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DETAILED DESCRIPTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND RESULTS OF A METHOD 

FOR COMPUTING MEAN AND FLUCTUATING QUANTITIES I N  

TURBULENTBOUNDARYLAYERS 

By Ivan E. Beckwith and Dennis M. Bushnell 

Langley Research Center 

SUMMARY 

The conservation equations for mass ,  mean momentum, and turbulent kinetic energy 

for the incompressible turbulent boundary layer have been solved by an implicit finite-

difference procedure. Mathematical models developed by Glushko (Bull. Acad. Sci. USSR, 

Mech. Ser., no. 4,  1965) for the production, dissipation, and diffusion of the turbulent 

kinetic energy in the flat-plate turbulent boundary layer have been modified and used to 

calculate a nonequilibrium turbulent boundary layer subjected initially to a large adverse 

pressure gradient followed by a run of constant pressure. 

Comparisons of both mean and fluctuating flow properties have indicated generally 

good agreement between the calculated results and experimental measurements of 

Goldberg (MIT Rep. No. 85, 1966). The best overall agreement with data was obtained by 

reducing the scale of turbulence in the outer part of the boundary layer to about 70 percent 

of the flat-plate values as used by Glushko. The calculations have indicated that further 

simple modifications to the turbulence scale function and to some of the mathematical 

models for the turbulence correlation t e rms  should improve the accuracy of predictions 

for the Goldberg data. The present authors have shown (paper presented at 1968 Confer

ence on Computation Methods in Turbulent Boundary Layers  at Stanford University, 

Aug. 1968) that predictions in good agreement with data were obtained for other arbi t rary 

pressure distributions. 

INTRODUCTION 

The basic assumption in conventional methods for the calculation of turbulent flows 

is that the mean values of products of the fluctuating characterist ics of the flow a r e  

related in some unique manner to the mean flow properties. Such relations between 

these correlations of fluctuating flow quantities and the mean flow cannot be determined 

solely from theoretical analysis. In the Reynolds equations of mean motion, this problem 

of relating the correlations to the mean flow has generally been met by introducing more zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
or less arbi t rary assumptions for the Reynolds stress t e rms  (ref. 1, pp. 277-293). In 

1945, Prandtl, Nevzgljadov, and Chou (refs. 2 to 5) reported on independent investigations 



intended to develop a more rigorous approach to this problem. These investigations were 

based on the idea of using independent differential equations to describe the dynamics of 

the correlations for  the turbulent velocity fluctuations. The correlation equations a r e  

derived (ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, pp. 250-260,for example) from the Navier-Stokes equations of motion and 

contain t e rms  for double velocity correlations (Reynolds stress and turbulence kinetic 

energy terms) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, triple velocity correlations, and correlations of velocity and pressure 

fluctuations. 

In 1951 Rotta (ref. 6) extended the work of Prandtl (ref. 2), and, in particular, that 

of Chou (refs. 4 and 5), in considerable detail; his work was based on advances in theory 

and new data not available during the ear l ie r  investigations of 1945. (See also discussion 

in ref. 7,pp. 43-54.) These methods were developed further and applied to various types 

of simple flows as described in references 8 to 11. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn integral form of the turbulence 

energy equation was utilized by McDonald (ref. 12) to compute the mean profiles by an 

integral method. 

Kovasznay and Nee (refs. 13 and 14)assumed that the effective total viscosity obeys 

a "rate equation" expressing the "conservation" of the total viscosity. Harlow and 

Nakayama (ref. 15)gave a more formal derivation (based on the equation for the turbu

lence kinetic energy) of a rate equation for the eddy viscosity and also constructed a 

"transport" equation for the scale of turbulence by analogy with Brownian motion. The 

same authors (ref. 16)have since derived a new transport equation for the dissipation 

function. Since this function depends on the scale of turbulence, their new equation and 

their previous rate equation for the eddy viscosity were proposed as the basic equations 

fo r  a general method of computing turbulent shear  flows. 

In all the investigations mentioned, except the integral method of McDonald, assump 

tions regarding the relative magnitudes of the various fluctuating quantities were made in 

order  to simplify and obtain solutions to the nonlinear equations involved. Consequently, 

these methods were applied mostly to simple flows or portions of simple flows where 

some t e rms  in the correlation equations could be neglected. Hence, the mathematical 

formulations of remaining t e rms  representing the fluctuating quantities could not be 

tested for their degree of generality. In the integral method of McDonald, it is still not 

possible to test the detailed spatial variations of these formulations and the turbulent dif

fusion t e rms  drop out completely upon integration across  a shear  layer. 

The answer to these difficulties is, of course, to obtain numerical solutions of the 

complete equations with automatic computing machines. Such solutions have been given 

recently by Glushko (ref. 17),Bradshaw, Ferriss, and Atwell (ref. 18), and Nash (ref. 19). 

In the methods of references 18 and 19, the molecular shear  is neglected; it was therefore 

necessary to provide the correct  wall boundary condition by incorporating the "law-of -the 

wall" relation between velocity and wall shear. Glushko, on the other hand, kept all the 
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viscous t e rms  and used formulations with essentially correct  limiting forms at the wall. 

It might be expected that this latter approach would therefore be somewhat more general 

than that of Bradshaw in that sudden changes in  wall-boundary conditions could be negoti

ated and the extension to compressible flows where the law-of-the-wall relation may not 

be generally applicable should give better results. The only computation presented by 

Glushko, however, was for the flat plate; again, the degree of generality of his assumptions 

for the fluctuating flow parameters could not be determined. 

The primary purpose of the present paper is to test the method of Glushko in a non

equilibrium zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAadverse-pressure-gradient flow and to determine whether his formulations of 

the turbulence quantities based primarily on flat-plate data result  i n  satisfactory predic

tions for the mean properties of this more complex flow. Since the ultimate success of 

these methods depends on the assumptions for the fluctuating properties, comparisons of 

values from numerical solutions for  these quantities with experimental data are also 

made. Except for  shear profiles in references 14, 18, and 19, and turbulent kinetic energy 

profiles in reference 17, such comparisons for boundary-layer flows have not been pub

lished yet. The work reported herein is part  of a general investigation intended to develop 

these methods for application to compressible flows. 

