 4(a) shows a test sample of

2http://www.sens-tech.com/index.php/security/carry-on-baggage-
screening
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FIGURE 4. Examples of real X-ray images used for testing TM methods: (a) Suitcase with dangerous objects and (b) its X-ray image, (c) the ASTM F792-08 kit and

(d) its X-ray image.

a typical suitcase containing threatening objects. Fig. 4(c)

shows another test sample of the ASTM F792-08 kit, which

is widely used for evaluating the performance of X-ray

inspection systems3.

For the performance comparison, we used the widely used

global [10] and local [21], [24], [37] TM methods with the

author-provided source codes. For the test of the learning-

based method [29], we followed the authors’ procedure for

generating training image pairs. Specifically, we used the

same 10,000 synthesized HDR X-ray images as input and

obtained multiple tone-mapped LDR images for each HDR

image using the other existing TM methods [10], [21], [24],

[37]. Among multiple tone-mapped LDR images for each

HDR image, we chose the image with the highest TMQI [49]

as a target LDR image, resulting paired HDR and HDR

images. The author-provided code with the default settings

was then used for training their TM network [29].

The proposed DR-Net and TM-Net were trained from

scratch for 100k iterations with a learning rate of 1e-5,

followed by another 100k iterations with the learning rate

linearly decayed to 0. We used the Adam optimizer with

β1 = 0.9 and β2 = 0.999, and the batch size was set to 1,

which are commonly used settings in various deep learning

networks. The weight parameters were empirically chosen as

(λss, λdp, λrt) = (1, 300, 100) to control the relative impor-

tance of each loss term, and λs was set to 0.1 to make the

relative thickness loss trainable. Our whole training process

was conducted using a single Titan X GPU. More results,

datasets, and code can be found on our project webpage4.

B. QUANTITATIVE PERFORMANCE EVALUATION

For the objective performance assessment, we adopted

widely used measures, including the measure of enhance-

ment by entropy (EME) [50], PixDist [51], TMQI [49],

FSITM [33], and HDR-VDP-2.2 [34]. EME approximates

the average contrast in an image by dividing it into blocks,

computing a score based on the minimum and maximum

gray-levels in each block, and then averaging the scores.

PixDist is used as a criterion to measure the level of con-

trast enhancement, and a high PixDist represents an image

3https://www.astm.org/DATABASE.CART/HISTORICAL/F792-08.htm
4https://github.com/hykim0/DRnTM-Net

TABLE 1. Quantitative performance comparison of the conventional and

proposed TM methods.

Method EME PixDist TMQI FSITM HDR-VDP-2.2

Laparra et al. 43.7535 34.4379 0.7776 0.8014 51.5406
Khan et al. 3.9158 45.4804 0.7825 0.8853 52.4322

Li et al. 14.8975 24.7131 0.7631 0.8677 53.4005
Liang et al. 8.2632 23.5373 0.7633 0.8327 53.6889
Rana et al. 4.1968 46.6118 0.7795 0.8697 52.7200
Proposed 16.5676 39.785 0.7715 0.9306 55.1932

with a widely spread histogram. TMQI is a widely accepted

metric for TM performance evaluation, which evaluates the

structural fidelity and naturalness of tone mapped images.

FSITM measures the similarity of the original HDR and

converted LDR images using local phase information. The

FSITM score is high for visually pleasing images with vivid

appearances of the real-world scene. HDR-VDP-2.2 can

predict whether or not the difference between two images

is visible to a human observer. HDR-VDP-2.2 takes into

account several aspects such as the diagonal display size,

display resolution, and viewing distance.

Table 1 lists the quality scores obtained for 100 syn-

thetic test images, where the best and second-best scores

are bold-faced and underlined, respectively. Laparra et al.’s

method [21] achieved the highest EME score, and Khan et

al.’s method [10] showed outstanding performance in terms

of PixDist and TMQI due to the global contrast enhancement.

