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Abstract

The perceived quality of computer graphics imagery depends on the accuracy of the rendered frames, as well

as the capabilities of the human visual system. Fully detailed, high fidelity frames still take many minutes even

hours to render on today’s computers. The human eye is physically incapable of capturing a moving scene in full

detail. We sense image detail only in a 2◦ foveal region, relying on rapid eye movements, or saccades, to jump

between points of interest. Our brain then reassembles these glimpses into a coherent, but inevitably imperfect,

visual percept of the environment. In the process, we literally lose sight of the unimportant details. In this paper, we

demonstrate how properties of the human visual system, in particular inattentional blindness, can be exploited to

accelerate the rendering of animated sequences by applying a priori knowledge of a viewer’s task focus. We show

in a controlled experimental setting how human subjects will consistently fail to notice degradations in the quality

of image details unrelated to their assigned task, even when these details fall under the viewers’ gaze. We then

build on these observations to create a perceptual rendering framework that combines predetermined task maps

with spatiotemporal contrast sensitivity to guide a progressive animation system which takes full advantage of

image-based rendering techniques. We demonstrate this framework with a Radiance ray-tracing implementation

that completes its work in a fraction of the normally required time, with few noticeable artifacts for viewers

performing the task.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

- Viewing Algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism - Animation I.4.8

[Image Processing and Computer Vision]: Scene Analysis -Time-varying imagery

1. Introduction

One of the central goals in computer graphics is to produce

the best perceived image in the least amount of time. Ad-

vanced rendering techniques such as ray-tracing and global

illumination improve image quality, but at a commensurate

cost. In many cases, we end up spending significant effort

improving details the viewer will never notice. If we can find

a way to apply our effort selectively to the small number of

regions a viewer attends in a given scene, we can improve

the perceived quality without paying the full computational

price.

Most computer graphics serve some specific visual task

† cater@cs.bris.ac.uk

Figure 1: Effects of a task on eye movements. Eye scans for

observers examined with different task instructions; 1. Free

viewing, 2. Remember the central painting, 3. Remember as

many objects on the table as you can, 4. Count the number

of books on the shelves.
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− telling a story, advertising a product, playing a game, or

simulating an activity such as flying. In the majority of cases,

objects relevant to the task can be identified in advance, and

the human visual system focuses its attention on these ob-

jects at the expense of other details in the scene. Figure 1

shows a rendered image for which we instructed participants

to perform a number of arbitrary tasks. The eye-tracking

scans demonstrate that subjects focus on task-related objects

and fail to attend other details in the scene. In this paper, we

show experimentally that it is possible to render scene ob-

jects not related to the task at lower resolution without the

viewer noticing any reduction in quality.

We take advantage of these findings in a computational

framework that applies high-level task information to de-

duce error visibility in each frame of a progressively ren-

dered animation. By this method, we are able to generate

high quality animated sequences at constant frame rates in a

fraction of the time normally required. A key advantage to

this technique is that it only depends on the task, not on the

viewer. Unlike the foveal detail rendering used in flight sim-

ulators, there is no need for eye-tracking or similar single-

viewer hardware to enable this technology, since attentive

viewers participating in the same task will employ similar

visual processes.

We begin with a review of previous work in perceptually-

based rendering, focusing on areas most closely related to

our technique. We then present an experimental validation of

selective rendering using a task map to control image detail.

These results are followed by a description and demonstra-

tion of our perceptual rendering framework, which extends

these ideas to incorporate a model of spatiotemporal contrast

sensitivity, enabling us to predict local error visibility. In our

implementation of this framework, we use ray-tracing and

image-based rendering to compute an animated sequence in

two minutes per frame.

2. Previous Work

Visual attention is a coordinated action involving conscious

and unconscious processes in the brain, which allow us to

find and focus on relevant information quickly and effi-

ciently. If detailed information is needed from many differ-

ent areas of the visual environment, the eye does not scan the

scene in a raster-like fashion, but jumps so that the relevant

objects fall sequentially on the fovea. These jumps are called

saccades 30.

There are two general visual attention processes, labelled

bottom-up and top-down, which determine where humans

locate their visual attention 8. The bottom-up process is

purely stimulus driven, for example, a fire in the dark, a red

apple in a green tree, or the lips and eyes of another per-

son the most mobile and expressive elements of a face. In

all these cases, the visual stimulus captures attention auto-

matically without volitional control. This is evolutionary; the

movement may be danger lurking behind a bush, or we may

need to find ripe fruit for our meal. In contrast, the top-down

process is under voluntary control, and focuses attention on

one or more objects that are relevant to the observer’s goal

when studying a scene. Such goals might include looking for

a lost child, searching for an exit, or counting the number of

books on a shelf, as shown in Figure 1.