This paper includes an appendix by Carolyn C. Thomas, of the Langley Research 

Center. This appendix presents a description and listing of the digital computer program. 

SYMBOLS 

An,Bn,Cn,Dn functions in linearized finite-difference form of momentum equation 

(es. (B13)) 

Ln76n,En,f>n functions in linearized finite-difference form of energy equation 

(eq. (I32711 

constant in model of turbulent dissipation te rm (eq. (12)) 

cf local skin friction, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
51 
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k 

1 

M 

m,n 

N 

-
n 

P 

4 

dimensionless diffusion and dissipation function 1+ CYKRH(KR) (eq. (19))  

turbulent kinetic-energy profile function, 5 /Ue 
2  

constant in  expression used for initial E profile (eq. (31a))  

instantaneous turbulent kinetic energy per  unit mass ,  :(u1 
,2 + u2 

,2 + u3  

mean turbulent kinetic energy per  unit mass ,  -
2
I(? + u2f2  + u3f2) 

velocity profile function, i1/Ue  

factor in A t  expression used for flat-plate solutions (see expression (31b))  

functions required to calculate Fm+1 (eq. (B16))  

eddy viscosity function (eq. (9b))  

shape factor, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 * / 8  

factor for variable Aq step size, Aqn/Aqn-l 

exponent in A< expression used for flat-plate solutions 

(see expression (3 lb)) 

characteristic mean scales  of turbulent motion 

dimensionless total viscosity function 1 + crRH(R) (eq. (19)) 

computing grid location (see sketch in appendix B)  

maximum value of n  

exponent in definition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq (eq. (22))  

pressure  



P' 

-
P 

R 

Ro 

RX1 

R6 

Re 

t 

Ue 

ui 

-
U i  

I 

ui 

U* 

V 

X i  

OL 

6 

6* 

E  

fluctuation in pressure,  p - i5 

mean pressure 

$2
turbulent Reynolds number , -

V 

constant in  models of turbulent te rms  (eq. (9)) 

UeXl
Reynolds number based on X I , .  -

V 

Reynolds number based on 6, Ue 6  

Ue zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 
Reynolds number based on 6 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1/  

time  

local f ree-s t ream velocity in x1 direction at edge of boundary layer  

instantaneous velocity in xi direction  

mean velocity in xi direction  

fluctuation in velocity in X i   

friction velocity,  

transformed normal velocity  

Cartesian coordinates in tensor notation (i = 1,2,3)  

constant in models of turbulent t e r m s  (eqs. (9) and (10))  

boundary-layer thickness at some specified value of 

displacement thickness, 

eddy viscosity (eq. (7)) 



Ee e r r o r  cr i ter ia ,  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Fe 

? 

'e e r r o r  c r i te r ia  (eq. (B18)) 

EW convergence c r i te r ia  (eq. (B24)) 

0 

K constant in models of turbulent t e r m s  (eqs. (12) and (13)) 

I.1 dynamic viscosity 

V kinematic viscosity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp / p  

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,rl similarity coordinates (eqs. (21) and (22)) 

rl* constant in  expression used for initial E profile (eq. (31a)) 

P density 

a l l  
7 local shear  stress, p -- pul'U2?

8x2 

TT turbulent shear  s t ress ,  -pu1?u2' 

(#J 
turbulent scale function (eq. (8)) 

Subscripts: 

av average value 

d dissipation 

e edge of boundary layer,  -61 = (1 - €e)
Ue 

standard tensor notation: 1, 2, and 3 denote directions that are, respec

tively, parallel to the surface and in the same direction as the external 

velocity vector, normal to the surface, and parallel to the surface but 

normal to the external velocity vector 
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0 initial conditions except where noted 

T turbulent 

t transition 

W wall or  surface 

6 evaluated at some specified value of F 

REVIEW O F  PROBLEM 

The following remarks are not intended as a complete or  general review of the 

literature on turbulent boundary-layer theory. Rather, it is desired to emphasize certain 

aspects of previous work that are of particular significance for  the present extension of 

the Glushko method (ref. 17). 

Applications of Turbulent Kinetic Energy Equation 

From physical and dimensional considerations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,Prandtl (ref. 2) derived the equation 

for  the conservation of kinetic energy of turbulent velocity fluctuations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe (one of the 

double velocity correlations) and compared the calculated variation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE across  a chan

nel with experimental data. Nevzgljadov (ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3) presented a more elegant derivation of 

the equation for e and applied it,  together with the equations for the mean motion, to the 

flow in a circular pipe. In these methods i t  was necessary to assume functional relations 

between e and the various other fluctuation t e rms  which appear, such as the production 

and dissipation of turbulent energy; an ffeddyffviscosity concept was used to formulate the 

Reynolds s t ress .  (The dominant production term is usually the product of the Reynolds 

stress and the normal gradient of the mean velocity.) The success of the methods depends 

on how well the assumed functional relations represent the real situation. A character

istic length I which is interpreted as the mean scale of the turbulence enters some of the 

functions. In reference 3 the assumption that 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 5 was used; whereas in reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 it 

was assumed that 2 was related directly to the mixing length and, hence, depended on 

the type and geometry of the flow. In spite of these different assumptions for I ,  the 

agreement with experiment shown in  both references 2 and 3 was reasonable. This agree

ment indicates that assumptions relating the different fluctuating properties (actually, 

mean values of products of fluctuating quantities) of the flow to each other may not be as 

crit ical  as assumptions relating fluctuating flow properties directly to mean flow 

quantit ies. 
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In the method proposed by Chou (ref. 4) and applied by him to channel and flat-plate 

flows (refs. 5 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20), separate equations for each of the different components of both the 

double and triple velocity correlations were used and the concept of an eddy viscosity was 

not required. If quadruple correlations are neglected, this s e t  of equations then repre

sents a closed system that could be used to compute any turbulent flow if sufficiently gen

eral formulations for t e rms  that represent the diffusion and dissipation of turbulence can 

be determined. 