Li et al.’s [24] and Liang et al.’s [37] methods exhibited

moderate performance in all performance measures. Rana et

al.’s method [29] showed a similar performance to that of

Khan et al.’s because the their training images were mostly

selected from Khan et al.’s method, which showed the high-

est TMQI as listed in Table 1. The proposed method acquired

the highest FSITM and HDR-VDP-2.2 scores along with

the second highest EME score, indicating that the proposed

method produces images with higher quality in different

aspects.

C. ABLATION STUDY

Because the proposed method includes DR-Net and TM-

Net, we first evaluated the effectiveness of the individual

networks. Li et al.’s and Liang et al.’s TM methods were

used for this performance comparison because their methods
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FIGURE 5. Visual comparison of TM-Nets trained with different loss combinations: (a) Input detail-restored HDR image, and the resultant images obtained by

TM-Nets trained using (b) Ldp, (c) Ldp and Lss, (d) Ldp and Lrt, and (e) Ldp, Lss, and Lrt.

FIGURE 6. Comparison results with different TM methods for the suitcase X-ray image. (a) Input HDR image and the results of (b) Laparra et al.’s, (c) Khan et al.’s

(d) Li et al.’s, (e) Liang et al.’s, (f) Rana et al.’s, and (g) the proposed method.

TABLE 2. Objective performance comparison of TM methods for the original

and detail-restored HDR images.

Input Method EME PixDist TMQI FSITM HDR-VDP-2.2

Original

HDR

Li et al. 14.8975 24.7131 0.7631 0.8677 53.4005
Liang et al. 8.2632 23.5373 0.7633 0.8327 53.6889
Proposed 10.3366 40.4007 0.7638 0.9427 54.5499

Detail Li et al. 33.7016 16.1134 0.7468 0.8259 49.9713
restored Liang et al. 20.8025 15.5551 0.7548 0.8401 49.7713

HDR Proposed 16.5676 39.785 0.7715 0.9306 55.1932

produce images with high local contrast without severe over-

enhancement. First, the same original HDR images were used

for the inputs of TM-Net and the two compared TM meth-

ods [24], [37]. As presented in Table 2, the proposed TM-Net

yielded the highest PixDist and FSITM scores, as well as the

second highest TMQI and HDR-VDP-2.2 scores. Second, the

same detail-restored HDR images obtained by DR-Net were

used for the inputs of TM-Net and the other two methods.

Table 2 shows that TM-Net improved the scores especially

when used with DR-Net. The EME score obtained using both

DR-Net and TM-Net was higher than that obtained from

TM-Net alone, demonstrating the effectiveness of DR-Net

for local detail improvement. The use of the detail-restored

HDR images also contributed to local detail improvement

for Li et al.’s and Liang et al.’s TM methods as can be

noticed from the increase of the EME scores. However, the

PixDist scores were considerably decreased and the FSITM

and HDR-VDP-2.2 scores were also decreased, indicating

the over-enhancement by DR-Net when used with the other

two TM methods.

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3035086, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 7. Comparison results with different TM methods for the ASTM F792-08 kit X-ray image. (a) Input HDR image and the results of (b) Laparra et al.’s (c)

Khan et al.’s (d) Li et al.’s, (e) Liang et al.’s, (f) Rana et al.’s, and (g) the proposed method.

FIGURE 8. Visual comparison of LDR results of different TM methods on the detail-restored suitcase image obtained by the proposed DR-Net: (a) Input

detail-restored HDR image and the results of (b) Li et al.’s, (c) Liang et al.’s , and (d) the proposed TM-Net.

Next, we evaluated the effectiveness of the loss terms in

(10)-(13) which were used in TM-Net training. To this end,

we applied both DR-Net and TM-Net, but the TM-Nets were

trained using only one or two loss terms. As demonstrated

in Fig. 5, the three loss terms were all found to be necessary

to prevent over-enhancement and preserve overall structure.

