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RESEARCH ARTICLE
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Abstract

The high affinity (KD ~ 10−15M) of biotin for avidin and streptavidin is the essential compo-

nent in a multitude of bioassays with many experiments using biotin modifications to invoke

coupling. Equilibration times suggested for these assays assume that the association rate

constant (kon) is approximately diffusion limited (109M-1s-1) but recent single molecule and

surface binding studies indicate that they are slower than expected (105 to 107M-1s-1). In

this study, we asked whether these reactions in solution are diffusion controlled, which reac-

tion model and thermodynamic cycle describes the complex formation, and if there are any

functional differences between avidin and streptavidin. We have studied the biotin associa-

tion by two stopped-flow methodologies using labeled and unlabeled probes: I) fluorescent

probes attached to biotin and biocytin; and II) unlabeled biotin and HABA, 2-(4’-hydroxyazo-

benzene)-benzoic acid. Both native avidin and streptavidin are homo-tetrameric and the

association data show no cooperativity between the binding sites. The kon values of strepta-

vidin are faster than avidin but slower than expected for a diffusion limited reaction in both

complexes. Moreover, the Arrhenius plots of the kon values revealed strong temperature

dependence with large activation energies (6–15 kcal/mol) that do not correspond to a diffu-

sion limited process (3–4 kcal/mol). Accordingly, we propose a simple reaction model with a

single transition state for non-immobilized reactants whose forward thermodynamic param-

eters complete the thermodynamic cycle, in agreement with previously reported studies.

Our new understanding and description of the kinetics, thermodynamics, and spectroscopic

parameters for these complexes will help to improve purification efficiencies, molecule

detection, and drug screening assays or find new applications.
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Introduction

The extremely high affinity of biotin (B7, vitamin H) for avidin (AV) and streptavidin (SAV) is

widely exploited in biotechnology and biochemistry in a vast array of applications [1, 2]. It has

been used in molecular biology as markers to identify functional moieties in proteins and

receptors [3], and the development of bioprocessing affinity chromatography columns for the

recovery of highly valued biomolecules [4]. More recently, advances in the characterization of

these complexes have allowed the development of highly specific immunoassays, biosensors,

and “omic” tools for disease identification and molecular mechanism elucidation [5–8]. Fur-

thermore, B7 and avidin-like interactions can be exploited for imaging purposes in the devel-

opment of assays (such as, in-vivo real-time visualization of intracellular or other type of

biological processes [9, 10]), and for monitoring the delivery of small molecules, proteins, vac-

cines, monoclonal antibodies, and nucleic acids in nanoscale drug delivery systems [11]. SAV

and B7 are used in Fluorescence Resonance Energy Transfer (FRET) [12] systems for drug

High Throughput Screening (HTS) applications, commercially know as Homogeneous Time-

Resolved Fluorescence (HTRF) [13–15]. Additionally, it has been suggested that these proteins

function in nature as antimicrobial agents by depleting B7 or sequestering bacterial and viral

DNA [16, 17]. Questions concerning the biological importance have been appeared, as more

avidin-like proteins are discovered in other species; for example, rhizavidin was discovered

from proteobacterium Rhizobium etli [18, 19], tamavidin from the basidiomycete fungus

Pleurotus cornucopiae [20], xenavidin from the frog Xenopus tropicalis [21], bradavidin from

Bradyrhizobium japonicum [22, 23]; genes encoding for avidin related proteins have been

found in chicken, Gallus gallus, and studied as recombinant proteins [24–31].

The monomers of AV and SAV are eight stranded anti-parallel beta-barrels with several

aromatic residues forming the B7 binding site at one end of the barrel [32]. Two monomers lie

parallel to each other forming a dimer with an extensive interface and two dimers associate

forming the weaker interface of the homo-tetramer. The unbound tetramer has modest ther-

mal stability and the protein becomes highly thermal stable with ligand bound [33]. Intrigu-

ingly, the dimeric interface appears to be necessary for high affinity as two interface mutations

show interesting effects on the KD, a Trp110 to Lys mutation causes dimers of high affinity to

form, and an Asn54 to Ala mutation results in only monomers, that remains monomeric with

ligand bound, with a significantly reduced affinity (KD ~ 10−7 M) [34]. Thus, the use of mono-

meric avidin in affinity chromatography allows for reversible binding.

As it can be inferred, new applications for AV-B7 related complexes will surely continue to

emerge as more derivatives are characterized. However, to obtain reliable and sensitive appli-

cations, a better understanding of the thermodynamics, fluorescence behavior of the attached

probes, and kinetic reaction mechanisms of B7 and avidin-like systems are surely needed. This

information can be used to improve purification efficacies, detection, drug screening assays,

and to develop new nanotechnological applications. Therefore, we want to provide a more

global description of the AV-B7 and SAV-B7 systems for bio- and nano-technological

applications.

The association rate constant (kon) of B7 binding to AV has been assumed to be near diffu-

sion limited since it was first measured by Green [35] (7.0 × 107 M-1s-1, pH 5 and 25˚C)

employing a quenching experiment that required the quantification, by chromatographic sepa-

ration, of un-reacted 14C-biotin. Since then several widely varying kon values have been

reported for both AV and SAV ranging from 1 × 105M-1s-1 to 2 × 108 M-1s-1 [20, 36–39] with

error ranges below 10%.

Despite this information, the kinetic and thermodynamic parameters of the B7 association

to these AV and SAV proteins have not been studied with systematic detail. Consequently, for
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this study, we asked whether the association rate constants (kon) for B7 binding to AV and

SAV are truly diffusion controlled, what the association model and thermodynamic cycle that

describe the reaction process are, and if there are any functional differences between AV and

SAV. In this sense, we analyzed the kon for B7 binding to AV and SAV by two stopped-flow

(SF) methodologies employing fluorescent dye labeled- and unlabeled-B7 derivatives. In the

first case, the association reactions were monitored with two sensing modalities: fluorescence

change, F(t), and corrected fluorescence anisotropy, rF(t), under pseudo-first-order conditions

as a function of temperature, concentration, and pH with the help of three dye-labeled B7
probes: 1) biotin-4-fluorescein (BFl), 2) Oregon green 488 biocytin (BcO), and 3) biotinylated

DNA labeled at the 3’ end with fluorescein (B7-DNAds
�Fl-3’) (Fig 1). The functional cofactor

form of B7 is biocytin (Bc) which is formed through an amide linkage between the ε-amine of

lysine and carboxyl group of B7. Modified BcO contains a significantly longer linker with

respect to BFl which allows analysis of a potential steric effect in the association process, as has

been reported elsewhere [40].

We also studied the effect of AV glycosylation by enzymatically removing the carbohydrate

motif to compare the respective association rates with those of the untreated AV, SAV and

analogous probes in other studies [20, 36–39]. To track bound tetrameric species that appeared

after SF mixing at pseudo-first order reaction conditions, we show that the binding polynomial

Fig 1. Dye-labeled B7 probes. (A) Biotin-4-fluorescein (BFl) contains a shorter spacer of 10 non-hydrogen atoms between the
bicyclic ring and the dye structure. (B)Oregon green 488 Biocytin (BcO) has a spacer of 20 non-hydrogen atoms between the
bicyclic ring and the fluorescent dye. Biocytin (Bc) is an amide formed with B7 and L-lysine. (C) biotinylated DNA labeled at
the 3’ end with fluorescein (B7-DNAds

�Fl-3’), where B7 was attached to a 14-mer DNA duplex labeled with fluorescein (Fl) at
the 3’ end with 16 non-hydrogen atoms between the bicyclic ring and the thymine cyclic base. Unlabeled B7 was used to find
the reaction rate of the final binding site in AV and compare it with the reaction rates of the initial binding site to assess
possible cooperativity.

https://doi.org/10.1371/journal.pone.0204194.g001
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distribution (Z) allows us to know the fraction of unbound protein, and protein bounds to

one, two, three and four B7 molecules. Thus, we make a distinction of the AV and SAV com-

plexes using a simple filling model ABn where A is either AV or SAV, and “n” is the total avail-

able number of binding sites occupied by the dye-labeled B7 probes and not the Hill number

associated with cooperative binding.

For the second methodology, using a relaxation kinetics approach, the association reactions

of unlabeled B7 were monitored in SF instrumentation by tracking the absorbance changes of

an AV-HABA complex as B7 replaces bound HABA [41]. The presence of ligand stabilizes the

avidin tetramer. AV-HABA relaxation experiments were used to determine if stabilizing the

tetramer affects the association rate constants and cooperativity.

Global fitting of the kinetic traces and reported calorimetry values allowed us to test reac-

tion models and discriminate the most probable reaction mechanism, as carried out in previ-

ous studies [42–45]. Consequently, the respective activation energies calculated by Arrhenius

plots of association rates allowed the acquisition of the forward thermodynamic parameters

toward the transition state: enthalpy (Ea
forward or ΔHǂ, forward), entropy (ΔSǂ, forward) and Gibbs

energy (ΔGǂ, forward) of AV and SAV activated complexes. The forward thermodynamic data is

in excellent agreement with the backwards thermodynamic values calculated with the dissocia-

tion rate constants (koff) reported by N. M. Green in his seminal work [35]. Additionally, we

explain the nature of the second dissociation phase first observed and correctly neglected by

Green as a bimolecular “displacement” rate constant (kdisplacementoff ), in addition to the detection

of the documented unimolecular “replacement” rate constant (kreplacementoff ) [26, 35] which is used

to establish the well-known dissociation constant, KD, as the most stable complex in nature.

Furthermore, we studied the changes in fluorescence lifetime (τ), quantum yield (QY),

dynamic quantum yield (F), dye emitting fraction (1-S) and steady state anisotropy (rss) of the

fluorescent probes before and after complex formation. These spectroscopic properties provide

indications of the chemical environment surrounding the B7 binding pocket in AV and SAV

and have important relevance in fluorescence assay detection limits as the signal to noise ratio

can be improved by carefully choosing linker length and fluorescent probe.