Emmons (ref. 8) further developed and applied the method of Prandtl (ref. 2) to the 

calculation of various turbulence quantities for channel, f r ee  jet, and wake flows. By 

appropriate adjustment of the constants and the turbulence scale factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, good agree

ment with corresponding measurements (refs. 21  to 23) was obtained. Townsend (ref. 9) 

assumed that the turbulent shear is directly proportional to E, (and thereby abandoned 

the eddy viscosity concept) within the inner region of a shear layer and used the turbulent 

energy equation to compute mean velocity distributions for equilibrium shear flows. 

Levin (ref. 10) applied Rotta's method to pipe flow and obtained reasonable agreement 

with the experimental data of Laufer (ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24) for turbulent shear and the production and 

dissipation of turbulent energy. Spalding (ref. 11)has applied the turbulence energy 

equation to separated flows and used assumptions for the turbulence quantities s imilar  to 

those of Prandtl (ref, 2). 

As mentioned in  the Introduction, numerical solutions to the complete equations are 

essential to determine the degree of generality of the models used for the fluctuating 

terms.  Although numerical procedures were used in references 14 and 15, solutions 

were given only for simplified forms of the equations applicable to flat plate or pipe flows. 

In the solutions of references 17 to 19, the complete equations were retained except for 

the neglect of molecular shear  in references 18 and 19. The equations of mean motion, 

continuity, and turbulence e'nergy then become hyperbolic (ref. 18) and can therefore be 

solved by the method of characteristics. The numerical computing procedures a r e  

thereby considerably simplified but the wall boundary condition of zero turbulent shear 

cannot be satisfied directly. Nevertheless, Bradshaw, Ferri,ss, and Atwell (ref. 18) 

obtained good agreement of mean velocity, shear profiles, and the variation of thickness 

parameters  with experimental data fo r  both equilibrium and some nonequilibrium adverse 

pressure gradient cases. Bradshaw and Ferriss have applied the method of reference 18 

to compressible flows (ref. 25) at low supersonic Mach numbers with only partial success. 

The method of Nash (ref. 19) differs from that of reference 18 only in that the computing 

procedure is a more conventional finite-difference method rather  than the method of 

characteristics as applied uniquely by Bradshaw. 
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Integral Methods 

In the conventional integral methods, the mean momentum equation is integrated 

across  the boundary layer and solutions are then obtained by the use of assumptions for 

velocity profiles (or auxiliary equations for the shape factor, H* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS”8) and skin friction 

as functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 o r  other mean flow parameters. Large discrepancies in predicted 

variations of H*, 8, and Cf result  from these methods, as shown by the recent review 

of Thompson (ref. 26). In another integral method that has been used extensively, the 

integral form of the mean kinetic energy equation is solved simultaneously with the mean 

flow integral momentum equation as originally done by Truckenbrodt (ref. 27). The addi

tional requirement here  is to develop a sufficiently general relation for the dissipation 

integral. A recent correlation scheme for this integral as described by Walz (ref. 28) 

has resulted in good agreement with experimental distributions of H* in several  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
adverse-pressure-gradient cases. The dissipation integral depends on the turbulent 

shear distribution across  the boundary layer; however, the various integral methods pro

vide no information on local shear or  other local turbulence parameters and hence can be 

evaluated only in t e rms  of mean flow properties such as H*, 8, and Cf. Although the 

auxiliary relations for H*, Cf, and the dissipation integral can be tailored to give agree

ment with a specific se t  of data, extension to other situations, particularly compressible 

flow, always remains doubtful. 

Finite -Diff erence Procedures 

An approach which is more basic than the integral methods is to solve the mean 

momentum and continuity equations directly by finite-difference procedures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that the 

only unknown function is the relation between the Reynolds s t r e s s  and mean flow proper

ties. The success of this approach as applied to several  different types of boundary 

layers (refs. 29 and 30, for example) indicates that the difficulties in the integral methods 

(besides the basic limitations of any boundary-layer integral method) are caused mainly 

by deficiencies in the assumptions for the velocity profiles (or H*), the shear stress and 

dissipation integrals, and the skin-friction relations. In the finite-difference methods of 

references 29 and 30, simple functions for  the eddy viscosity E in t e r m s  of local flow 

conditions are used. The Reynolds s t r e s s  is thus assumed to  depend directly on the local 

mean flow velocity gradient and other local mean flow properties. 

On the other hand, in the finite-difference procedures of references 17 to 19, the 

Reynolds stress is also related to  correlations of fluctuation quantities by the turbulent 

kinetic energy equation. Formulations for the turbulence correlation quantities in ref 
erence 17 were based primarily on the work of Prandtl and Rotta (refs. 2 and 6) where 

an eddy viscosity concept is used. Assumptions for the correlations in reference 18 are 

based on extensions of the ideas of Townsend (ref. 9); that is, all turbulence quantities 
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were related directly to the turbulent shear s t r e s s  and the turbulence energy equation 

becomes an equation for the shear  s t ress .  These methods combine the advantages of 

a finite-difference solution of the mean momentum equation with the more general 

relation for the turbulent shear  as supplied by the turbulence kinetic energy equation. 

BOUNDARYzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-LAYER EQUATIONS 

For conditions where a characteristic Reynolds number Ue6/V is at most of the 

order  of x1I6 and if  x1I6 >> 1, the two-dimensional time-steady equations of motion 

fo r  the turbulent flow of an incompressible fluid (ref. 1, pp. 453-457) reduce to: 

For xi  mean momentum: 

For turbulent kinetic energy: 

(In accordance with conventional notation, when a subscript i or  j is repeated, sum

mation over three directions is implied.) These equations together with the equation of 

continuity 

aiil aa2-+ - = o  (3)
ax1 ax2 

and appropriate initial and boundary conditions determine the three dependent variables 

G,, G2, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe within the turbulent boundary layer. 

Since the Reynolds shear  s t r e s s  

the diffusion of total turbulence energy by velocity fluctuations 

10  
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t 

and the dissipation of turbulence energy 

t 1
aUi aUi 

Dissipation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv -
axj axj 

a r e  in general unknown, these equations do not represent a closed system. Nevertheless, 

the dependence of the Reynolds shear stress on both the correlation.terms and the mean 

flow properties themselves is clearly evident from equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) to (3). 