Note that Ldp was always included in the loss function

because TM-Net maintained the input image as the output

when trained without using Ldp.

Finally, we changed the baseline network architecture

from U-Net to the context aggregation network (CAN) [52].

Here, we maintained the entire framework and only changed

the network architectures of DR-Net and TM-Net. The re-

sults of the proposed method with CAN were 17.8264,

41.6288, 0.7684, 0.8938, and 54.8046 for EME, PixDist,

TMQI, FSITM, and HDR-VDP-2.2, respectively, which are

comparable to the scores obtained with U-Net. Based on this

result, we can conclude that the proposed method does not

strongly depend on the baseline network architectures used.
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FIGURE 9. Visual comparison of LDR results of different TM methods on the detail-restored kit image obtained by the proposed DR-Net: (a) Input detail-restored

HDR image and the results of (b) Li et al.’s, (c) Liang et al.’s, and (d) the proposed TM-Net.

D. RESULTS ON REAL IMAGES

We performed qualitative performance comparison of differ-

ent TM methods on the real samples as shown in Fig. 4. Fig. 6

compares the TM results of the real suitcase X-ray image ob-

tained by the proposed and conventional methods [10], [21],

[24], [29], [37]. Khan et al.’s global TM method [10] was not

able to enhance the local contrast. Laparra et al.’s [21] and Li

et al.’s [24] local TM methods improved the local contrast,

but noticeable halo artifacts were present. Liang et al.’s

decomposition-based TM method [37] produced images with

high local contrast with less noticeable halo artifacts, but the

details in the inter-object overlapped regions were not clearly

rendered. Rana et al.’s learning-based TM method [29] could

enhance the global contrast, but local contrast was not ef-

fectively improved because of the biased distribution of the

target LDR images toward globally enhanced images. As

shown in Fig. 6(g), the proposed method could significantly

improve the visibility of the inter-object overlapped regions.

Fig. 7 shows another results on the kit test sample. Sim-

ilarly, Khan et al.’s [10] and Rana et al.’s [29] methods

suffered from low local contrast. The other local TM methods

produced images with high local contrast, but Laparra et

al.’s [21] method produced noisy images while Liang et

al.’s [37] and Li et al.’s [24] methods suffered from halo arti-

facts. As shown in Fig. 7(g), the proposed method improved

image details with fewer halo artifacts.

We also applied the same detail-restored HDR images as

input for Li et al.’s and Liang et al.’s TM methods as well

as our TM-Net. When comparing Figs. 6(d) and (e) with

Figs. 8(b) and (c), or Figs. 7(d) and (e) with Figs. 9(b) and

(c), it can be found that the proposed DR-Net can further

improve the performance of Li et al.’s and Liang et al.’s

TM methods in terms of the detail visibility and sharpness

of images. Li et al.’s method improved the overall details,

but it is still difficult to recognize the numbers in the red box

of Fig. 9(b) due to severe noise amplification. Halo artifacts

were more severe for Liang et al.’s method when used with

DR-Net as shown in Figs. 8(c) and 9(c). These side effects

can also be noticed from the decrease of FSITM and HDR-

VDP-2.2 scores when DR-Net was used with Li et al.’s and

Liang et al.’s methods as shown in Table 2.

V. CONCLUSION

A novel learning-based TM method was proposed to effec-

tively visualize HDR X-ray images on existing display de-

vices for X-ray inspection systems. The proposed method is

composed of two networks, where DR-Net restores details in

the inter-object overlapping regions of the image and TM-Net

converts the detail-restored HDR images to LDR images with

detail and structure preservation capability. We also proposed

a GT detail layer synthesis technique for supervised DR-Net

training and introduced loss terms that can be used to train

TM-Net in an unsupervised manner. The experimental results

show that the proposed method achieves visually compelling

images with improved details and fewer halo artifacts, and

is superior to the state-of-the-art TM methods in terms of

quantitative performance measures.
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