Experimental procedures

Materials

Probes and solution conditions. Oregon green 488 Biocytin (lot 40300A, Fig 1) was pur-

chased from Invitrogen (Eugene, OR). Avidin (CAS 1405-69-2, lot 608540) was purchased

from Calbiochem (La Jolla, CA). HABA or 2-(4’-hydroxyazobenzene)-benzoic acid (CAS

1634-82-8, lot 52F-0073), streptavidin (CAS 9013-20-1), endoglycosidase H (CAS 37278-88-9)

and d-biotin (CAS 58-85-5, lot 13F-3199) were all purchased from Sigma Aldrich (St. Louis,

MO). Biotin-4-fluorescein (lot 31005, Fig 1) was purchased from Biotium, Inc. (Hayward, Ca).

The 3’ end labeled fluorescein top strand with a modified biotinylated d-thymine at position 6

in the following sequence: 5’-GGGAA(biotin-dT)AACTTGGC�Fl-3’ (Fig 1) and the

respective complement (5’-GCCAAGTTATTCCC-3’) were made by Tri-Link Biotechnolo-

gies, Inc. (San Diego, CA), and were both HPLC and PAGE purified. The sequences retain the

G/C (base pairs) ends and fluorescein identical to those characterized extensively in our previ-

ous studies [42, 44, 46]. The biotinylated 14mer duplex (B7-DNAds
�Fl) was formed with 5-10X

excess complement and incubated for at least 20 min.

Protein and active site concentrations. The AV and SAV concentrations were deter-

mined with the HABA colorimetric assay of Green [40] for which absorbance measurements,

with total protein at 280 nm (1.54 = 1 mg/ml) and HABA at 500 nm (35500 M-1cm-1bound,
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480 M-1cm-1unbound) were made with a Cary 300 Bio UV-Vis spectrophotometer (Varian

Inc., Palo Alto, CA). The occupancy of the dye-labeled probes on the AV and SAV tetramer

(“p”) was obtained with the expansion version of the normalized partition function, Z = (p + q

+ x)4. In considering the totality of binding sites in the AV and SAV tetramer, let “p” denote

the fraction of total sites occupied by B7 ligands (or HABA), “q” the fraction that are unoccu-

pied and are available for binding, and “x” the fraction that are unavailable. The normalized

partition function that describes the mole fractions of the various possible AV and SAV tetra-

meric species is given by Z = (p + q + x)4; where “x”, from the HABA assay for AV, was found

to be 0.185 (or 18.5%), and q = 1—p—x. Knowing the total concentration of binding sites

from UV protein absorbance and Green’s methodology [40], and determining “x”, results in

the maximum value of “p” that will be reached in reacting tetramers with a B7 analog. Expan-

sion of Z provides the mole fractions of the various species in solution, and in decreasing order

in terms of probe occupancy, are: p4 + 4p3q + 4p3x + 6p2q2 + 6p2x2 + 12p2qx + 4pq3 + 4px3 +

12pq2x + 12pqx2 + q4 + x4 + 4q3x + 4qx3 + 6q2x2 which totals 1. This development assumes

completely random occupancy of probe and inactive sites characterized by “x”. The species

containing one bound probe have “p” raised to the first power; those with two bound probes

have “p” raised to the second power, and so on.

All of the following protein concentrations are presented on a binding site basis, thus in the

case of the HABA association reactions for AV were measured at 23.0 ± 0.1˚C with a concen-

tration of 87 μMHABA and 7.7 μMAV. The AV-HABA relaxation reactions were conducted

with a preformed AV-HABA complex made up of 200 μMHABA and 10 μMAV, flowed

against varying amounts of B7 from 100 μM up to 4000 μM for a [HABA]/[B7] ratio that ran-

ged from 0.05 to 2.

Association stopped-flow kinetics. These reactions were carried out in a buffered solu-

tion of 10 mM Tris-HCl, 100 mM KCl, 2.5 mMMgCl2 and 1 mM CaCl2 at pH 8 and only

AV-BcO reactions included pH 9 and 10. The concentrations, after mixing, were of 20 nM of

dye-labeled B7 probe and 260 nM, 520 nM or 1040 nM of AV; and 200 nM, 300 nM, 400 nM

or 800 nM of SAV at temperatures of 10, 15, 20 and 25˚C. The deglycosylation of AV (for com-

parative association reactions) was carried out using the provided standard protocol with

endoglycosidase H [47], both with and without incubation of a denaturant solution (2% SDS

and 1M 2-mercaptoethanol).

Dissociation reactions of dye-labeled biotin complexes. Biotin dissociation was deter-

mined using labelled biotin (BcO and BFl) displaced by unlabeled biotin using minimally

occupied and fully occupied binding sites. In the minimally occupied measurements, SAV is

prepared with less than one site on average occupied by labelled biotin (AB1), using 800 nM

SAV and 40 nM of BcO or BFl. For saturated SAV-labelled biotin (AB4) complexes, equimolar

binding sites and labelled ligand were prepared, 40 nM SAV and 40 nM of BcO or BFl. The

AB1 complexes were challenged in displacement experiments with several concentrations of

unlabeled B7 (1500 nM, 1750 nM, 2000 nM and 2500 nM) at 20 ± 0.1˚C. In AB1, SAV had 760

nM in open sites, therefore the total challenging B7 concentrations were 740 nM, 990 nM,

1240 nM and 1740 nM, respectively. Additional measurements at 27 ± 0.1˚C using 1300 nM,

1500 nM, 1750 nM, 2000 nM and 3000 nM biotin were completed. The 40 nM AB4 complexes

were challenged with unlabeled B7 concentrations of 400 nM (10X) and 1600 nM (40X) at

20 ± 0.1˚C. The dissociation reactions of AV complexes were carried out with a preformed

complex of 20 nM BFl or BcO and 260 nM AV for a filling model of AB1 and challenged with

unlabeled B7 at 2,000 nM.

Spectroscopic properties. The lifetimes (τ), steady state anisotropies (rss), time-resolved

anisotropies (rt) and quantum yields (QY) of the complexes (at 20 ± 0.1˚C and pH 8) were col-

lected with a dye-labeled B7 probe concentration of 20–40 nM and 1040–2080 nM of either

Detailed characterization of avidin, strepavidin, and ligands
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protein (AV or SAV) to ensure that only one binding site in the tetramer was filled with a

ligand (AB1 filling model).

Methodologies

The following experiments were carried out by at least six times, unless indicated, and the

reported errors correspond to the standard deviation.

Steady-state anisotropy (rss). The rssmeasurements were collected using the Giblin-Par-

khurst modification of the Wampler-Desa method as described previously [48]. The fluores-

cence signal was detected in a model A-1010 Alphascan fluorimeter (Photon Technologies,

Inc., Birmingham, NJ) equipped with an R928 PMT (Hamamatsu, Bridgewater, NJ). The exci-

tation was provided by an Ar+ ion laser (Coherent Innova 70–4 Argon, Santa Clara, CA) at

488 nm and 5–10 mW of power incident on the sample. A photoelastic modulator (PEM-80;

HINDS International, Inc., Portland, OR) was placed between the laser source and the sample

compartment with a retardation level of 1.22π, and the PEM stress axis orientated 45˚ with

respect to the E vector of the laser beam. Two signals were acquired with the PEM alternating

between “on” and “off” positions for 10 seconds and the data fitted to a least squared straight

line to minimize noise. A minimum of six of these independent measurements were averaged

to acquire the rss values. The fluorimeter G factor was determined using a film polarizer and

analyzer with an excitation at 488 nm provided by a xenon arc lamp (model A1010, Photon

Technologies Inc, Princeton, NJ). The dissociation reactions of dye-labeled B7 and protein

complexes were monitored by fluorescence changes and were also collected in the fluorimeter

described above.

Fluorescence lifetimes (τ) and time-dependent anisotropy decays (rt). The lifetimes

were collected in a FluoTime100 fluorescence spectrometer (PicoQuant, GmbH, Berlin, Ger-

many) with the excitation light source provided by a picosecond pulsed diode laser (Pico-

Quant, GmbH, Berlin, Germany) at 470 nm and 20 MHz. The emission was collected at 520

nm through a non-fluorescing 520 nm interference filter (Oriel Corp., Stratford, CT) followed

by a liquid filter of 1cm path length containing 24 mM acetate buffered dichromate at pH 4,

between the sample and detector to eliminate traces of excitation light [42]. The fluorescence

decays were fit by a nonlinear least-squares minimization based on the Marquardt algorithm

embedded in the Fluofit software (PicoQuant GmbH). Twenty-eight decays were collected per

sample, the decays were grouped in four sets, consisting of seven sample decays and one

Instrument Response Function, IRF, for deconvolution proposes. The decay sets were globally

fitted to mono- or bi-exponential decay models that were discriminated using the statistical

parameter χ2. The rt data were acquired with the fluorimeter described above equipped with a

polarizer and an analyzer to acquire the parallel VV(t) and perpendicular VH(t) decays. The

PicoQuant G factor was calculated according to: G =
R

HV(t)dt/
R

HH(t)dt, where HV(t) and

HH(t) were the decays collected with the emission polarizer selecting vertical and horizontal

E-vector passing orientations, respectively, and the excitation polarizer set at horizontally

position.

Quantum yields (QY). The QY values were obtained by using a reference fluorophore of

known quantum yield and were calculated according to Parker and Rees [49, 50], where the

reference dye was fluorescein in 0.1N sodium hydroxide solution [46]. The emission fluores-

cence scans were collected from 480 nm to 700 nm with the excitation light set at 460 nm pro-

vided by the xenon arc lamp described above. These measurements were made on the AB1
complexes at high protein concentration.

Intrinsic lifetime (τ˚), dynamic quantum yield (F) and fraction of non-statically

quenched molecules (1-S). These calculations have been described elsewhere [46] and were
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acquired for the AB1 complexes. The HABA association reaction for AV was carried out under

pseudo-first order conditions on a micro absorbance SF instrument [51] equipped with a

xenon arc lamp (described above) and a monochromator (model 82–410, Jarrel-Ash, Wal-

tham, Mass.) set at 500 nm.

Relaxation kinetics of unlabeled biotin reacting with the AV-HABA complexes. The

relaxation experiments were prepared at concentrations in which HABA occupies all sites

(AV-HABA4). Biotin replaces HABA relative to the koff of the dye as shown for the first step

(Eq 1) and then repeated for all sites. Having greater affinity, B7 occupies all sites at the end of

the reaction and the measured kon is related to the affinities of the ligand bound protein.