ASSUMPTIONS FOR FLUCTUATING QUANTITIES 

In order  to formulate realistic expressions for the correlation of fluctuation t e r m s  

in  equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) involving Reynolds s t r e s s ,  diffusion of total turbulent energy, and dissipa

tion of turbulent energy (eqs. (4) to (6)),it is desirable to rely on experimental measure

ments of these quantities whenever possible. Except for the diffusion of pressure  energy, 

these t e rms  have been measured in boundary layers with zero pressure gradient 

(Townsend, Klebanoff, and Corrs in  and Kistler, refs. 31 to 33) and with pressure gradients 

for both equilibrium (Bradshaw, ref. 34) and nonequilibrium boundary layers  (for example, 

Schubauer and Klebanoff (ref. 35) and Bradshaw and Ferriss (ref. 36)). 

The expressions for correlations as developed by Glushko (ref. 17) were based on 

the general approach of Rotta (ref. 6) wherein the dissipation and diffusion t e r m s  are 

EZassumed to be functions of 5 ,  1, and R = -.
V 

The form of these functions depends pri

marily on physical and dimensional reasoning. The Reynolds s t r e s s  was related to the 

mean velocity gradient by 

aii , 

where the dimensionless eddy viscosity ~ / j l  is assumed to be a function only of R 

rather than of the local mean flow properties as in more conventional approaches, such 

as the methods of references 29 and 30. The mean scale of turbulence Z was evaluated 

from flat-plate data for two-point correlation coefficients of the longitudinal velocity 

fluctuations in such a way that Z is analogous to an integral scale (see ref. 1, p. 37) 

parameter. The corresponding ratio Z/6 was taken as a universal function of the form 

6 = @(?) 
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As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAindicated by Glushko, there  are few data available for the evaluation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  even for 

flat-plate flows; thus, the generality of this relation remains questionable. However, in 

a recent experimental investigation (ref. 37) of a separating boundary layer, measure

ments of the two-point correlation coefficients were obtained. If these measurements 

a r e  used to compute I as defined by Glushko, the resulting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ/6 function is nearly 

x2
identical to that of Glushko's for -< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.6.

6 

With I thus determined, Glushko (ref. 17) then evaluated the function E/P  from 

flat-plate data of references 31 and 32 for R > 400 and from the wake data of Townsend 

(ref. 23) for R < 100. Although Glushko was able to obtain reasonable agreement with 

experimental data for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ,  mean velocity profiles, and Cf on flat plates by adjusting con

stants in these formulations, no comparisons with other experimental measurements were 

published. Also, no calculations were reported for adverse-pressure-gradient cases  

which generally provide a more critical test  of any theoretical method than the simpler 

flat-plate flows. Before proceeding to compare theoretical predictions with experimental 

data for both mean (including rate of boundary-layer growth) and fluctuating quantities for 

flat-plate and nonequilibrium, adverse-pressure-gradient flows, Glushko's formulations 

a r e  considered in more detail. 

Reynolds Stress  

The starting point of Glushko's (ref. 17) derivation of expressions for the fluctuation 

quantities was a relation between the eddy viscosity ~ / pand the turbulent Reynolds 

number R. This relation had been pointed out previously by Levin (ref. 10) and was 

based primarily on the semiempirical results of Rotta (ref. 6) that, in turn, depend partly 

on the observed decay ra tes  of homogeneous turbulence (ref. 38, pp. 101-113). From flat-

plate and wake data with ,? determined from equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8), as mentioned above, Glushko 

then obtained the simple function 

where 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and Ro are constants. Since this result is based partly on the assumption that 

the dissipation rate of turbulent energy in  a boundary layer is similar to  that in isotropic 

homogeneous turbulence, it cannot be regarded as firmly established, particularly in the 

very near wall region (where decay of E is caused by the presence of the wall) nor in the 

outer portions of the boundary layer (where the decay in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe is associated with the inter

mittent character of the flow and the edge boundary condition on e) .  Indeed, one justifi
"1 

cation for the eddy viscosity concept itself, generally expressed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE = Z2 -, is perhaps
8x2 

that the concept has generally given useful results. However, as shown by Townsend 

(ref. 9) and by Bradshaw, Ferriss, and Atwell (ref. 18), reasonable results can be obtained 

from simultaneous solutions of equations (1) and (2) without the use of the eddy viscosity 

concept. 
Glushko's final expression for the Reynolds s t r e s s  is then 

For boundary-layer flows, the production of turbulent energy, which is represented by the 

f i r s t  term on the right in equation (2), is generally large in magnitude, and therefore the 

formulation of T~ is of cri t ical  importance. 

Dissipation 

It is known that the dissipation of energy in homogeneous turbulence is proportional 

to ( e )3/2/ 2 (ref. 38, p. 106) which has  been used directly by Prandtl (ref. 2), Emmons 

(ref. 8), and Townsend (ref. 9) to compute the production of turbulent energy from equa

tion (2) for simple shear flows. Based on Rotta's work, Glushko showed that the dissipa

tion term in equation (2) can be written as 

and it is seen that the second te rm on the right is the same as the dissipation in  homoge

neous turbulence. The first term on the right is important only for small  R and whether 

this formulation is applicable to regions of the boundary layer where R is small  cannot 

be determined except by comparison with data. Since for large R, the expression already 

obtained for ~ / p(eqs. (9)) had the desired dependence on R, Glushko assumed the final 

relation for the dissipation te rm as 
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1
aui

1 
aui zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V--
axj axj 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK![1+-(KR) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA73-  
where  I ( K R )  indicates the same function as given by equations (9) except that R is 

I-L 

replaced by KR. The turbulence scale 2 as used by Glushko was considered as the 

same mean scale function given by equation (8); however, as written.in equation (12), 2 

could be considered a microscale (see ref. 1, p. 37) if C were adjusted accordingly. 