General knowledge of the human visual system has

been used to improve the quality of the rendered im-

age 4, 6, 15, 16, 21, 22. Other research has investigated how com-

plex model detail can be reduced without any reduction

in the viewer’s perception of the models 11, 19, 23, 28. Along

these lines, Maciel and Shirley’s visual navigation system

used texture mapped primitives to represent clusters of ob-

jects to maintain high and approximately constant frame

rates 12. The application of visual attention models in com-

puter graphics has so far exploited only peripheral vision and

the bottom-up visual attention process, as we discuss below.

2.1. Peripheral Vision

Due to the fact that the human eye only processes detailed

information from a relatively small part of the visual field,

it is possible to reduce detail in the periphery without up-

setting visual processing. In numerous studies, Loschky and

McConkie 10 used an eye-linked, multiple resolution dis-

play that produces high visual resolution only in the region

to which the eyes are directed. They were able to show that

photographic images filtered with a window radius of 4.1◦

produced results statistically indistinguishable from that of

a full, high-resolution display. The display they propose

does, however, encounter the problem of updating the multi-

resolution image after an eye movement without disturbing

the visual processing. Their work has shown that the im-

age needs to be updated after an eye saccade within 5 mil-

liseconds of a fixation, otherwise the observer will detect

the change in resolution. These high update rates were only

achievable using an extremely high temporal resolution eye

tracker, and pre-storing all possible multi-resolution images

that were to be used.

In another experiment, Watson et al. 27 evaluated the ef-

fectiveness of high detail insets in head-mounted displays.

The high detail inset they used was rectangular and was al-

ways presented at the finest level of resolution. Three inset

conditions were investigated: a large inset - half the com-

plete display’s height and width, a small inset size - 30 % of

the complete display’s height and width, and no inset at all.

The level of peripheral resolution was varied at: fine resolu-

tion 320x240, medium resolution 192x144 and coarse reso-

lution 64x48. Their results showed that although observers

found their search targets faster and more accurately in a

full high resolution environment, this condition was not sig-

nificantly better than the high-resolution inset displays with

either medium or low peripheral resolutions.
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2.2. Saliency Models

Low-level saliency models determine what visual features

will involuntarily attract our attention in a scene. Visual psy-

chology researchers such as Yarbus 30, Itti and Koch 7 and

Yantis 29 showed that the visual system is highly sensitive

to features such as edges, abrupt changes in color, and sud-

den movements. This low-level visual processing has been

exploited in computer graphics by Yee et al. 31 to accelerate

animation renderings with global illumination, by applying

a model of visual attention to identify conspicuous regions.

Yee constructs a spatiotemporal error tolerance map, called

the Aleph map, from spatiotemporal contrast sensitivity and

a low-level saliency map, for each frame in an animation.

The saliency map is obtained by combining the conspicuity

maps of intensity, color, orientation and motion. The Aleph

map is then used as a guide to indicate where more render-

ing effort should be spent in computing the lighting solution,

significantly improving the computational efficiency during

animation. Subsequent work by Marmitt and Duchowski 14

showed, however, that such bottom-up visual attention mod-

els do not always predict attention regions in a reliable man-

ner.

Our rendering framework in Section 4 extends Yee’s

work, modeling task-level saliency rather than automatic vi-

sual processes, and deriving a map of error conspicuity in

place of error tolerance. This permits us to finish a frame

when errors have become invisible, or render the best pos-

sible frame in a fixed period of time optimizations Yee’s

method does not support.

2.3. Inattentional Blindness

In 1967, the Russian psychologist Yarbus recorded the fix-

ations and saccades observers made while viewing natural

objects and scenes. Observers were asked to answer a num-

ber of different questions concerning the depicted situation

in Repin’s picture “An Unexpected Visitor” 30. This resulted

in substantially different saccade patterns, each one being

easily construable as a sampling of those picture objects that

were most informative for the answering of the question, as

shown in Figure 2.

Cater et al. 1 showed that conspicuous objects in a scene

that would normally attract the viewer’s attention are ignored

if they are not relevant to the task at hand. In their exper-

iments, viewers were presented with two animations. One

was a full, high-quality rendering, while in the other, only the

pixels in visual angle of the fovea (2◦) centered around the

location of a task within the environment were rendered at

high quality. This high quality was blended to a much lower

quality in the rest of the image. They showed that when ob-

servers were performing the task within an animation, their

visual attention was fixed exclusively on the area of the task,

and they consistently failed to notice the significant differ-

ence in rendering quality between the two animations.

We have extended the work in Cater et al. 1 to be able to

distinguish between the effects of peripheral vision and inat-

tentional blindness, which is the failure of an observer to see

unattended items in a scene 13. We present our results in the

following section, where we substitute still images for the

animation to ensure that the observed effect is not merely a

result of resolution loss in the periphery, but a true exhibition

of inattentional blindness.

Figure 2: Repin’s picture was examined by subjects with dif-

ferent instructions; 1. Free viewing, 2. Judge their ages, 3.

Guess what they had been doing before the unexpected vis-

itor’s arrival, 4. Remember the clothes worn by the people,

5. Remember the position of the people and objects in the

room, 6. Estimate how long the visitor had been away 30.