AV�HABA
4
þ B

7

�!
k
AV�HABA4
�1

 �
k
AV�HABA3
1

AV�HABA
3
þHABAþ B

7
!
kBon
ðB

7
�AV�HABA

3
Þ þHABA ð1Þ

The reaction is monitored by the HABA absorbance changes at 500 nm as it is replaced by

unlabeled B7; yielding the relaxation constant of the reaction (Relaxation, Eq 2) which contains

information of the B7 association rate constant of the open binding site, kAV�HABA3
1

to form a

full saturated complex (AV-HABA4) and the dissociation rate of that full complex, kAV�HABA4�1 ,

to yield a complex with three HABA molecules (AV-HABA3). In the subsequent steps, B7
replaces HABA as the ligand but the release of HABA creates an unoccupied site that remains

in the same state. In summary, the experiment was designed to acquire the pseudo-first order

association rate constant of B7 binding (k
B
on) to the solely free binding site in a complex occu-

pied by three HABAmolecules (AV-HABA3).

Relaxation ¼
kAV�HABA4�1 � kBon � ½B7

�

½HABA� � kAV�HABA3
1

þ kBon � ½B7
�

ð2Þ

The reciprocal of the relaxation constant (1/Relaxation) is plotted vs. the [HABA]/[B] con-

centration ratio (Eq 3) allowing to calculate: kAV�HABA4�1 and kAV�HABA3
1

by solving for the inter-

cept (1=kAV�HABA4�1 ) and the respective slope:m ¼ kAV�HABA3
1

=ðkAV�HABA4�1 � kBonÞ. The exponential

decays were analyzed by the method of Foss [52]. There was no departure from simple first

order decay in the relaxation, justifying the use of the following model and equations.

1

Relaxation
¼
kAV�HABA3
1

� ½HABA�

kAV�HABA4�1 � kBon � ½B7
�
þ

1

kAV�HABA4�1

¼ m �
½HABA�

½B
7
�
þ

1

kAV�HABA4�1

ð3Þ

Association reactions of dye-labeled biotin and AV (or SAV). The reactions were col-

lected with the SF instrument, described previously [53, 54]. The fluorescence signal was col-

lected through a 520 nm interference filter (Oriel Corp., Stratford, CT) with a detector time

constant and SF dead time of 1 μs and 1 ms, respectively. The excitation light was provided by

the Coherent Ar+ ion laser (described above) at 488 nm with 15–10 mW of incident power on

the reaction cuvette. The laser source was followed by the photo-elastic modulator described

above with the axis oriented 45o with respect to the electric vector of the incident light and

with the half-wave modulation (50 kHz) set for 488 nm excitation. The demodulation circuitry

following the photomultiplier provided a DC(t) and a rectified AC(t) which were converted to

digital data by a high-speed digitizer (PCI-5122) from National Instruments (Austin, TX) with

14-bit resolution and 100 MHz bandwidth, through channels 0 and 1. The data acquisition

was controlled by LabVIEW (Vr 8) software at a collection rate of 6120 data points/second and

stored in spreadsheets. The AC(t) and DC(t) data were baseline corrected before obtaining the
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signal ratio (Eq 4) as a function of time (ρt).

r tð Þ ¼
ACðtÞ

DCðtÞ
¼

1:5 � rðtÞ � AGain
1� 0:47818 � rðtÞ � ð1þ 2:3806 � HÞ

ð4Þ

The constant AGain is the instrumental amplitude gain and was evaluated by solving ρ(t)

using the known steady state anisotropy (rss) of the complexes which is equivalent to the r(t) at

t =1; and H, obtained from the equivalent grating factor (G) for the filters and photo multi-

plier tubes in the SF. For the probes used in here G was 0.82 and H = (1-G)/(1+G) = 0.099.

Knowing Again and H, the AC(t) and DC(t) signals can be solved for r(t) and F(t) (Eqs 4 and 5)

and the normalized fluorescence, FðtÞ, and corrected fluorescence anisotropy, rFðtÞ [55], were

obtained when Fð0Þ and rFð0Þ were scaled to 1 at t = 0.

F tð Þ ¼
DCðtÞ

1� 0:47818 � rðtÞ � ð1þ 2:3806 � HÞ
ð5Þ

The FðtÞ (Eq 6) is equivalent to (I||) + 2 (I?) and proportional to quantum yield (QYi),

molar absorptivity (εi) and to the formation or disappearance of the emitting species Xi(t); and

rFðtÞ including the steady state anisotropies (rss) of each fluorescent species (Eq 7) [55].

FðtÞ ¼
P

εi � QYi � XiðtÞ=
P

εi � QYi � Xið0Þ ¼ FðtÞ=Fð0Þ ð6Þ

rFðtÞ ¼
P

εi � ri;ss � QYi � XðtÞi ¼ rFðtÞ=rFð0Þ ð7Þ

Biotin association reaction model for AV and SAV. The possible reaction models were

discriminated by the squared residuals of the observed and calculated association traces of

both fluorescence and anisotropy fluorescence signals, FðtÞ and rFðtÞ, respectively. For the BFl

and BcO probes, the association reactions were very well described by the simplest possible

model (Eq 8) with single association rate constants (kon).

AVðor SAVÞ þ Dye�labeled B
7
!
kon
Complex ð8Þ

In the case of the B7-DNAds
�Fl, the association reaction model was complemented by a sec-

ond kon which resulted in a system of two parallel reactions (Eq 9). In both cases, the backward

reaction is not significant during the 5–8 sec required for the B7 association binding.

AVðor SAVÞ þ ðB
7
�DNAds

�FlÞ
1
!
kon1

AVðor SAVÞ þ ðB
7
�DNAds

�FlÞ
2
!
kon2
Complex ð9Þ

Dissociation reactions of the complexes. The dissociation reactions were followed by

fluorescence changes, FðtÞ, in the fluorimeter and laser setup described above and tuned to

488 nm under discontinuous excitation to prevent photobleaching distortion. The signal was

best fitted to the following dissociation model (Eq 10), in which the dye labeled complex disso-

ciates into the labeled B7 probe (BFl or BcO) and the respective protein (AV or SAV).

Complex ðdye� labeled B
7
Þ þ B

7
�!
k
displacement

off

Complex ðdye� labeled B
7
Þ þ B

7
�!
k
replacement

off

AV � B
7
ðor SAV � B

7
Þ þ Dye�labeled B ð10Þ

Time-resolved anisotropy (r
t
). The r

t
values were calculated according to Eq 11 where

the pre-exponential “f” corresponds to the slow phase that derives from the lifetime of the
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global motion (τG) [56] which was fitted within a range of expected correlation time for the

complex size [57]; consequently, facilitating resolution of the fast correlation lifetime (τp) and

the corresponding pre-exponential (1-f).

rðtÞ ¼ 1� fð Þ � exp �
t

tp

 !

þ f � exp �
t

tG

� �

ð11Þ

The f parameter was constrained to the observed rss (Eq 12) where F̂ðtÞ (Eq 13) is normalized

(α1 + α2 = 1) and derived from the observed fluorescence decays of the complex [58].

rss ¼ 0:4
R

rðtÞ � F̂ðtÞdt ð12Þ

Where

F̂ðtÞ ¼
a
1
exp � t

t1

� �

þ a
2
exp � t

t2

� �

a
1
t
1
þ a

2
t
2

ð13Þ

In a simple model, the transition moment is assumed to wobble within a cone of semi-api-

cal angle O [59], where the cone axis is normal to the surface of a sphere that corresponds to

the macromolecule. The angle O is calculated from Eq 14.

f ¼
1

2
cosOð1þ cosOÞ

� �2

ð14Þ

Results and discussion

Active avidin binding sites

The avidin and streptavidin proteins are tetramers in solution. If the binding of the ligand is

positively cooperative, differences in kon for initial and final binding steps could be significant;

therefore, the comparison of initial binding by nonliganded AV and final binding by liganded

AV is necessary. Measurement of the initial binding rate requires ligand free AV, but endoge-

nous ligand could potentially interfere. In fact, AV preparations often present about 20% of

the inactive sites for the binding of any B7 analogs, either because they contain endogenous B7
[40], or perhaps the existence of damaged binding sites in some of them, e.g., tryptophan oxi-

dation [60]. To acquire accurate kon values, the actual available binding site concentration for

each sample was measured by HABA colorimetric assays in relation with absorbance at 280

nm. Accordingly, the percentage of available active sites of AV and SAV were 81.5 ± 1.0% and

94.0 ± 1.0% with respect to total protein, respectively, which were in excellent agreement with

the 82% and 95% reported by the commercial source (Sigma Aldrich and CalBiochem). The

SF apparatus provided rapid thorough mixing of the probes with AV and SAV allowing mea-

surement of the full reaction. The issue of rapid mixing vs. more conventional titrations was

treated previously [51]. In the SF association measurements, the dye-labeled B7 probes were

sub-stoichiometric to determine the initial binding rates (e.g. 20 nM of BFl, BcO and B7-

DNAds
�Fl vs. 260 nM, 520 nM and 1040 nM in binding sites basis). Limiting the ligand also

reduced several potential measurement artifacts including FRET self-transfer, and contact

interference including probe fluorescence quenching by contact interactions [61] in the AB2,

AB3 or AB4 complexes; especially for the BcO which has a longer linker [62]. Using the binding

polynomial for the 20 nM probe after mixing, and 638 nM in total sites for the intermediate

AV concentration which corresponds to 520 nM in available sites, the mole fraction of species

with a single bound probe is 0.114, that with two bound probes is 0.0055, and with three

bound probes is 0.0001, so at most, only 0.55% of the molecules with bound AV contain two

Detailed characterization of avidin, strepavidin, and ligands

PLOSONE | https://doi.org/10.1371/journal.pone.0204194 February 28, 2019 9 / 32

https://doi.org/10.1371/journal.pone.0204194


probes; for 1040 nM available sites, the value drops to 0.15% (S1 File). With limited occupancy,

the association reactions acquired the dye-labeled B7 probes reflect the binding to the first

binding site in the tetramer for the SF experiments. The unlabeled B7 relaxation kinetic experi-

ment was designed to observe the binding at the final site, as discussed below.