The possibility of introducing a microscale for 1 i n  the dissipation te rm is considered 

in the section 'Results and Discussion. l ' 

The dissipation te rm is generally of the same order of magnitude as the production 

term,  except very near the wall, and hence is also of critical importance. At the wall 

itself, equation (12) does not give the correct  limiting form for the dissipation which, f rom 

equation (2), should be 

An analysis s imilar  to that of Rotta (ref. 7, p. 59) shows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s)is generally finite, 

W-
whereas equation (12) evaluated at the wall is zero since ew = 0. The use of equation (12) 

thus forces (3)to be zero, which is physically incorrect and has apparently caused 

W 

some numerical difficulties in the present solutions. These difficulties have been largely 

avoided by rejecting negative values of e which sometimes occurred during iteration 

cycles in the numerical procedure. 

Diffusion 

Glushko reasoned that the total diffusion of turbulence energy was due to the gradient 

of 5. In addition, he specified the corresponding diffusion coefficient to be the same 

quantity given in brackets in equation (12). Hence, he obtained for the diffusion t e r m s  
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Again, it is obvious that the generality of this assumed expression for the diffusion can 

only be determined by comparison with data. Possible deficiencies a r e  that the diffusion 

of energy by pressure fluctuations is not'treated separately and that a simple gradient-

type diffusion as postulated does not always occur (ref. 1, pp. 288-289). Nevertheless, 

for many practical cases  the diffusion t e r m s  are smaller  than the dissipation and produc

tion te rms;  thus, for these situations, the formulation of diffusion is presumably not 

critical. 

TRANSFORMATION TO SIMILARITY COORDINATES 

Profile Functions 

The main reason for transforming to similarity type of coordinates is to provide 

scale factors that in t e rms  of the transformed variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, reduce or  remove 

the ra te  of increase in boundary-layer thickness with distance 5 along the surface. The 

number of computing steps Aq required across  the boundary layer to obtain desired 

accuracy in  the finite-difference procedures can thereby be reduced and kept more nearly 

constant. Also, in  a region of approximate local similarity, the streamwise step size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA t  

can be increased since for this situation the rate of change of the dependent variables with 

5 is much reduced. 

Before the boundary-layer equations (eqs. (1) to (3)) a r e  transformed to the 5,q 

coordinates, it is convenient to write them in t e rms  of the dimensionless velocity and 

energy profile functions 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=- e 

Then with the use of equations (8) to (13) and Bernoulli's equation for the pressure 

gradient 

equations (l),(2), and (3) become, respectively, 

for mean momentum: 
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for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAturbulent kinetic energy: 

and for continuity: 

where 

D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 + OXRH(KR)= 1 + (YKH(KR)@@R6J 
The function H(KR) is identical to the function H(R) (eq. (9b)) except that R/Ro is 

replaced by KR/R,. The first three t e r m s  in equation (17) account for  the convection of 

turbulent energy and the last three t e rms  represent, respectively, the production, diffusion, 

and dissipation of the turbulent energy. 

The boundary conditions to be applied to this system of equations are 

fo r  x2 = 0: 

F = E = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

E - 0 1F - 1.0 

E -C E, 

where E, is one-half the square of the free-stream turbulence intensity. 

Similarity Variables 

The transformed variables are defined as 
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where fi is, i n  general, a variable function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and is determined from the require

ment that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq6 (the boundary-layer thickness in the transformed coordinates) is constant. 

Hence, from equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(22) 

In a boundary layer where the velocity profile shapes and thickness 6 are changing 

rapidly, the value of fi would also change rapidly so that a lengthy iteration procedure 

would be required to satisfy equation (23). An alternate procedure is to specify fi as a 

for laminarconstant; then, for Ue constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(t; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Uexl/U) and 776 constant, " = z

boundary layers, and fi = 0.8 to 1 .0  for  turbulent boundary layers. (Ref. 39 (p. 537) 

gives fi = 0.8 for turbulent boundary layers.) 

Transformed Equations 

The general transformation formulas from equations (21) and (22) may be written as 

The operator that appears on the left-hand side of equations (16) and (17) then becomes 

where V is a transformed normal velocity defined as 



Equations (16), (17), and (18) can then be written for momentum: 

for energy: 

and for continuity: 

(25)2ii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 + (25)
a5 arl 

aii2
In order  to derive equation (29), it is necessary to obtain - f rom equation (26) and the 

817
expression (from eqs. (22) and (24)) 

is also required. 

The continuity equation is written as shown to facilitate the computational procedure
1

of Blottner (ref. 40) which is to be used herein. For fi = -, equation (29) reduces to the 
2

form given by Blottner. 

Similar Solutions 

It is well-known from experimental investigations of turbulent boundary layers 

with dpe/dx = 0 that portions of the velocity profiles a r e  at least approximately similar 

in t e rms  of law-of-the-wall and velocity defect variables (ref. 41). As the Reynolds 

number approaches infinity, these profile shapes should approach exact similarity ac ross  

the entire boundary layer. It is therefore appropriate to inquire as to the possibility of 

similar solutions to equations (27) to (29), since these equations should yield approxi

mately similar solutions if the Glushko formulations for the correlation t e rms  are to be 

generally valid. 

To determine whether similar solutions exist, the question is posed; what distribu

tions of Ue and fi are required for F, V, E, and @ to be functions only of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq ?  
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Inspection of equations (27) to (29) indicates that even with Ue constant, no such exact 

solutions are possible because of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARg factor in the M and D coefficients and in 

the last t e rm (dissipation) of equation (28). This term may be written as 

since from equation (22), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ue6/v(2[)'. Substitution for  D from equation (19) with 

R >> 1 then gives the approximation 

E3/2 Ue6
Dissipation = Ca!zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK -77e2@ V 

Thus, even if q6 is constant, the dissipation term does not satisfy similarity require

ments. However, if  R6 is large and approximately constant over some small  interval 

of interest and Ue is constant, locally similar solutions would be possible. In general, 

exact similar solutions a r e  not possible with the present variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 ,  q (eqs. (21) and 

(22)) and the transport coefficients M and D modeled according to equation (19). The 

existence of similar solutions is investigated further in appendix A where it is shown that 

if 6 increases linearly with xl, similar solutions in t e r m s  of the variable x2/6 can 

be obtained for R >> 1 and either Ue constant or 

6 d u e--= Constant 
Ue 

For Cf approximately constant, this condition is equivalent to that of Clauser (ref. 42) 

for equilibrium flows. It is also shown in appendix A that the ratio of a dissipation 

microscale to an integral scale should increase as some small  power of the Reynolds 

number in order to obtain similar solutions of the flat-plate boundary layer. Actual solu

tions to the equations with similarity requirements included were not obtained in this 

investigation because numerical procedures would still be required, and little additional 

information could be expected beyond that just discussed. 