3. Task Maps: Experimental Validation

In this section, we demonstrate inattentional blindness ex-

perimentally in the presence of a high-level task focus. Our

hypothesis was that viewers would not notice normally vis-

ible degradations in an image that did not affect the clarity

of the objects we instructed them to seek. The experiments

confirmed our hypothesis with a high level of certainty. An

appropriate conjunctive search was selected as the task, with

no pre-attentive cues, such as color, to differentiate the task

objects from the other objects in the scene, this prevented

any pop-out effects 24. The task chosen for this experiment

was to count the number of teapots in a computer generated

scene. For ease of experimental setup a still image was used,

however, previous work has proven that this method works

just as well for animations 1.

A pre-study was run with 10 participants to find out how

long subjects took to perform the task, this was found to be

on average 2 seconds to count the five teapots in the image. A

pilot study was then conducted to deduce the appropriate im-

age resolution to use for the main experiment. 32 participants

were shown 24 pairs of images at random, and asked if they

could distinguish a change in resolution or quality between

the two images. Each image was displayed for 2 seconds.

One image was always the High Quality image rendered at a

3072x3072 sampling resolution, whilst the other image was

one selected from images rendered at sampling resolutions

of 256x256, 512x512, 768x768, 1024x1024, 1536x1536 and

2048x2048. In half of the pairs of images, there was no

change in resolution; i.e., they saw two 3072x3072 resolu-

tion images. The results can be seen in Figure 3.
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All the participants could easily detect a quality differ-

ence with the resolutions of 256x256 through to 1024x1024

in comparison to a resolution of 3072x3072. 72% still de-

tected a quality difference between a resolution image of

1536x1536 and 3072x3072. However, it was decided that

we would use a resolution of 1024x1024 in our main study

as 100% of participants in the pilot study detected the differ-

ence.

The main study involved two models of an office scene,

the only difference being the location of items in the scene,

mainly teapots (Figure 4). Each scene was then rendered to

three different levels of resolution quality, the entire scene

at High Quality (HQ), a sampling resolution of 3072x3072

(Figure 5a), the entire scene at Low Quality (LQ), a sam-

pling resolution of 1024x1024 (Figure 5b), and Selective

Quality (SQ). The Selective Quality image was created by

selectively rendering the majority of the scene in low quality

(1024x1024) apart from the visual angle of the fovea (2◦)

centered on each teapot, shown by the black circles in Fig-

ure 4, which were rendered at the higher rate corresponding

to 3072x3072 sampling. The high quality images took 8.6

hours to render with full global illumination in Radiance 26

on a 1 GHz Pentium processor, whilst the images for the

low quality were rendered in half this time, and the Selective

Quality in 5.4 hours.

In the study, a total of 96 participants were considered.

Each subject saw two images, each displayed for 2 seconds.

Table 1 describes the conditions tested with 32 subjects for

the HQ/HQ condition and 16 subjects for the other condi-

tions. We know from the pilot study that all participants

should be able to detect the rendering quality difference if

given no task; i.e., they are simply looking at the images for

2 seconds. The task chosen to demonstrate the effect of inat-

tentional blindness had the subjects counting teapots located

all around the scene. There were 5 teapots in both images.

By placing the teapots all over the scene, we were able to

see whether or not having to scan the whole image, and thus

fixate on low quality as well as high quality regions, would

mean that the viewers would indeed be able to detect the

rendering quality difference. To minimize experimental bias,

the choice of which condition to run was randomized, and

for each 8 were run in the morning and 8 in the afternoon.

Subjects had a variety of experience with computer graphics,

and all exhibited normal or corrected vision in testing.

Before beginning the experiment, the subjects read a sheet

of instructions on the procedure of the particular task they

were to perform. After each participant had read the instruc-

tions, they were asked to clarify that they understood the

task. They then placed their head on a chin rest that was lo-

cated 45cm away from a 17-inch monitor. The chin rest was

located so that their eye level was approximately level with

the centre of the screen. The participants’ eyes were allowed

to adjust to the ambient lighting conditions before the exper-

iment was begun. The first image was displayed for 2 sec-

onds, then the participant stated out loud how many teapots

they saw. Following this, the second image was displayed for

2 seconds, during which the task was repeated.

Figure 3: Results from the pilot study: determining a consis-

tently detectable rendering resolution difference.

Figure 4: Selective Quality (SQ) image showing the high

quality rendered circles located over the teapots.

On completion of the experiment, each participant was

asked to fill out a detailed questionnaire. This questionnaire

asked for some personal details including age, sex, and level

of computer graphics knowledge. The participants were then

asked detailed questions about the quality of the two images

they had seen. Finally, the subjects were shown a high qual-

ity and a low quality image side-by-side and asked which

one they saw for the first and second displayed images. This

was to confirm that participants had not simply failed to re-

member that they had noticed a quality difference, but actu-

ally could not distinguish the correct image when shown it

from a choice of two.