Association rate constants (kon) of biotin binding to avidin

Dye-labeled biotin association rate constants by stopped-flow methodology. The fluo-

rescence FðtÞ and corrected anisotropy association binding traces, rFðtÞ, properly monitored

the association reactions, as they yielded equivalent kon values (Table 1) and presented the best

optimal fit residuals (Fig 2). In contrast, the anisotropy signal, rðtÞ, lagged behind FðtÞ and

rFðtÞ since changes in the quantum yield (QY) of the involved fluorescence species distort the

kinetic traces [55]. These three types of association binding traces were acquired with discon-

tinuous excitation that circumvented photobleaching (Fig 3) allowing the detection of all non-

photobleaching rate constants. Consequently, the kon values of AV showed linear concentra-

tion dependence (Fig 4) and strong temperature dependence when using the BcO (Fig 5) and

BFl (Table 2) probes. Notably, a reduction in the kon of ~10% was observed with each pH unit

increment (from 8 to 10) which may derive from titration of the hydrogen bonding of aspara-

gine and tyrosine in the binding pocket [32].

Unlabeled biotin association rate constants by relaxation kinetics methodology. The

experiment consisted in challenging a pre-saturated AV-HABA complex with B7 (Fig 6) to

measure the association rate of the final “relaxed” binding sites which yielded a kBon of

5.3 ± 0.9 × 106 M-1s-1 (at pH 8 and 23˚C) which is slightly slower than the 7.8 ± 0.4 × 106M-1s-

1 acquired with BcO (Arrhenius plot, 23˚C and pH 8) indicating non-cooperativity (or slightly

negative) for binding site association rates. The HABA dissociation rate constant of the

AV-HABA4 complex was not rate limiting (kAV�HABA4�1 = 6.23 ± 0.11 s-1) and the HABA associa-

tion rate for the final site was kAV�HABA3
1

= 5.1 ± 0.1 × 105M-1s-1 which results in a AV-HABA

equilibrium constant of KD
AV-HABA = 12.2 ± 0.3 × 10−6 M similar to that reported by Green

[60] at pH 8 which supports the quality of our relaxation kinetic experiment.

Non-cooperative biotin binding to avidin sites. The association reactions that used the

fluorescent probes BFl and BcOmonitored the 1st available binding site, as they were carried

out at pseudo-first order, at very high protein concentration with low occupancy for the AB1
filling model, as discussed above. In contrast, the relaxation kinetic methodology scrutinized

the unlabeled B7 binding to the unoccupied site while the 3 remaining sites were filled with

HABA, this process can be thought as the binding of B7 to the 4
th binding site. Therefore, the

data obtained with dye-labeled B7 probes and unlabeled B7 should report the binding rates to

Table 1. Comparison of the AV-BcO association rate constants (kon) obtained by fluorescence change, FðtÞ, and corrected fluorescence anisotropy, rFðtÞ.

kon AV-BcO FðtÞ × 10−6 M-1s-1 rFðtÞ × 10−6 M-1s-1

Temp. 260 nM 520 nM 1040 nM 260 nM 520 nM 1040 nM

25˚C 9.5 ± 0.1 9.5 ± 0.3 9.7 ± 0.3 9.5 ± 0.1 9.5 ± 0.1 9.4 ± 0.2

20˚C 5.7 ± 0.1 5.9 ± 0.3 6.0 ± 0.1 5.9 ± 0.1 5.8 ± 0.1 6.1 ± 0.1

15˚C 4.1 ± 0.1 4.0 ± 0.1 3.9 ± 0.2 4.0 ± 0.1 3.8 ± 0.1 4.0 ± 0.2

10˚C 2.4 ± 0.1 2.6 ± 0.2 2.5 ± 0.2 2.7 ± 0.1 2.7 ± 0.1 2.7 ± 0.1

The association reactions were acquired with BcO (20 nM) binding to AV at several temperatures, protein concentrations and pH 8.The FðtÞ and rFðtÞ signals were

equivalent as they tracked in the errors the association process of dye-labeled B7 binding to the proteins under pseudo-first order conditions.

https://doi.org/10.1371/journal.pone.0204194.t001
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the 1st and 4th sites. Since these two values only diverge by 32% we believe that there is not sig-

nificant cooperativity nor an intrinsic difference in any of the AV sites. If a protein has two

forms, denoted as relaxed (R) and tense (T), the HABA bound ligand can hold the AV protein

in the R-state [63]. In the relaxation experiments, all the bound HABA gets replaced by dye-

labeled B7 (BFl or BcO), but all the sites rest in the R-state; therefore, there is not switching

from T to R. This is the same as hemoglobin bound to (HbO2) flowed against CO, where O2

gets replaced by CO but is not biphasic because no T-state is present [63, 64]. As B7 binding to

AV and SAV is non-cooperative, the HABA replacement is a pseudo first order measure of the

B7 association rate and should be the same or close to the association rate of the dye-labeled B7
flowed against empty AV or SAV. Our values differed only by 32% for these two approaches.

Comparisons with other AV-B kinetic studies. Comparisons with other AV-B7 kinetic

studies were carried out at the closest possible condition; thus, at 25˚C and pH 8, the BFl and

BcO association rate constants, kon, were 3.8X and 7.4X slower than the 7 × 107M-1s-1 reported

by N. M. Green [35] (at 25˚C and pH 5), respectively. However, a larger uncertainty is

expected for the latter experiment because it was not carried out using rapid mixing techniques

forcing the usage of very low (14carbon) B7 concentrations (picomolar range) to timely stop

the reaction and quantify the un-reacted probe. Consequently, Green’s experiment was an

extremely tedious task that was carried out, only once and at one temperature. On the other

hand, a more recent association rate constant of 2.0 ± 0.3 × 106M-1s-1 was obtained in a

Fig 2. Comparison of the association kinetic traces. (A) Fluorescence, FðtÞ, anisotropy, rðtÞ and corrected

fluorescence anisotropy, rFðtÞ reaction traces of BcO (20 nM) binding to SAV (200 nM) at 10˚C. The mono-
exponential fits (black) resulted in kon values of 1.73 × 107M-1s-1, 1.72 × 107M-1s-1 and 1.04 × 107M-1s-1 with
halftimes of 200.6 ms, 201.4 ms and 332.7 ms, respectively. The respective residual of the reaction traces versus fit

curves show that (B) rFðtÞ and (C) FðtÞ were optimal, and (D) rðtÞ signal is ill-fitted. The kon of rðtÞ was 40% slower
than the other two and showed the worst residuals due to changes in QY [55]. The corresponding normalization

signals are: rF tð Þ ¼ ½rFð0Þ � rFðtÞ�=½rFð0Þ � rFð1Þ�; F tð Þ ¼ FðtÞ

Fð0Þ
¼ ½FðtÞ � rFð1Þ�=½rFð0Þ � rFð1Þ� and

rðtÞ ¼ ½rð0Þ � rðtÞ�=½rð0Þ � rð1Þ�.

https://doi.org/10.1371/journal.pone.0204194.g002

Fig 3. Photobleaching of BcO binding to AV at 15˚C. The photobleaching rate constant was elucidated with the (A) rFðtÞ and (B)

FðtÞ signals by collecting the reaction with continuous (black) and discontinuous (dashed color) laser illumination in which the
beam was blocked during the times denoted by dashes and the sample was illuminated only during time intervals of 10 s. The slow

photobleaching rate constant varied from 6 × 10−3 to 1 × 10−2 s-1, and was laser power dependent. The (A) rFðtÞ and (B) FðtÞ

normalization functions were: rFðtÞ ¼ ½rFð0Þ � rFðtÞ�=½rFð0Þ � rFð1Þ� and F tð Þ ¼ FðtÞ

Fð0Þ
¼ ½FðtÞ � rFð1Þ�=½rFð0Þ � rFð1Þ�,

respectively.

https://doi.org/10.1371/journal.pone.0204194.g003
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Surface Plasmon Resonance (SPR) study [20] at 20˚C and pH 7.4 in HEPES buffer. This inde-

pendent kon value was ~9X and ~5X slower than the ones acquired by us for BFl and BcO,

respectively. Nevertheless, it has been previously acknowledged that the SPR results are,

controversially, too low to be accurate [20, 39], due to fixation of one of the reactants to the

chip, generally AV or SAV.

Effect of AV glycosylation on the biotin binding kinetics. The AV protein has a glycan

attached to asparagine 17 at each tetrameric subunit which is composed of four or five man-

noses and three N-acetylglucosamines [65]. These sugar modifications are typically removed

to improve crystallization but the glycan effect on the association binding rate of B7 was previ-

ously unknown. Interestingly, after enzymatic removal of the carbohydrates, the kon values of

the de-glycosylated AV matched those of natural glycosylated AV for the dye-labeled B7
probes: e.g., 3.7 ± 0.3 × 10−6M-1s-1 vs. 3.9 ± 0.3 × 10−6M-1s-1 of BcO binding to de-glycosylated

AV and untreated AV at 15˚C, respectively. A previous study already suggested that the sugar

chain is not required for B7 binding [65] and now we confirm that AV glycosylation has no

influence on the association rate constants.

Association reaction of unlabeled and dye-labeled biotin binding to
streptavidin

Dye-labeled biotin association reactions to SAV. The SAV-B7 association reactions pre-

sented temperature (Fig 4C and 4D) and linear concentration dependence (Fig 5C and 5D)

and were faster than those of acquired with AV for both dye-labeled probes. For instance, BFl

and BcO at 25˚C, presented kon values when binding to SAV that were 4X and 3.2X faster than

those observed when binding to AV, respectively. However, the temperature dependence was

weaker than that observed for AV which indicated a profound difference in the binding site

properties of these two proteins, as reveled by an Arrhenius plot (see 3.9 Thermodynamic

Parameters). Thus, SAV should be a more robust system for purification applications as varia-

tions on the temperature incubation protocols have less negative significant effects in the yield.