RESULTS AND DISCUSSION 

Computation Procedure 

The system of equations (27) to (29), along with auxiliary functions for  M, D, 

and fi(xl) as defined in the previous section, is solved by a linear implicit finite-

difference procedure. Complete details of the procedure including the finite-difference 

19  



expressions for the partial derivatives are given in  appendix B. To increase the effi

ciency and accuracy of the computations, a variable grid size in  the 77-direction has been 

incorporated in the finite-difference expressions and used in some of the solutions. 

Details of the computer program including an operational flow diagram and program 

listing a r e  given in appendix C. 

General Comments 

The effects of some modifications to the method of Glushko (ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17) on both mean 

and fluctuating flow properties a r e  presented for flat-plate flow (dpe/dx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) and for one 

of Goldberg's experimental flows (ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA43).with a large adverse pressure gradient. The 

principal modifications considered a r e  to the Z/b function (eq. (8)) and to the dissipation 

and diffusion t e rms  (eqs. (12) and (13)). Limited results that indicate possible advan

tages to be gained by the use of similarity-type variables (eqs. (21) and (22)) with 

adjusted to give approximately constant boundary-layer thickness in the transformed 

coordinates are also mentioned. 

The data from the investigation by Goldberg (ref. 43) chosen as a test  case should 

be a particularly severe test  of any method (as indicated by Bradshaw and Ferriss, 

ref. 44)because the boundary layer was first driven nearly to separation by a large 

adverse pressure gradient and then allowed to relax toward a flat-plate flow by imposing 

a constant pressure. Another advantage of using reference 43 as a test  case is that hot-

wire measurements of turbulent shear and longitudinal turbulence intensity were made. 

Comparisons between these data and the theoretical results assist in the evaluation of the 

models used for the turbulent correlation terms.  Also, the turbulence intensity data can 

be used to provide initial E profiles which a r e  required in order  to s tar t  the 

calculation. 

Bradshaw and F e r r i s s  (ref. 44) and Nash (ref. 19) have applied their methods using 

the turbulent energy equation to this same adverse-pressure-gradient case of Goldberg 

and obtained reasonable agreement with experimental data for 8, H*, and Cf. Nash 

also obtained reasonable agreement between the calculated profiles of mean velocity and 

shear s t r e s s  and the experimental results of Goldberg. Bradshaw and Fe r r i s s  (ref. 44) 

show that the computed values of Cf in the region of its minimum were very sensitive 

to the initial value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 used to start the calculation for this particular case. 

In all calculations by the present method, the skin friction has been computed from 

the correct  limiting form evaluated a t  the wall as 

7w = P ( z ) w  
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hence from equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(22), 

and in finite-difference form 

In order to obtain valid results, the value of Aqn-lzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- i n  equation (30b) must be less than 

the thickness of the region where Cl varies  approximately linearly with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2. 

Flat-Plate Flow 

The calculation was started at Q = lo4 with input values of F and V from
1 

exact numerical solutions to the laminar Blasius flow. The input profile for the turbulent 

kinetic energy was taken (from ref. 17) as: 

* 
where Eo and q*/qe are specified constants. Unless otherwise noted, the resul ts* 
shown herein were computed with Eo* = 2.5 X = 0.4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi = 0.5, and constant 

77e 
Aq = 0.05. Additional required inputs were 

Ue = 100 ft/sec (30.48 m/s)  

qe,o = 4.95  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y = 1.58 x ft2/sec (14.68 X m2/sec)  

E e  = 1 x 10-4  

= 3.4 x 10-4 

€ = 0.01 
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The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA( step size was increased with increasing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 according to the relation: 

so that the number of A( steps required to t raverse  one cycle (on a log scale) of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 

was the same for a given problem. Examples are shown for f = 0.1 and f = 0.5. 

The 2/6 function was obtained by linear interpolation from values given in table I. 

Three functions are given in table I: the one denoted as 40.33 is based on the corre

sponding function as used by Glushko (ref. 17), and this 40.33 function is used for the 

present calculation of flat-plate flow. The subscript 0.33 denotes the maximum value 

of 2/6. 

The values of the constants in the transport functions M and D are: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 0.2, 

K = 0.4, C = 3.93, Ro = 110. As noted previously, these values and the @ function were 

adjusted by Glushko to give agreement with flat-plate flow. In the present report  the same 

values, except where noted, are also applied to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAadverse-pressure-gradient flow. 

Form factor, skin friction, and mean-velocity profiles.- The variation of the form 

factor H* with Rxl is shown in figure 1. The value of H* is a t  f i r s t  approximately 

constant at the initial value of 2.592, corresponding to the Blasius solution for laminar 

flow, and then H* abruptly decreases a t  some value of R
x1 

depending on the step size 

(or f-factor), the magnitude of the input disturbance Eo*, and modifications to the 

Glushko models of the correlation terms.  This value of the Reynolds number where the 

flow properties began to change is designated R
Xl,t' 

Because of the behavior of H* as 

well as the mean-velocity profiles and other flow properties to be presented in subsequent 

sections, %l,t can be considered analogous to a transition Reynolds number.' The 

two modifications used here were to the H(R) function (eq. (9b)) and to the diffusion term 

(eq. (13)). The reasons for  investigating these modifications are discussed after their 

effects on H*, Cf, and the mean velocity profiles a r e  given. 