3.1. Results

Figure 6 shows the overall results of the experiment. Obvi-

ously, the participants did not notice any difference in the

rendering quality between the two HQ images (they were
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the same). Of interest is the fact that, apart from two cases in

the HQ/SQ conditions, the viewers performing the task con-

sistently failed to notice any difference between the HQ ren-

dered image and the SQ image. Surprisingly, nearly 20% of

the viewers in the HQ/LQ condition were so engaged in the

task that they failed to notice any difference between these

very different quality image.

Figure 5: Sampling resolutions: a(top left) 3072x3072

(HQ), b(top right) 1024x1024 (LQ), c(bottom left) 768x768

(LQ), d(bottom right) 512x512 (LQ)

3.2. Statistical Analysis

Statistical analysis shows where our results are significant.

The appropriate method of analysis is a “paired samples” t-

test for significance, and since each subject had a different

random selection of the images, an unrelated t-test was ap-

plied 2. By performing comparisons of the other image pair-

ings to the HQ/HQ data, we could determine whether the

results were statistically significant.

When the observers were counting teapots, the difference

between HQ/HQ and HQ/LQ counts were statistically very

significant. For a two-tailed test with the df = 62 (df is re-

lated to the number of subjects), t must be greater than or

equal to 2.0 for significance with p < 0.05 (less than 5%

chance of random occurrence). The result for the pair-wise

comparison of HQ/HQ and HQ/LQ was t = 11.6 with p <

0.05.

However, if we analyze statistics on the pair-wise compar-

ison of HQ/HQ and HQ/SQ, the results are not statistically

significant the null hypothesis is retained, as t = 1.4, df = 62,

and p > 0.1. From this we can conclude that when observers

were counting teapots, the HQ/HQ images and the HQ/SQ

images produced the same result; i.e., the observers thought

they were seeing the same pair twice, with no alteration in

rendering quality. However, when the observers were simply

looking at the images without searching for teapots in the

pilot study, the result was significantly different; i.e., the ob-

servers could distinguish that they were shown two images

rendered at different qualities.

An additional experiment was run to see at what value

the results became significantly different from the HQ res-

olution of 3072x3072. At a sampling resolution of 768x768

(Figure 5c) the results were only just significant, t = 2.9, df =

62, and p < 0.05. I.e., only 7 participants, out of the 32 peo-

ple studied, noticed the difference between the high quality

image and a selectively rendered image whilst performing

the teapot counting task. This only increased to 8 people out

of 32 when the sampling resolution was dropped again to

512x512 (Figure 5d)!

Figure 6: Experimental results for the two tasks: counting

the teapots vs. simply looking at the images.

Acronym Description

HQ High Quality: Entire animation rendered at a

sampling resolution of 3072x3072.

LQ Low Quality: Entire animation rendered at a

sampling resolution of 1024x1024.

SQ Selective Quality: A sampling resolution of

1024x1024 all over the image apart from the

visual angle of the fovea (2◦) centered around

each teapot, shown by the circles in Figure 4,

which are rendered to a sampling resolution of

3072x2072.

Table 1: The ordering image pairs shown in the experi-

ment were: (1)HQ/HQ, (2)HQ/LQ, (3)LQ/HQ, (4)HQ/SQ,

(5)SQ/HQ

3.3. Verification with an Eye-tracker

To confirm that the attention of an observer was being fully

captured by the task of counting teapots, the experiment was

repeated using the Eyelink Eyetracking System developed

by SR Research Ltd. and manufactured by SensoMotoric In-

struments. Figure 7 shows an example of a scan path of an

observer whilst performing the counting teapots task for 2
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seconds. Whilst all the observers had slightly different scan

paths across the images, they fixated both on the teapots and

on other objects as well. The vases seemed to be the most

commonly non-teapot object fixated upon, due to the fact

they were the most similar looking item in the scene to a

teapot. It could be deduced that the participants were mak-

ing fixations on non-teapot objects in the image to make sure

whether or not they were in fact a teapot, whatever the case

these fixations were not enough for the observers to distin-

guish the different quality to which they were rendered.

Figure 8 shows the perceptual difference between the se-

lective quality (SQ) and low quality (LQ) images computed

using Daly’s Visual Difference Predictor ?, 18. The recorded

eye-scan paths clearly cross, and indeed fixate, on areas of

high perceptual difference. We can therefore conclude that

the failure to distinguish the difference in rendering quality

between the teapots, selectively rendered to high quality, and

the other low quality objects, is not due purely to peripheral

vision effects. The observers are fixating on low quality ob-

jects, but because they are not relevant to the given task of

counting teapots, they fail to notice the reduction in render-

ing quality. This is inattentional blindness.

These results demonstrate that inattentional blindness,

and not just peripheral vision, may be exploited to signifi-

cantly reduce the rendered quality of a large portion of the

scene without having any significant effect on the viewer’s

perception of the scene.