Comparisons with other SAV-B7 association kinetic studies. An independent SF study

tracked the binding of unlabeled B7 by fluorescence quenching of the tryptophan (Trp) of

SAV, yielding a kon of 7.5 ± 0.6 × 107 M-1s-1 (at 25˚C and pH 7) [39] which was in excellent

agreement with 7.5 ± 0.2 x 107M-1s-1 for the BFl probe (at 25˚C and pH 8). This finding

strongly indicates that the attached dyes are innocuous and dependably monitor the B7 bind-

ing to SAV and presumably to AV. In addition, the absence of any detectable intermediate in

the association reaction in both cases is remarkable, since we monitored the initial binding of

B7 and SAV using the fluorescence change and fluorescence anisotropy signals, and the inde-

pendent tryptophan-quenching experiments observed the final docking of B7 near the Trp

[39]. Conversely, there is another independent Surface Plasma Resonance (SPR) study of

immobilized B7 binding to SAV that yielded a slower kon of 5.1 × 106 M-1s-1 at 4˚C [66], which

was ~5X slower than our 2.6 × 107 M-1s-1 at 4˚C, calculated by an Arrhenius plot (ln kon vs 1/

T) of the BFl data. Similarly to AV, we believe that the SPR methodology for the B7 and AV-

like protein kinetics [20, 39] was modified by the immobilization of one reactant, either B7 or

protein, to the chip.

Biotinylated and dye-labeled DNA duplex association reaction to AV and
SAV

Association rate constants of B7 attached to biotin-DNAds
�Fl. The biotinylated 14-mer

duplex association kinetics showed a biphasic behavior with two temperature and concentra-

tion dependent rate constants (Table 2, Fig 7) when reacting with both AV and SAV. The
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biphasic association rate constants, kon1 and kon2, summed to approximately 70% of the total

reaction amplitude. The remaining ~30% was assigned to a third-rate constant (0.02 ± 0.01 s-1)

that presented neither temperature nor concentration dependence; therefore, it has been

assigned to the readjustments of the Fl dye after being displaced by both proteins. The kon1
and kon2 association rate constants of SAV were 3.4X and 1.8X faster than the corresponding

rate constants of AV (Fig 8) as observed with the BFl and BcO probes, confirming the differ-

ences in the AV and SAV binding pockets.

Comparisons with other biotinylated DNA kinetic studies. An independent FRET

study monitored the reaction of B7 attached to the 5’ end of a 46 nucleotide duplex DNA bind-

ing to SAV [38]. The reaction also showed two rate constants at pH 8, but at unspecified tem-

perature, pre-exponentials and errors. To make a comparison, we have chosen SAV data at

20˚C whose association rate constant, kon1, of 4.6 ± 0.8 × 107M-1s-1 was in excellent agreement

with the 4.5 × 107M-1s-1 reported by the mentioned study. In the case of our kon2 of

Fig 4. Temperature dependence of the association traces of BcO binding to AV and SAV. (A)Normalized fluorescence

anisotropy, rFðtÞ, temperature dependence of BcO (20 nM) binding to AV (260 nM) at pH 8, normalized as [rF(0) − rF(t)]/
[rF(0) − rF(1)]. The observed (color) and fitted (black line) curves at 25˚C (top), 20˚C (upper middle) and 15˚C (lower
middle) and 10˚C (bottom) had half-times of 280 ms, 452 ms, 695 ms and 1024 ms, respectively; and (B) shows the

corresponding semi-logarithmic plot of rFðtÞ. (C)Normalized fluorescence anisotropy, rFðtÞ, shows a temperature
dependence of BcO (20 nM) binding to SAV (200 nM) at pH 8, normalized as above (4A). The observed (color) and fitted
(black line) curves at 20˚C (top), 15˚C (middle) and 10˚C (bottom) had half-times of 79 ms, 111 ms and 202 ms, respectively

and (D) shows the corresponding semi-logarithmic plot of the rFðtÞ.

https://doi.org/10.1371/journal.pone.0204194.g004
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2.3 ± 0.1 × 106 M-1s-1, it was in good agreement with the second rate of 3.0 × 106 M-1s-1 of that

independent study. The agreement in the data validates our findings which imply that B7
attached internally to DNA (or at the 5’ end) will have two rate constants, one enhanced and

other diminished probably due to unfavorable orientation according to the reaction models

discussed below.

Significance of the association rate constants

The B7 binding to AV and SAV (at 25˚C) were, respectively, between 54-714X and 13-400X

slower than 109M-1s-1 as expected for a diffusion limited process [67]. On the other hand, the

kon values of SAV were 3-4X faster than AV’s despite the similarity of the AV and SAV binding

sites in the crystal structures (Fig 8). Our deglycosylation experiments indicate that the

Fig 5. Concentration dependence of association traces of BcO binding to AV and BFl binding to SAV. (A) Corrected

Fluorescence Anisotropy Concentration dependence of BcO (20 nM) binding to AV at pH 8 and 20˚C, normalized as rFðtÞ ¼
½rFð0Þ � rFðtÞ�=½rFð0Þ � rFð1Þ�. The observed (color) curves were obtained with an AV concentration of 1040 nM (top), 520 nM
(middle) and 260 nM (bottom) and the fitted curves (black lines) had halftimes of 109 ms, 229 ms and 455 ms; respectively. (B)

Shows the corresponding semi-logarithmic plots of rFðtÞ. (C)Normalized fluorescence change, FðtÞ, concentration dependence of

BFl (20 nM) binding to SAV at pH 8 and 20˚C. Normalized as followed: F tð Þ ¼ FðtÞ

Fð0Þ
¼ ½FðtÞ � rFð1Þ�=½rFð0Þ � rFð1Þ�. The

observed (color) curves were acquired with SAV concentrations of 200 nM (red), 400 nM (purple) and 800 nM (orange) where
the fitted curves (black lines) had halftimes of 77.3 ms, 37.7 ms and 20.6 ms; respectively. (D) Shows the corresponding semi-

logarithmic plot of FðtÞ.

https://doi.org/10.1371/journal.pone.0204194.g005
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disparity in the kon values between both SAV and AV proteins cannot be explained by the

presence or absence of the carbohydrate motif on the AV but can be explained by the intermo-

lecular interactions of the aminoacids in the binding pocket and the B7 ring.

Association reactions of biotin vs. biocytin to SAV and AV

In our study, the association rates were acquired with B7 and Bc probes, BFl and BcO; respec-

tively, in which Biocytin presents a longer carbon linker. Interestingly, these kon values only

differed by 2-fold (Table 1), from 10˚C to 25˚C, when reacting with AV. It is important to clar-

ify that the association rates were not enhanced by the electrostatic attraction of the negative

charged probes (BFl and BcO) and the positive AV [32]; since, the association rates of those

two probes binding to neutral SAV differed also by ~2 fold as observed for AV. The dissocia-

tion constants, KD, of AV-B7 and AV-Bc were reported to be 10−13 and 10−15M, respectively,

differing by 100-fold [40]. Consequently, this 100-fold difference, if accurate, must be caused

by a difference of 50-fold in the koff, dissociation rate constants which is discussed below.

Dissociation kinetics

The dissociation reactions of the AV-B7 and SAV-B7 complexes have been described as passive

unimolecular “replacements” (kreplacementoff ) with units of reciprocal seconds (s-1) and values of

9 × 10−8 s-1 [35] and 2.4 × 10−6 s-1 [68], respectively. However, we have also observed bimolec-

ular “displacement” off-rate constants (kdisplacementoff ) with M-1s-1 units for the SAV-BcO

Table 2. Temperature dependent association rate constants (kon) and thermodynamic values of the dye-labeled B7 binding to AV and SAV.

Complexa 25˚C
(×10-6M-1s-1)

20˚C
(×10-6M-1s-1)

15˚C
(×10-6M-1s-1)

10˚C
(×10-6M-1s-1)

Ea
Forward (kcal/mol) ΔSǂ (cal/˚K�mol) ΔGǂ (kcal/mol)

AV-BFl 18.5 ± 2.0 10.7 ± 1.6 7.6 ± 2.0 4.86 ± 0.6 14.6 ± 0.6 34.9 ± 2.0 4.2 ± 0.5

AV-BcO (pH 8)b 9.5 ± 0.4 5.9 ± 0.4 3.9 ± 0.3 2.6 ± 0.3 14.4 ± 0.6 33.0 ± 2.5 4.6 ± 0.3

AV-BcO (pH 9) 7.9 ± 0.3 c 5.4 ± 0.2 3.4 ± 0.1 2.3 ± 0.1 13.9 ± 0.7 30.9 ± 2.5 4.7 ± 0.1

AV-BcO (pH 10) 7.2 ± 0.3 c 4.8 ± 0.2 3.0 ± 0.1 1.9 ± 0.1 14.9 ± 0.7 34.1 ± 1.3 4.7 ± 0.3

1) AV-B7 -DNAds�Fl 15.7 ± 1.0
(30.5%) d

11.2 ± 0.8
(68.9%)

7.4 ± 0.7
(87.5%)

4.2 ± 0.5
(95.0%)

14.6 ± 0.8 34.8 ± 3.0 4.2 ± 0.2

2) AV- B7 -DNAds�Fl 1.4 ± 0.1
(69.5%)

0.98 ± 0.05
(31.1%)

0.70 ± 0.03
(12.5%)

0.52 ± 0.01
(0.05%)

14.2 ± 0.5 29.0 ± 0.5 5.6 ± 0.6

Average NA NA NA NA 14.4 ± 0.2 32.8 ± 1.2 4.7 ± 0.3

SAV-BFl 74.7 ± 2.0 58.6 ± 1.6 53.1 ± 2.0 45.4 ± 1.0 5.3 ± 0.3 6.6 ± 0.5 3.3 ± 0.6

SAV-BcO 30.3 ± 2.0 24.0 ± 1.6 20.0 ± 1.2 17.3 ± 0.6 6.2 ± 0.4 7.8 ± 0.4 3.9 ± 0.4

1) SAV- B7 -DNAds
�Fl 53.0 ± 1.0

(44.4%)
45.9 ± 0.8
(50%)

36.4 ± 0.7
(51%)

31.0 ± 0.5
(49%)

6.2 ± 0.4 8.8 ± 0.6 3.5 ± 0.5

2) SAV- B7 -DNAds
�Fl 2.5 ± 0.1

(55.6%)
2.3 ± 0.1
(50%)

1.7 ± 0.1
(49%)

1.50 ± 0.05
(51%)