The modification to the H(R) function was to disregard equation (9b) in the outer 

part  of the boundary layer and se t  H(R) = 1 when R/Ro < 1.25. This modification had 

no effect (within the plotting accuracy) on the values of H*. 

lit must be emphasized, however, that no claim is made regarding the possibility of 
computing a realistic value of transition Reynolds number from the present method in i t s  
current stage of development. The term transition Reynolds number is used herein 
merely as a matter of convenience. In this connection, however, Donaldson has shown in 
a recent paper (ref. 45) that by retaining the complete equations for each component of 

the correlations ui'ui' , some of the physical characterist ics of transition can be com

puted, Donaldson has pointed out that his preliminary models for  the correlation t e r m s  
are crude and that improvement of the models should ultimately result in quantitative
predictions of transition. 
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When the step size factor was increased to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.5 (with H(R) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2/6 > 0.5), 

the value of R,
1 

where H* first began to drop was increased slightly. It is apparent 

that this slight increase in R, was a numerical effect caused by the larger A( step.
1 7 t

Consequently, the following discussion of flat-plate results is limited to those solutions 

with f = 0.1. 

Increasing
1
the diffusion term by a factor of 3 increased the value of Rx 

1 7 t  
by a 

factor of about 1,. Also when the input disturbance level Eo* was reduced to 1 X 
ii 

from 2.5 x %l,t was further increased to about 8 X lo4. However, for all modi

fications shown here, the H* curves appeared to approach a value of approximately 1.4 

which is in agreement with the data of Wieghardt and Tillmann (ref. 46) considered typical 

of flat-plate flows. 

* 
The effects of the modification to the diffusion term and the change in Eo on Cf 

are shown in figure 2 and are of the same nature as the effects on H*. (The H(R) 

modification had a negligible effect on both Cf and H*.) That is, the 'Yransition" 

Reynolds number is increased by the same factors when the larger diffusion term o r  the 

smaller Eo* a r e  used but the final asymptotic values of Cf are in reasonable agree

ment with those for fully turbulent flow as obtained from Schlichting (ref. 39, p. 540) and 

the data of Wieghardt and Tillmann (ref. 46). According to the variation in Cf, when the 

boundary layer was fully turbulent a t  R,
1 

= 4  X l o5 ,  the value of H* was still 

decreasing at this Reynolds number as were the data of Wieghardt and Tillmann. (See 

fig. 1.) 

The computed values of the mean velocity are plotted in conventional profile form in 

figure 3(a) and in law-of-the-wall and velocity defect coordinates (ref. 41) in figures 3(b) 

and 3(c), respectively. From figure 3(a) it is seen that the profiles develop from the 

laminar input profile at Rxl = 1x lo4 to turbulent type profiles for R
x1 

2 
-

1 X 106. At 

this Reynolds number the profile shapes have apparently settled out to the shape charac

teristic of turbulent boundary layers as indicated by the data of Wieghardt and Tillmann 

(ref. 46). In the transition region, that is, for 3 X lo4 < R < 2 X l o5 ,  the profile shapes
X 1  

appear to be in qualitative agreement with mean profiles observed in transition flow as 

shown, for example, in reference 47. 

The effect of the H(R) modification (H(R) = 1 for  x2/6 > 0.5) is shown for  the 

profile at Rx 
1 

= 1 x lo6 .  This change in H(R) increases the mean velocity somewhat 

in the outer region of the boundary layer, with the result that the profile is fuller than 

when the original Glushko function for H(R) (eq. (9b)) is used. 

When the turbulent diffusion te rm is increased by a factor of 3, the agreement with 

data is considerably improved, again in the outer part  of the boundary layer. These same 

effects are also shown in figure 3(c) (velocity defect region). The general agreement 
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with the law-of-the-wall correlations (fig. 3(b)) shows that the results in the near-wall 

region -< 30) and the law-of-the-wall region are i n  good agreement with data.rvx2 
Discussion of modifications to H(R) function and diffusion term,  - The modification ___ - - ~ - _ _  _ _  -

to the H(R) function consists of setting H(R) = 1 when R/Ro < 1.25 in the outer par t  

of the boundary layer rather than using equation (9b) in  this region. (The H(KR) func

tion was modified in the same way, that is, H(KR) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 when KR/R, < 1.25 in the outer 

part of the boundary layer.) The main effect is then to increase the eddy viscosity 

(eq. (sa)) for R < 137.5 (=1.25R0); thus, the resulting fuller velocity profile shape as 

shown in  figure 4 is to be expected. However, examination of the distribution of R 

ac ross  the boundary layer a t  R,
1 

= 1x lo6 indicates that R > 137.5 for  

0.06 < x2/6 < 0.9. Hence, there was no increase in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE in this range of x2/6 and yet 

the mean velocity was affected in the entire midregion of the boundary layer. This result  

merely shows that a local change in  E can affect the computed mean velocities in the 

entire boundary layer, as i t  should for  a nonsimilar numerical solution. 

The H(R) modification was thought to be more  realistic than the original formu

lation because in the outer par t  of the boundary layer, any decrease in E should be taken 

care of by the boundary condition E, - 0 which, in turn, is caused by the intermittent 

properties of the flow rather  than by a change in  the basic relations for the turbulent cor

relations. In any event, since this modification to H(R) appeared to improve the veloc

ity profile shapes and had little effect on skin friction and form factor, the modification 

has been used in most of the remaining solutions presented herein. 

In regard to the modification of the diffusion te rm (3 t imes eq. (13)), a plot of the 

ratio of the turbulent shear stress to the turbulent velocity correlation, 7 ~ / 2 p 6  is shown 

in figure 4. Results computed from the theory illustrating the effects of the H(R) and 

diffusion-term modifications are compared with experimental data in  this figure. The 

significance of this ratio and its tendency to be constant for widely different types of fully 

turbulent shear flows is discussed, for example, in references 9, 34, 48, and 49. The 

results obtained with t e rms  in the turbulent kinetic energy equation identical to those of 

Glushko (ref. 17) were therefore considered to be unsatisfactory because of the large 

increase in the shear ratio in the outer part  of the boundary layer
2 

as shown in figure 4. 