4. A Perceptual Rendering Framework

By our experiments, we know that selective rendering is cost

effective for briefly viewed still images, and in fact task

focus seems to override low-level visual attention when it

comes to noticing artifacts. In the more general case of ani-

mated imagery, we can take even greater advantage of inat-

tentional blindness, because we know the eye preferentially

tracks salient objects at the expense of other details 1. Us-

ing Daly’s model of human contrast sensitivity for mov-

ing images 3, and Yee’s insight to substitute saliency for

movement-tracking efficacy 31, we can apply our a priori

knowledge of task-level saliency to optimize the animation

process.

The approach we describe has a number of key advan-

tages over previous methods using low-level visual percep-

tion. First, task-level saliency is very quick to compute, as

it is derived from a short list of important objects and their

known whereabouts. Second, we have introduced a direct es-

timate of pixel error (or uncertainty), avoiding the need for

expensive image comparisons and Gabor filters as required

by other perceptually based methods 31, 16. Third, we render

animation frames progressively, enabling us to specify ex-

actly how long we are willing to wait for each image, or stop-

ping when the error has dropped below the visible threshold.

Frames are still rendered in order, but the time spent refining

the images is under our control. Our initial implementation

of this framework is suitable for quick turnaround anima-

tions at about a minute per frame, but it is our eventual goal

to apply these methods to interactive and real-time render-

ing 20, 25.

We have designed a general framework for progressive

rendering that permits iterative frame refinement until a tar-

get accuracy or time allotment has been reached. A frame

may be refined by any desired means, including improve-

ments to resolution, anti-aliasing, level of detail, global illu-

mination, and so forth. In our demonstration system, we fo-

cus primarily on resolution refinement (i.e., samples/pixel),

but greater gains are possible by manipulating other render-

ing variables as well.

Figure 7: An eye scan for an observer counting the teapots.

The X’s are fixation points and the lines are the saccades.

Figure 8: Perceptual difference between SQ and LQ images

using VDP 3. Red denotes areas of high perceptual differ-

ence.
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4.1. Framework

The diagram shown in Figure 9 shows an overview of our

system. The boxes represent data, and the ovals represent

processes. The inputs to the system, shown in the upper left,

are the viewer’s known task, the scene geometry, lighting,

and view, all of which are a function of time. The processes

shown outside the “Iterate” box are carried out just once for

each frame. The processes shown inside the box may be ap-

plied multiple times until the frame is considered “ready”, by

whatever criteria we set. In most cases, we call a frame ready

when we have exhausted our time allocation, but we can also

break from iteration when our error conspicuity (EC) drops

below threshold over the entire image.

Input:
• Task

• Geometry

• Lighting

• View

High-level

Vision

Model

Geometric

Entity

Ranking

First

Order

Render

Object Map

& Motion
Lookup Task Map

Current Frame &

Error Estimate

Frame

Ready?

Output Frame

Contrast

Sensitivity

Model
Error

Conspicuity

Map

Refine Frame
No

Yes

Last Frame

Iterate

Figure 9: A framework for progressive refinement of anima-

tion frames using task-level information.

Our framework is designed to be general, and our imple-

mentation is just one realization. We start by explaining the

basic methods that are applied once per frame, followed by

the interactive methods for frame refinement. This overview

pertains to any rendering algorithm one might use, from ra-

diosity to ray-tracing to multi-pass hardware rendering. The

Implementation section that follows details some of the spe-

cific techniques we used in our ray-tracing realization, and

highlights our results.

Referring to Figure 9, our high-level vision model takes

the task and geometry as input, and produces a table quanti-

fying relative object importance for this frame. We call this

the geometric entity ranking. Specifically, we derive a ta-

ble of positive real numbers, where zero represents an ob-

ject that will never be looked at, and 1 is the importance of

scene objects unrelated to the task at hand. Normally, only

task-relevant objects will be listed in this table, and their im-

portance values will typically be between 1.5 and 3, where

3 is an object that must be followed very closely in order to

complete the task.

For the first order rendering, we may use any method that

is guaranteed to finish before our time is up. From this initial

rendering, we will need an object map and depth value for

each pixel. If subsampling is applied and some pixels are

skipped, we must separately project scene objects onto a full

resolution frame buffer to obtain this map. The pixel motion

map, or image flow, is computed from the object map and our

knowledge of object and camera movement relative to the

previous frame. The object map is also logically combined

with the geometric entity ranking to obtain the task map.

This is usually accessed via a lookup into the ranking table,

and does not require actual storage in a separate buffer.

Once we have a first order rendering of our frame and

maps with the object ID, depth, motion, and task-level

saliency at each pixel, we can proceed with image refine-

ment. First, we compute the relative uncertainty in each pixel

estimate. This may be derived from our knowledge of the un-

derlying rendering algorithm, or from statistical measures of

variance in the case of stochastic methods. We thought at

first that this might pose a serious challenge, but it turns out

to be a modest requirement, for the following reason. Since

there is no point in quantifying errors that we cannot correct

for in subsequent passes, we only need to estimate the differ-

ence between what we have and what we might get after fur-

ther refinement of a pixel. For such improvements, we can

usually obtain a reasonable bound on the error. For exam-

ple, going from a calculation with a constant ambient term

to one with global illumination, the change is generally less

than the ambient value used in the first pass, times the diffuse

material color. Taking half this product is a good estimate of

the change we might see in either direction by moving to

a global illumination result. Where the rendering method is

stochastic, we can collect neighbor samples to obtain a rea-

sonable estimate of the variance in each pixel neighborhood

and use this as our error estimate 9. In either case, error es-

timation is inexpensive as it only requires local information,

plus our knowledge of the scene and the rendering algorithm

being applied.