6.2 ± 0.5 3.1 ± 0.3 5.3 ± 0.6

Average NA NA NA NA 6.0 ± 0.2 6.6 ± 1.6 4.0 ± 0.6

The forward thermodynamic values (Ea
Forward, ΔSǂ, Forward and ΔGǂ, Forward) were acquired from global fitting of the rate constants [42, 45] for the most probable model

which resulted in a simple reaction with a transition state without intermediates. In the case of the B7-DNA duplex, the reaction model was a two-serial reaction model

also with one transition state without intermediates. The nature of the serial reaction is probably caused by two B7 populations with different spatial orientations.
aThe probes were BFl, BcO, and B7 attached to a nucleotide in a 14-mer DNA duplex and the respective complex with AV and SAV.
bThe kon values were averaged from data in Table 1
cCalculated from an Arrhenius plot.
dThe pre-exponentials (in parenthesis) of kon1 and kon2 were renormalized after removing a third process associated with remaining photobleaching.

https://doi.org/10.1371/journal.pone.0204194.t002
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complexes (AB1 and AB4) that were strongly dependent on B7 concentration (Fig 9A) and

temperature (Fig 9B). These reactions had ~79% of the total release amplitude, in contrast to

the 5% when BFl was used (Fig 9C); therefore, the longer “tail” of the BcO facilitated the dis-

placement for SAV-BcO; and in the case of the SAV-BFl, the electrostatic interactions between

negative charged Fl and positive charge SAV prevented the displacement, as observed else-

where [69]. Thus, longer linkers and neutral dye molecules and proteins are features that can

be exploited to increase purification yields. This new information can find important applica-

tions in affinity chromatography purification based on SAV and longer “tail” or tethers that

will help to increase the release of the product and enhance efficiency. On the contrary, we

could not detect neither displacement nor replacement in AV-BFl and AV-BcO complexes

since the reaction is very slow (S3 Fig). Thus, in 1966, Green N. determined heroically the

k
replacement

off for AV-B7 in 9 × 10−8 s-1 for a half-life of 90 days [35] which could not be detected by

us since our fluorescence anisotropy methodology is not suitable.

Biotin reaction models of AV and SAV

Reaction model of BFl and BcO binding to AV and SAV. The SF traces of B7 binding to

AV and SAV were best fitted by a simple association model, A + BÐ C. A single rate constant,

kon (Eq 8), could be fit with no intermediates or evidence of cooperativity considering that the

dissociation reaction was not significant for the first 5–8 sec after mixing. More elaborate

mechanisms have been reported [70, 71]. For example, A + BÐ CÐ D has been proposed for

polystyrene SAV coated particles (6.5 nM) reacting with a fluorescein labeled B7 probe (1.8

nM and 17.5 nM), whose linker resembles our BcO probe. This model required fitting of two

dissociation and two association rate constants with the extra equilibrium attributed to two

Fig 6. Relaxation kinetics of the AV-HABA complex and unlabeled biotin. The [HABA]/[B7] is the concentration
ratio of these two ligands and the relaxation rate is in s-1 (Eq 3). The data points were fitted to a linear regressionmodel
yielding a slope and intercept of 0.0156 ± 0.0012 and 0.161 ± 0.005, respectively, resulting in a kBon of 5.3 ± 0.9 × 106M-1s-1

at 23˚C. The additional values required for this calculation were HABA association constant to the 4th site when three
HABAmolecules are already bound: kAV�HABA3

1
= 5.1 ± 0.1 × 105M-1s-1 and the HABA dissociation of saturated

AV-HABA4 complex: kAV�HABA4�1 = 6.23 ± 0.11 s-1. The corresponding KD
AV-HABA = 12.2 ± 0.3 × 10−6Mand is in excellent

agreement with the 12 × 10−6M reported by Green [60] at pH 8.

https://doi.org/10.1371/journal.pone.0204194.g006
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Fig 7. Association traces of biotin-DNAds
�Fl binding to SAV and AV. The rFðtÞ and FðtÞ signals of the association

reactions of B7-DNAds
�Fl (20nM) to (A) AV (520 nM) and (B) SAV (200 nM), at 15˚C. (C) Concentration

dependence of B7-DNAds
�Fl (20 nM) binding to AV at 15˚C. All curves (black line) were strongly biphasic. Notice the

inversion of SF signals. However, the FðtÞ traces were in prefect agreement with QY experiments (Table 4).

https://doi.org/10.1371/journal.pone.0204194.g007
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reasons: 1) The interference of the dye structures into the neighboring site due to multiple

occupancies on the tetramer [61] and 2) to possible inhibitory steric interactions caused by

high density of SAV sites on the surface of the polystyrene particles. Interestingly, a similar

model was used to analyze a pull-off study carried out by Scanning Force Microscopy for

Fig 8. Arrhenius plot of the association rate constants. Temperature dependence of the B7 association reaction at pH
8 (unless otherwise specified) for: 1 SAV-BFl (purple triangles); 2 SAV-B7-DNAds

�Fl (green triangles): 2.1 (kon1) and
2.2 (kon2); 3 SAV-BcO (red triangles); 4 AV-BFl (purple circles); 5 AV-B7-DNAds

�Fl (green circles): 5.1 (kon1) and 5.2
(kon2); 6 AV-BcO (red circles): 6.1 at pH 8, 6.2 at pH 9 (orange circles), 6.3 at pH 10 (yellow circles). The data points
were plotted in semi-logarithm (ln kon vs 1/T) for clarity.

https://doi.org/10.1371/journal.pone.0204194.g008
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AV-B complex with immobilized AV in which two events of 20–40 pico-newtons and 40–80

pico-newtons were assigned to the presence of an intermediate [72]. Categorically, we have

avoided these experimental complications by following the reaction at pseudo first order to

ensure that our probes occupied only one binding site of AV and SAV in solution (non-immo-

bilized), as discussed above. However, when considering a particular AV or SAV bioassay, one

must consider that the surface matrix complexity, the multiple orientations of B7, and the

modifications of the AV-like proteins can modify the dissociation mechanism with respect to

those observed in solution by us.

Reaction model of biotin-DNAds
�Fl binding to AV and SAV. The B7 binding kinetics,

when attached to DNA, was best described by two parallel reactions (Eq 9) with two indepen-

dent association rate constants that showed no evidence of intermediates in solution. The pre-

exponentials of the rate constants were temperature dependent (Table 2) suggesting the pres-

ence of two B7 populations with different orientations with respect to the DNA and responsi-

ble for the measured kon1 and kon2 rate constants. Thus, at 25˚C, the measured values of kon1
for both AV and SAV were only 20–40% slower than rate constants acquired with BFl, which

suggests that B7 on the DNA was positioned in a favorable orientation that enhances the asso-

ciation reaction. On the other hand, the slower kon2 rate constant is associated with an unfa-

vorable orientation of the second B7 population which could be partially intercalated in the

stacked nucleotides.

Thermodynamic parameters

The forward activation energies (Ea
forward or ΔHǂ,forward) of the B7 binding to AV and SAV

were ~6.0 and ~14 kcal/mol, respectively; and they were in good agreement with early estima-

tions of 10–12 kcal/mol for the displacement of water molecules from the binding pocket [60].

These values were larger than the 3–4 kcal/mol [35, 73] characteristic of a diffusion limited

reaction (which requires also association rate constants in the order of 109M-1s-1 while our

fastest values were in the order of ~1.9 × 107M-1s-1 and ~7.5 × 107 M-1s-1, at 25˚C for AV-BFl

and SAV-BFl, respectively). Hence, the association reaction is not diffusion controlled in the

range of experimental work carried by us. Interestingly, the B7 binding process for both pro-

teins share the same kon at 52.1˚C (calculated by Arrhenius plot), and binding of B7 ligand

enhances thermal stability of the proteins shifting from 75˚C to 112˚C for SAV and from 84˚C

to 117˚C for AV [74].

Remarkably, the difference of forward and reverse activation energies (Ea
forward—Ea

backward),

calculated with Arrhenius plots of the association and dissociation rate constants, respectively;

matched, within the error, the reaction enthalpy (ΔH˚Rxn) calculated by calorimetry (Table 3,

Fig 10A). The same argument holds for the Gibbs free energy (ΔGǂ, forward-ΔGǂ, backwards) and
entropy (ΔSǂ, forward-ΔSǂ, backwards), and the calorimetric ΔG˚Rxn and ΔS˚Rxn values have been

Fig 9. Dissociation kinetics of SAV-BcO and SAV-BFl complexes. (A) Concentration dependence of the
displacement reaction of SAV-BcO complex (AB1model) by unlabeled B7 at 20˚C. The concentration of challenging
B7 was 740 nM (blue), 1240 nM (pink) and 1740 nM (red) after the remaining free binding sites were filled. The half-
times were 56.6 s, 33.9 s and 24.2 s, respectively; with a release amplitude of 79 ± 1%. (B) Temperature dependence of
the displacement reaction of SAV-BcO by unlabeled B7 for the AB1 filling model (at 20˚C and 27˚C) and for the AB4
model (at 20˚C). The corresponding kdisplacementoff (calculated from the slope) were 1.6 ± 0.4 × 105M-1s-1, 4.6 ± 0.3 × 105

M-1s-1 and 1.2 ± 0.3 × 105M-1s-1, respective. (C)Displacement reaction of unlabeled B7 and SAV-BFl complex (AB1
filling model) at 30˚C. The concentration of challenging B7 was 1400 nM which produced a release of only 5% of the
bound probe. The green curve is the observed data and black curve is the fitted curve for which only 6.5%
displacement was observed for SAV-BFl complex in contrast with 79% in case of the complex formed with the longer
linker BcO.

https://doi.org/10.1371/journal.pone.0204194.g009
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calculated by others (see references in Table 3, Fig 10B and 10C); Thus, the forward thermody-

namic parameters obtained in this study completed nicely the thermodynamics cycles, thus

making very compelling arguments in favor of the proposed simple reaction model (Eq 8),

which has a single transition state (ǂ) but no intermediate. The positive nature of ΔEa
forward and

ΔSǂ, forward toward the transition state can be explained as the energy required to remove water

molecules and displace the protein’s β3-β4 loop [32, 75] with an increment of the overall

Table 3. Thermodynamic cycles of B7 binding to AV and SAV for one transition state.