With our current frame and error estimate in hand, we can

make a decision whether to further refine this frame, or finish

it and start the next one. This “frame ready” decision may

be based as we said on time limits or on some overall test

of frame quality. In most cases, we will make at least one

refinement pass before we move on, applying image-based

rendering (IBR) to gather useful samples from the previous

frame and add them to this one.

In an IBR refinement pass, we use our object motion map

to correlate pixels from the previous frame with pixels from

this frame. This improves our ability to decide when and

where IBR is likely to be beneficial. We base our selection

of replacement pixels on the following heuristics:

1. The pixel pair in the two frames corresponds to the same

point on the same object, and does not lie on an object

boundary.

2. The error estimate for the previous frame’s pixel must be

less than the error estimate for the current frame’s pixel

by some set amount. (We use 15%.)
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3. The previous frame’s pixel must agree with surrounding

pixels in the new frame within some tolerance. (We use a

32% relative difference.)

The first criterion prevents us from using pixels from the

wrong object or the wrong part of the same object. We test

for position correspondence by comparing the transformed

depth values, and for object boundaries by looking at neigh-

boring pixels above, below, right, and left in our object map.

The second criterion prevents us from degrading our current

frame estimate with unworthy prior pixels. The third crite-

rion reduces pollution in shadows and highlights that have

moved between frames, though it also limits the number of

IBR pixels we take in highly textured regions. If a pixel from

the previous frame passes these three tests, we overwrite the

current pixel estimate with the previous one, and reset the

error to the previous value degraded by the amount used for

the second criterion. In this way, IBR pixels are automati-

cally retired as we move from one frame to the next.

Let us assume there is time for further refinement. Once

we have transferred what samples we can using IBR, we de-

termine which pixels have noticeable, or conspicuous, er-

rors so we may select these for improvement. Here we com-

bine the spatiotemporal contrast sensitivity function (CSF)

defined by Daly 3 with our task-level saliency map. Daly’s

CSF model is a function of two variables, spatial frequency,

ρ, and retinal velocity, vR:

CSF(ρ,vR) = k · c0 · c2 · vR · (c12πρ)2
exp(−

c14πρ

ρmax
) (1)

where:

k = 6.1+7.3| log(c2vR/3)|3

ρmax = 45.9/(c2vR +2)
c0 = 1.14,c1 = 0.67,c2 = 1.7 for CRT at 100cd/m2

Following Yee 31, we substitute saliency for movement-

tracking efficacy, based on the assumption that the viewer

pays proportionally more attention to task-relevant ob-

jects in their view. The equation for retinal image velocity

(in◦/second) thus becomes:

vR = |v1 −min(v1 ·S/Smax + vmin,vmax)| (2)

where:

v1 = local pixel velocity (from motion map)

S = task-level saliency for this region

Smax = max. saliency in this frame, but not less than

1/0.82

vmin = 0.15◦/sec (eye drift velocity)

vmax = 80◦/sec (movement-tracking limit)

The eye’s movement tracking efficacy is computed as

S/Smax, which assumes the viewer tracks the most salient

object in view perfectly. Daly 3 recommends an overall value

of 82% for the average efficacy when tracking all objects in a

scene at once, so we do not allow Smax to drop below 1/0.82.

This prevents us from predicting perfect tracking over the

whole image when no task-related objects are in view.

Since peak contrast sensitivity shifts towards lower fre-

quencies as retinal velocity increases, objects that the viewer

is not tracking because they are not important will be visible

at lower resolution than our task-relevant objects. However,

if the entire image is still or moving at the same rate, the

computed CSF will be unaffected by our task information.

Because of this, we reintroduce our task map as an addi-

tional multiplier in the final error conspicuity map, which

we define as:

EC = S ·max(E ·CSF/ND−1,0) (3)

where:

E =relative error estimate for this pixel

ND = noticeable difference threshold

Because the relative error multiplied by the CSF yields

the normalized contrast, where 1.0 is just noticeable, we in-

troduce a threshold difference value, ND, below which we

deem errors to be insignificant. A value of 2 JNDs is the

threshold where 94% of viewers are predicted to notice a

difference, and this is the value commonly chosen for ND.

To compute the CSF, we also need an estimate of the peak

stimulus spatial frequency, ρ. We obtain this by evaluating

an image pyramid. Unlike previous applications of the CSF

to rendering, we are not comparing two images, so we do not

need to determine the relative spatial frequencies in a differ-

ence image. We only need to know the uncertainty in each

frequency band to bound the visible difference between our

current estimate and the correct image. This turns out to be

a great time-saver, as it is the evaluation of Gabor filters that

usually takes longest in other approaches. Because the CSF

falls off rapidly below spatial frequencies corresponding to

the foveal diameter of 2◦, and statistical accuracy improves

at lower frequencies as well, we need only compute our im-

age pyramid up to a ρ of 0.5 cycles/degree.

Our procedure is as follows. We start by clearing our EC

map, and subdividing our image into 2◦ square cells. Within

each cell, we call a recursive function that descends a local

image pyramid to the pixel level, computing EC values and

summing them into our map on the return trip. At each pyra-

mid level, the EC function is evaluated from the stimulus

frequency (1/subcell radius in ◦), the task-level saliency, the

combined error estimate, and the average motion for pixels

within that subcell. The task-level saliency for a subcell is

determined as the maximum of all saliency values within a

2◦ neighborhood. This may be computed very quickly us-

ing a 4-neighbor check at the pixel level, where each pixel

finds the maximum saliency of itself and its neighbors 1◦ up,

down, left, and right. The saliency maximum and statistical

error sums are then passed back up the call tree for the return

evaluation. The entire EC map computation, including a sta-

tistical estimation of relative error, takes less than a second

for a 640x480 image on a 1 GHz Pentium processor.
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5. Implementation

In our implementation of the above framework, we modified

the Radiance lighting simulation and rendering engine 26

to perform progressive animation. Figure 10 shows a frame

from a 4-minute long animation we computed at 640x480

resolution using this software. Figure 11a shows our esti-

mate of relative error at each pixel in the first order ren-

dering, and Figure 11b shows the corresponding error con-

spicuity map. The viewer was assigned the task of counting

certain objects in the scene related to fire safety. There are

two task objects visible in this image, the fire extinguisher

and the narrator’s copter (the checkered ball), so the regions

around these objects show strongly in the conspicuity map.

Figure 12a shows the final number of samples taken at each

pixel in the refined frame, which took two minutes to com-

pute on a single 400 MHz G3 processor. We found this time

sufficient to render details on the task-related objects, but too

short to render the entire frame accurately. We wanted there

to be artifacts in order to demonstrate the effect of task focus

on viewer perception. About 50% of the pixels received IBR

samples from the previous frame, and 20% received one or

more high quality refinement samples.

For comparison, Figure 12b shows the scene rendered as a

still image in the same amount of time. Both images contain

artifacts, but the animation frame contains fewer sampling

errors on the task-related objects. In particular, the fire ex-

tinguisher in the corner, which is one of the search objects,

has better anti-aliasing than the traditionally rendered im-

age. This is at the expense of some detail on other parts of

the scene, such as the hatch door. Since the view is mov-

ing down the corridor, all objects will be in motion, and we

assume the viewer will be tracking the task-related objects

more than the others. Rendering the entire frame to the same

detail as the task objects in Figure 10 takes 7 times longer

than our optimized method. Although direct comparisons are

difficult due to differences in the rendering aims, Yee et al.

demonstrated a 4-10 times speedup in 31 and Myszkowski

et al. showed a speedup of roughly 3.5 times in 17. This

shows that we are able to achieve similar speedups control-

ling only rendered sampling resolution. If we were to refine

the global illumination calculation also, similar to Yee, we

could achieve even greater gains.

There are only a few aspects of our framework that we

must tailor to a ray-tracing approach. Initially, we compute a

low quality, first order rendering from a quincunx sampling

of the image plane, where one out of every 16 pixels is sam-

pled. (This sampling pattern is visible in unrefined regions of

Figure 12a.) To obtain the object and depth maps at unsam-

pled locations, we cast rays to determine the first intersected

object at these pixels. We then estimate our rendering error

by finding the 5 nearest samples to each pixel position, and

computing their standard deviation. This is a very crude ap-

proximation, but it suited our purposes well. In cases where

the high-quality samples in the refinement pass have an in-

terreflection calculation that the initial samples do not, we

use the method described earlier for estimating the error due

to a constant ambient term.

Following the IBR refinement described in the previous

section, and provided we are not out of time, we then com-

pute the error conspicuity map, sorting our pixels from most

to least conspicuous. For pixels whose EC value are equal

(usually 0), we order from highest to lowest error, then from

fewest to most samples. Going down this list, we add one

high-quality ray sample to each pixel, until we have sam-

pled them all or run out of time. If we manage to get through

the whole list, we recompute the error conspicuity map and

re-sort. This time, we only add samples to the top 1/8th of

our list before sorting again. We find we get smoother ani-

mations by sampling each pixel at least once before honing

in on the regions we deem to be conspicuous. We could insist

on sampling every pixel in our first order rendering, but this

is sometimes impossible due to time constraints. Therefore,

we incorporate it in our refinement phase, instead.

Figure 10: A frame from our task-based animation.