1)
Complex

2) ΔH˚rxn
a

(kcal/mol)
3) Ea

Forward, b

(kcal/mol)
4) Ea

Backward, a

(kcal/mol)
5) ΔE = Ea

Forward-Ea
Backward

(kcal/mol)c

column 3 minus 4

AV-B7 -20.3 ± 0.3 [76]
-22.5 ± 0.1 [77]

-26.7 [39]
-23.4 ± 0.3 [78]

14.4 ± 0.2 37.6 ± 2.0 [18] -23.2 ± 2.2

-23.2 ± 1.7d

SAV-B7 -23.0 [79]
-24.5 [39]

-24.9 ± 0.4 [80]
-26.7 [19]

6.0 ± 0.2 32.0 [81]
30.4 ± 0.2 [39, 80]
25.8 ± 1.2 [82]

-23.4 ± 4.0

-24.8 ± 2.0 29.4 ± 2.6

1)
Complex

2) ΔS˚rxn
(cal/mol˚K)

3) ΔS˚ ǂ, Forward

(cal/mol˚K)
4) ΔS˚ ǂ, Backward

(cal/mol˚K)
5) ΔS˚ ǂ, Forward -ΔS˚ ǂ, Backward

(cal/mol˚K),
column 3 minus 4

AV-B7 -8.9 [78] 32.0 ± 1.2 43.0 ± 2.0 [18]e -11.0 ± 2.5

SAV-B7 -21.0 [39] 6.7 ± 1.6 29.9 ± 2.0 [18]e

25.8 [81]
18.8 ± 0.3 [39, 80, 82]

-18.1 ± 4.5

24.8 ± 4.5

1)
Complex

2) ΔG˚rxn
(kcal/mol)

3) ΔG˚ ǂ, Forward

(kcal/mol)
4) ΔG˚ ǂ, Backward

(kcal/mol)
5) ΔG˚ ǂ, Forward -ΔG˚ ǂ, Backward

(kcal/mol)
column 3 minus 4

AV-B7 -20.5 [76]
-20.8 [78]

4.7 ± 0.3 24.7 ± 2.0 [18]e -20.0 ± 4.0

-20.7 ± 0.3

SAV-B7 -18.1 [39]
-18.3 [83, 84]

4.0 ± 0.6 21.4 ± 2.0 [47]
24.8 ± 0.3 [80]f

24.6 ± 0.3 [39, 82]

-19.6 ± 2.5

-18.2 ± 0.2 23.6 ± 1.5

Experimental forward parameters (Ea
Forward

, ΔS˚
ǂ, Forward and ΔG˚ ǂ, Forward, in column 3) calculated by us, are in a good agreement with the experimental calorimetry

values (ΔH˚rxn, ΔS˚rxn and ΔG˚rxn, in column 2) and dissociation parameters (Ea
Backward

, ΔS˚
ǂ, Backward and ΔG˚ ǂ, Backward, in column 4) when a one-transition state

reaction model is considered.
aColumn 2 and 4 contain data obtained in previous studies. Comparisons between reported values are made, and the average value is placed below the dotted line.
bThe forward and reverse rate constants were used to calculate, with Arrhenius plots, the respective forward and backward activation energies, Ea

forward and Ea
backwards,

respectively
cColumn 5 is column 3 minus column 4 and should be equivalent to experimental reaction values obtained from multiple studies thus confirming the accuracy of the

proposed model. The difference of these activation energies results in ΔE (column 5) which were equivalent to an averaged ΔH˚Rxn (column 1) of multiple independent

calorimetry studies. Similarly, analysis was carried out for reaction Gibbs free energy (ΔG˚Rxn) and entropy (ΔS˚Rxn).
dAveraged values are shown below the dotted line.
eCalculated from the plotted data.
fCalculated at 25˚C.

https://doi.org/10.1371/journal.pone.0204194.t003

Detailed characterization of avidin, strepavidin, and ligands

PLOSONE | https://doi.org/10.1371/journal.pone.0204194 February 28, 2019 22 / 32

https://doi.org/10.1371/journal.pone.0204194.t003
https://doi.org/10.1371/journal.pone.0204194


disorder, ΔSǂ. A comparative analysis of the transition state (ǂ) for the AV-B and SAV-B com-

plexes reveals that the former has a larger ΔEa
forward and ΔSǂ,forward (Table 3, Fig 10, red line)

than the latter (Table 3, Fig 10, green line) which implies that binding sites of AV are deeper

and less accessible resulting in slower association rate constants and larger activation energy

with respect to B7 binding to SAV.

Fluorescence spectroscopic parameters of labeled probes and complexes

The absorbance and emission peaks of all the dye-labeled B7 complexes (Table 4) were red

shifted a few nanometers (Supporting Information, S1 and S2 Figs) with respect to the

Table 4. Spectroscopic parameters of the dye-labeled B7 probes and respective complexes with AV and SAV.

Sample a Maximum
Absorbance

(nm)

Maximum
Emission
(nm)

Lifetime
τ
b

Natural
Lifetime

τ˚ c

Dynamic
Quantum Yield

F
d

Quantum
Yield
QY

Fraction of Non-
Statically Quenched

Dye
1-Se

Steady State
Anisotropy

rss
f

Cone
Angle
O

g

BFl 494 530 4.03 ± 0.01 5.2 ± 0.2 0.81 ± 0.04 0.52 ± 0.02 0.65 ± 0.06 0.021 ± 0.002 90

AV-BFl 498 528 4.22 ± 0.01 4.7 ± 0.1 0.90 ± 0.02 0.44 ± 0.01 0.49 ± 0.03 0.180 ± 0.003 51 ± 2

SAV-BFl h

mono-ionic
472 515 3.0 ± 0.1 8.1 ± 0.1 - 0.06 ± 0.01i 0.18 ± 0.02 0.171 ± 0.008 51 ± 2

SAV-BFl
di-ionic

494 528 4.1 ± 0.1 4.5 ± 0.1 - 0.49 ± 0.03

BcO 495 523 3.75 ± 0.04 4.4 ± 0.1 0.85 ± 0.02 0.91 ± 0.02 1.00 ± 0.02 0.023 ± 0.002 90

AV-BcO 497 524 4.35 ± 0.01 4.9 ± 0.1 0.88 ± 0.02 0.62 ± 0.02 0.70 ± 0.03 0.187 ± 0.009 50 ± 2

SAV-BcO 497 524 3.98 ± 0.01 4.8 ± 0.1 0.83 ± 0.02 0.21 ± 0.01 0.25 ± 0.02 0.053 ± 0.005 50 ± 2

B7-DNAds
�Fl 502 520 3.12 ± 0.08 4.3 ± 0.1 0.75 ± 0.04 0.22 ± 0.01 0.29 ± 0.02 0.077 ± 0.005 49 ± 2

AV-B7

-DNAds
�Fl

499 521 3.80 ± 0.05 3.9 ± 0.1 0.98 ± 0.02 0.36 ± 0.01 0.37 ± 0.02 0.150 ± 0.007 40 ± 3

SAV-B7

-DNAds
�Fl

499 521 3.86 ± 0.01 3.9 ± 0.1 1.00 ± 0.02 0.18 ± 0.01 0.18 ± 0.02 0.082 ± 0.001 51 ± 3

The chemical environment is altered after complex formation as changes in the following properties shown: shifting in absorbance peaks (abs max, S1 Fig) and

fluorescence emission peaks (emi max, S2 Fig), lifetimes (τ), dynamic quenching (F), static quantum yields (QY), fluorescence emitting population (1-S) and the cone

angle that indicates dye mobility (O).
aExperiments were carried out with protein excess (AB1 filling model).
bBi-exponential decays were observed for the B7-DNAds

�Fl and SAV-BFl complexes (S1 Table).
cτ˚, is the intrinsic lifetime of the fluorescent dye when there are no other radiationless transitions.
d
F = Sατ/τ˚, is the dynamic quantum yield.

e1-S = QY/F, is the fraction of non-statically quenched dye.
frss, is the steady state anisotropy measured at 20˚C.
g
O, is the cone angle measured in degrees at 20˚C
hThe absorbance spectrum of the SAV-BFl complex (S1 Fig) and the detection of the corresponding lifetimes of 3.0 and 4.1 ns [85, 86] indicates the presence of both Fl1-

and Fl2-, respectively [79]. We used these reported lifetimes to calculate the pre-exponentials values (α) of each fluorescent species in the SAV-BFl complex. The intrinsic

lifetime of Fl1- was calculated by dividing the lifetime (3.0 ns) over the absolute quantum yield (0.37) [46]. We calculated the (1-S)Fl
1- by assuming that (1-S)Fl

2- is that of

AV-BFl (with contains only Fl2-) and solving the following equation:
a
Fl2�

a
Fl1�
¼
½C ε ð1�SÞD�

Fl2�

½C ε ð1�SÞD�
Fl1�

, where C is the concentration, ε is the molar absorptivity at 470 nm, D is the

fraction of photons under a band width of 520 nm ± 5 nm of the normalized emission spectrum of Fl2- and Fl1- (taken from Fig 7 [86]) which values were 0.229 and

0.158, respectively. The αFl
2- and αFl

1- were 0.611 and 0.388, respectively; for a ratio of 1.574. The concentration of Fl2- and Fl1- were acquired by solving simultaneously

the following equations: abs494 = (ε494 �C)Fl
1- + (ε494 �C)Fl

2- and abs472 = ε472 CFl
1- + ε472 CFl

2-, where abs is the absorbance at 494 nm and 472 nm of the SAV-BFl

absorbance spectrum; and the ε of Fl1- is 25 mM-1cm-1 and 29 mM-1cm-1 at 494 nm and 472 nm, respectively; and ε of Fl2- were 76 mM-1cm-1 and 35 mM-1cm-1 [86, 87]

at 494 nm and 472 nm. Thus, for the SAV-BFl complex, the concentration ratio of Fl1-/Fl2- was 3.5.
iThe QY and F of the SAV-BFl complex could not be resolved for each of the two Fl species.

https://doi.org/10.1371/journal.pone.0204194.t004
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unbound probes, with the exception of the B7-DNAds
�Fl complexes with AV and SAV that

were blue-shifted 3 nm by the presence of both proteins. This can be explained by fluorescein

(Fl) interactions with DNAds before binding to AV and SAV which is later displaced to the

solution in the complex. In the particular case of the absorbance spectrum of SAV-BFl, it was

highly distorted (S1 Fig) owing to the shifting of the Fl-2/Fl-1 equilibrium by charge transfer

[79]; since, we detected the corresponding 4.1 ns and 3.0 ns lifetimes (τ). The time-resolved

fluorescence of B7-DNAds
�Fl complexes of SAV and AV proteins (S1 Table) had two lifetimes

decays of 0.72 (± 0.01) ns and 3.78 (± 0.01) ns, and 2.29 (± 0.02) ns and 4.08 (± 0.01) ns, respec-

tively; whose exponentials were not affected by temperature suggesting the existence of the

two Fl positions on the DNA which make a compelling argument for the parallel reaction

model (Eq 9) with two reacting populations: (Biotin-DNAds
�Fl)1 and (Biotin-DNAds

�Fl)2.