Prior to frame output, we perform a final filtering stage to

interpolate unsampled pixels and add motion blur. Pixels that

did not receive samples in the first order rendering or subse-

quent refinements must be given a value prior to output. We

apply a Gaussian filter kernel whose support corresponds to

our initial sample density to arrive at a weighted average

of the 4 closest neighbors. Once we have a value at each

pixel, we multiply the object motion map by a user-specified

blur parameter, corresponding to the fraction of a frame time

the virtual camera’s shutter is open. The blur vector at each

pixel is then applied using an energy-preserving smear filter

to arrive at the final output image. This technique is crude

in the sense that it linearizes motion and does not discover

obstructed geometry, but we have not found this to be objec-

tionable in any of our tests. However, the lack of motion blur

on shadows does show up as one of the few distracting arti-

facts in our implementation. This filtering operations take a

small fraction of a CPU second per video resolution frame,

and are inconsequential to the overall rendering time.

Of our two minute rendering time for the frame shown
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Figure 11: a(left) Initial frame error, b(right) Initial error

conspicuity.

Figure 12: a(left) Final frame samples, b(right) Standard

rendering taking same time as Figure 10.

in Figure 10, 1 second is spent updating the scene struc-

tures, 25 seconds is spent computing the 19,200 initial sam-

ples and the object map, 0.25 seconds is spent on IBR ex-

trapolation, 0.9 seconds to compute the error map (times

three evaluations), 1.25 seconds for the EC map, 0.4 sec-

onds for filtering, and the remaining 90 seconds to compute

about 110,000 high quality refinement samples. In this test,

the Radiance rendering parameters were set so there was lit-

tle computational difference between an initial sample and a

high-quality refinement sample; we did not evaluate diffuse

interreflections for either. Our method’s combined overhead

for a 640x480 frame is thus in the order of 14 seconds, 10

of which are spent computing the object map by ray casting.

Intuitively and by our measurements, this overhead scales

linearly with the number of pixels in a frame.

It is worth noting that IBR works particularly well in

our progressive rendering framework, allowing us to achieve

constant frame generation times over a wide range of mo-

tions. When motion is small, IBR extrapolation from the pre-

vious frame provides us with many low-error samples for

our first refinement pass. When motion is great, and thus

fewer extrapolated samples are available, the eye’s inabil-

ity to track objects and the associated blur means we do not

need as many. This holds promise for realistic, real-time ren-

dering using this approach with hardware support.

6. Conclusions and Future Work

As our experiments demonstrate, inattentional blindness

may be exploited to accelerate rendering by reducing quality

in regions that are unrelated to a given task. Extending this

idea, we have designed a progressive animation framework

that combines an indexed task map with a spatiotemporal

contrast sensitivity function to determine which image ar-

eas need further refinement. Adding our knowledge of pixel

uncertainty and movement between frames, we derive an er-

ror conspicuity map, which identifies noticeable artifacts in

the presence of this task. We focus additional ray samples

in these regions, and augment our results with IBR samples

from the previous frame. We then apply the pixel movement

map again to simulate motion blur in the final output.

Much work remains. Our current implementation per-

forms poorly when subsequent refinement corrects for sys-

tematic errors in the initial estimate. This may result in no-

ticeable discontinuities in the output, which makes it difficult

to employ rendering methods that do not converge smoothly.

Some intelligent blending or error dissipation is required if

we wish to combine hardware rendering with ray-tracing,

for example. At the level of the perceptual model, we would

like to take advantage of masking effects to further reduce

sampling in busy regions 5. However, visual masking mod-

els have yet to be extended to the temporal domain, even

though we know they are affected by movement. We would

also like to find a sensible way to combine task-level infor-

mation with low-level saliency. To apply them together, we

need to know which visual processes dominate and under

what conditions. Again, additional psychophysical research

is required.

Human perception determines to a large extent what we

do in computer graphics and indeed, why we do it. It seems

fitting, therefore, that we should pay close attention to the at-

tention graphics consumers pay to us. Exploiting task-level

models of visual perception is one way to improve the view-

ing experience within a limited budget of time and resources.
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Figure 1: Effects of a task on eye move-

ments. Eye scans for observers examined

with different task instructions; 1. Free

viewing, 2. Remember the central painting,

3. Remember as many objects on the table

as you can, 4. Count the number of books on

the shelves.

Figure 2: Repin’s picture was

examined by subjects with

different instructions; 1. Free

viewing, 2. Judge their ages,

3. Guess what they had been

doing before the unexpected

visitor’s arrival,

4. Remember the clothes

worn by the people, 5. Re-

member the position of the

people and objects in the

room, 6. Estimate how long

the visitor had been away 30.

Figure 4:Selective Quality (SQ) image showing

the high quality rendered circles located over the

teapots.

Figure 9:Perceptual difference between SQ and

LQ images using VDP ?. Red denotes areas of high

perceptual difference.
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Figure 10: A framework for progressive refinement of ani-

mation frames using task-level information.
Figure 11: A frame from our task-based animation.
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