The deconvolution of the SF binding traces was completed using the steady-state anisotropy

(rss) whose AV values were larger than SAV attributable to a larger molecular weight and to

the presence of the carbohydrate motif for the former. Significantly, the quantum yields (QY)

of the complexes were in excellent agreement with all the binding association amplitude

changes. Thus, in the case of the B7-DNAds
�Fl reactions, the traces had shifted directions (Fig

7) since there are opposite quenching interactions when SAV and AV complex are formed.

The quantum yield, of the free probe B7-DNAds
�Fl was QY = 0.22 ± 0.01 (Table 4) incremen-

ted up to 0.36 ± 0.01 for the AV-B7-DNAds
�Fl complex and decreased to 0.18 ± 0.01 for the

SAV-B7-DNAds
�Fl complex. This effect is caused by the bulkier nature of the AV with respect

to SAV that allows further displacement of Fl from the 3’ end toward the solution environment

resulting in the increase of the QY for the B7-DNAds
�Fl-AV.

The (S) and (1-S) are, respectively, the static and non-statically quenched dye populations.

The latter always decrease with the complex formation with respect to the unbound free

probes; however, the fluorescence information pertained to the self-revealing population

whose cone angles (O) of ~50˚ pointed out that the dye probe was fairly free to rotate (Fig 11)

in the complexes. On the other hand, the presence of quenching did not affect the accuracy of

association rate values, as the rates obtained in the independent SAV tryptophan-quenching

study [39] and our data were in perfect agreement.

Conclusions

In the presented study, we calculated the association rate constants of B7 binding to AV and

SAV with dye-labeled B7 probes and unlabeled B7. We concluded that attached fluorescent

probes did not alter the association rates and no binding cooperativity was observed when

comparing the initial (unoccupied) and final (occupied) binding rates. The fluorescence, FðtÞ,

and corrected anisotropy signals, rFðtÞ, of the dye-labeled B7 probes provided truthful binding

traces contrary to the uncorrected anisotropy signal, rðtÞ, due to changes in the QY of the par-

ticipating reacting species. The B7 association rate constants of SAV are several times faster

than AV and the glycan chain of the latter does not play a role in the B7 binding association

and neither explains the difference in the kon values between these two proteins. Thus, we con-

clude that the main differences in reaction speeds are likely related to the accessibility to the

binding pocket in solution, and due to the open form in the shorter loop in SAV (residue 45 to

52, 8 residues) [81] in comparison with the AV’s 12-residue loop L2-L3 (residue 35–46) [89].

Fig 10. Thermodynamic cycle of the B7 binding to AV and SAV. (A) Enthalpy, (B) entropy, and (C)Gibbs free
energy of the B7 binding to AV (red) and SAV (green) for one transition state and no intermediate. The ΔH˚rxn, ΔS˚rxn,
and ΔG˚rxn correspond to the average values found in multiple studies (Table 3). Arrhenius plots of the temperature
dependent association and dissociation rate constants were used to calculate the Ea

forward and Ea
backwards, respectively.

https://doi.org/10.1371/journal.pone.0204194.g010
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Also, the variation in requirements for an induced fit could explain larger activation energy

and entropic increment for AV compared to the SAV in the overall thermodynamics of the

reaction. Interestingly, the overall reaction free energy changes are equivalent.

The association rate constant for BcO, in which the tag is attached to a longer linker of bio-

cytin, is ~2X faster than B7 with the shorter linker (BFl) for both proteins. The difference of

100X in KD of AV complex with B7 and biocytin can be explained by differences in the dissoci-

ation process rather than the association rate constants. The B7 binding to AV and SAV is not

diffusion limited as larger than 3 kcal/mol activation energies were calculated with Arrhenius

plots of the rate constants, and those rates were two orders of magnitude slower (on average

~107M-1s-1) than the 109 M-1s-1 required for diffusion limited reactions. The forward thermo-

dynamic parameters of B7 binding to AV and SAV complemented nicely the thermodynamic

cycles with data obtained with independent calorimetric studies and dissociation kinetics else-

where. Thus, the most probable reaction model is the one without a chemical intermediate

and a single transition state in solution, but it could be more elaborate on support matrices,

such as in chip assays.

The spectroscopic properties indicated very compact complexes with high dye mobility for

all the probes, BFl, BcO and B7-DNAds
�Fl. We report for the first time a bimolecular displace-

ment rate constant value for the SAV-BcO complex when challenged by unlabeled B7 and this

displacement of the B7 with the longer linker (biocytin) in the BcO; this suggests that the repair

and reconditioning of enriched B7-avidin-like surfaces is possible if long linkers are used.

Early observations of affinity variations depending on the linker lengths for similar dye-labeled

B7 probes have been showed in incubation anisotropy titrations [90] but the paper did not sys-

tematically study the rate constants at various conditions (Tables 1 and 2) and multiple spec-

troscopic values (Table 4) of the probes as carried out here.

The AV and SAV complexes are highly thermally stable at 112˚C and 117˚C [74]; respectively,

and a possible application of dye-labeled B7 and AV-like complex could be in Dye- Sensitized

Solar Cells (DSSC) [91, 92] as the photon harvesting dye can be displaced when damaged. The

protein can be attached covalently to the n-type material (e.g. TiO2) and the charge-transfer

Fig 11. Pictorial representation of the AV-BFl complex. (A) The fluorescein dye in the complex has a relative high
dye mobility with a half apical angle [88] (O) of 51˚ ± 2˚ in contrast with the unrestricted mobility (90˚) of the dye in
the unbound BFl. (B) The figure reflects rotational motion of the transition moment of the isoalloxanzine ring system
within the cone. The dye structure was added using Accelrys DS visualizer 2.0 to the AV-B crystal structure complex:
2AVI [32]. Figures only show one binding site for clarity purposes.

https://doi.org/10.1371/journal.pone.0204194.g011
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molecule to B7 (e.g., porphyrins, chlorophylls, ruthenium-complexes, coumarins or indoline dyes

[93]), with the advantage of regeneration capabilities, as damaged dye can be reconditioned or

replaced by another dye type on the tetramer attached surface (Fig 9A). This technique could be

simpler than switchable mutants of avidin for regenerative biosensors reported elsewhere [94, 95].

The spectroscopic properties of these dye-labeled B7 and AV-like complexes are vital for detection

methods based on polarization, fluorescence, anisotropy and Fluorescence Resonance Energy

Transfer (FRET) systems because static, dynamic quenching and rotational constraints of the fluo-

rescent probes reduce the detection limits by decreasing the signal to noise ratios [96] and produc-

ing artifacts. The information here presented will be valuable to improve new nano-technological

applications of B7 and AV-like protein systems.
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Supporting Information S1 Fig. 

 

 

 
S1 Fig. Absorbance spectra of dye-labeled B7 probes and respective complexes with AV and SAV. The 

absorbance spectra of the unbound BFl, BcO and B7-DNAds*Fl are shown in dark blue and the respective bound 

complexes formed with SAV and AV in pink. The spectra are normalized to the calculated molar absorptivies. The 

distortion of the SAV-BFl absorbance spectrum (B panel) is caused by the presence of Fl2- and Fl1-. The labeled 

probes and protein concentrations were 1 µM and 10 µM, respectively.    
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Supporting Information S2 Fig. 

 

 

 
S2 Fig. Fluorescence emission spectra of dye-labeled B7 and respective complexes with AV and SAV.  The 

normalized spectra of the unbound BFl, BcO and B7-DNAds*Fl are shown in blue and their respective bound 

complexes formed with SAV and AV in pink. The probe and protein concentrations were 20 nM and 1040 nM (AB1 

filling model), respectively.    
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Supporting Information S3 Fig. 

 

   

 

S3 Fig. Dissociation reactions of AV-BcO and AV-BFl complexes by unlabeled B7 at 20 ºC. The dissociation 

reactions of AV complexes were carried out with a preformed complex of 20 nM BFl or BcO and 260 nM AV for 

a filling model of AB1 and challenged with unlabeled B7 at 2,000 nM. The 𝑘𝑜𝑓𝑓𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
 could not be detected and 

the corresponding 𝑘𝑜𝑓𝑓𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
 (9 x 10-8 s-1) found by Green N. (The use of [14C]biotin for kinetic studies and for 

assay. Biochem J. 1963;89:585–91) was too slow to be determined by our fluorescence anisotropy methodology.  
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Supporting Information S1 Table.  

S1. Table. Lifetimes of dye-labeled biotin probes and protein complexes 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fluorescence lifetimes in nanoseconds (ns) were acquired in solution at nanomolar concentrations 

and they were temperature independent from 10 C to 25 C  

a ii, is the integrated lifetime. 

b ss, single strand of the 14mer*Fl.  

c ds, duplex strand of the 14mer*Fl.  

 

Sample α1 1 (ns) α2 2 (ns) ii 
 a (ns) 

SAV-BFl 0.61  0.03 4.10  0.02 0.39  0.03 3.1  0.02  3.70  0.05 

B7-DNAss*Fl-3’ b 1.0 3.99  0.03 NA NA 3.99  0.03 

AV- B7-DNAss*Fl-3’ c 0.22  0.01 1.12  0.19  0.78  0.01 4.15  0.03  3.48  0.06 

SAV- B7-DNAss*Fl-3’ 0.50  0.01 0.72  0.01  0.50  0.01 3.78  0.01  2.25  0.04 

B7-DNAds*Fl-3’ 0.20  0.02 1.10  0.05 0.80  0.02 3.62  0.01 3.12  0.08 

AV- B7-DNAds*Fl-3’ 0.09  0.01 1.27  0.11 0.91  0.01 4.05  0.01 3.80  0.05 

SAV- B7-DNAds*Fl-3’ 0.12  0.01 2.29  0.02 0.88  0.01 4.08  0.01 3.86  0.01 
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