The H(R) modification increased T'T in the outer part  of the boundary layer so that the 

- - 

21t was originally thought that the H(R) modification would increase the produc

-ul'u2 ax2tion term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-3)in equation (2) and therefore cause an increase in 6 in the 

outer par t  of the boundary layer. This increase in 6 should cause a reduction in 
7T/2pE. Since the modification to H(R) was also applied i n  the same way to H(KR),the 
dissipation te rm was also increased. The net effect was only a slight increase in  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE for 

x2-> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.8.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 
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x2
resulting values of 7T/2pe (fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) were much too large for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-

6 
> 0.8. Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ F / E I ~  

and E both approach zero near the outer edge of the boundary layer, the production and 

dissipation terms (the second and fourth te rms  on the right-hand side i n  eq. (28)) both 

become small there, and i t  is therefore apparent that another possible way to cor rec t  the 

7 ~ / 2 p E  ratio is to modify the diffusion te rm (the third term on the right-hand side of 

eq. (28)).3 The simple expedient of increasing this term arbitrari ly by a factor of three 

produced the desired result  for the ratio TT/2P5 as shown in figure 4. 
* 

In figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 the computed values of \(E a r e  shown plotted against x2 /6F,o.995 for 

several values of R and with the same modification to the diffusion term as noted 
X 1  

previously. Results from two experimental investigations at %
1 

5 X lo6 are shown 

for  comparison. (The discrepancies between the data of refs. 32 and 50 a r e  probably 

within the accuracy of the data.) When the te rms  in the turbulent kinetic energy equation 

a r e  the same as those of reference 17, the changes in  @ profiles with Reynolds number
* 

duplicate those of reference 17 with some dependence on the peak turbulent intensity Eo 

at the initial station zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(to= 4 X lo4). That is, when Eo* is decreased, the peak values 

of fi at subsequent stations in the transition region a r e  also dec.reased (shown in 

fig. 5(b) with Glushko diffusion increased three times) but the profiles for RX1 > 5 X lo5 
a r e  of the same shape and magnitude regardless of the value of Eo*. This computed 

behavior of the 0 profiles is qualitatively in agreement with experimental observations 

in the transition region. (See ref. 47,for example.) Multiplying the turbulent diffusion 

term by three decreased zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi in most of the boundary layer except near the outer edge 

where @ was a t  most doubled. These latter effects would be expected because of the 

gradient-type model (eq. (13)) used to formulate the diffusion term.  

Since the H(R) modification together with the arbi t rary increase of three t imes 

the diffusion te rm improved the F and E profiles as well as the 7 ~ / 2 p G  distribu

tion, the remaining discussion for the flat-plate case, as well as the adverse-pressure

gradient case, is limited to those results with both modifications included. It is empha

sized that these simple modifications appeared to improve the agreement between the 

calculations and experimental data of both the fluctuating and mean characterist ics of the 

fully turbulent boundary layer. 

Boundary-layer-thickness.. parameters.- The momentum thickness and the boundary-- _ _  ~ 

layer-thickness Reynolds numbers obtained from the solutions are plotted against R,1 
in figure 6. The momentum thickness (fig. 6(a)) follows the laminar trend of Fl 

30ther possibilities are to r e s t r i c t  the H(R) modification to the turbulent shear  
term only or  to replace C in the dissipation term by a suitable function of x2/6, The 
diffusion term is also a candidate for modification because it is the only other term in 
equation (28) subject to semiempirical  modeling. 
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until somewhat downstream of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% values noted for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH" and Cf results. 
1,t

Thereafter , 8 increases and appears to approach asymptotically the nominal variation 

4/5 (ref. 39, p. 537) for turbulent boundary layers. The agreement with the 
Of tRX1)  

data of Wieghardt and Tillmann (ref. 46) appears to be reasonable. 

The variation in Rg (fig. 6(b)), where 6 was taken as the value of x2 at which 

F = 0.995, shows the'same trends as the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 variation except that d6/dx1 appears to 

increase more rapidly than dO/dxl and reaches a well-defined peak value in the neigh

borhood of R
x1 

= 3 X lo5.  This same type of variation in boundary-layer thickness within 

a transition region has been observed in experimental investigations such as that of ref

erence 47. These data show that the slope dd/dxl is larger in the transition region 

than in the turbulent region to which it would eventually asymptote, that is, the slope 

d loge 6Id loge x1 must approach the nominal value of 4/5 downstream of transition. 

This value of 4/5 is characteristic of fully turbulent boundary layers and appears to be an 

asymptotic limit for the present calculation. 

Balance of turbulent kinetic energy.- The convection, production, diffusion and dis. -_. 

sipation of turbulent kinetic energy corresponding to the f i r s t  three terms,  the fourth 

term, the fifth term,  and the sixth term,  respectively, in equation (28) a r e  plotted against 

x2/6F=0.995 in figure 7. The scales used for the ordinate axes in this figure correspond 

to the dimensionless parameters used by Klebanoff (ref. 32). Computed values from the 

theory are shown in figures 7(a) and 7(b). The convection and diffusion t e rms  a r e  negligible 

in the region 0.1 < x2I6 < 0.6. In the outer part  of the boundary layer x2 6 > 0.85), these( I
two t e rms  are dominant over the other terms.  In the inner part  of the boundary layer for  

x2/6 < 0.01 (fig. 7(b)), the diffusion is of the same order  as the production and dissipation  

t e rms  and, as would be expected, the diffusion changes sign (proceeding outward from the  

wall) from a gain of energy very close to the wall to a loss of energy for  

0.001 < x 
2 1

6 < 0.025, back to a gain for  0.025 < x
2 1

6 < 0.1. The production and dissipa 

tion a r e  essentially equal and opposite i n  sign for the region 0.1 < x
2 1

6 < 0.6, and are  

still the largest t e rms  in the near-wall region. Comparison of these results with those of  

Klebanoff (ref. 32) replotted in figures 7(c) and 7(d) indicates, in general, qualitative agree 

ment except for the magnitude and trends of the diffusion for x2/6 < 0.5. The computed  

diffusion appears to be too small  for x2I6 < 0.5 and also does not duplicate all trends of  

the experimental results. It should be noted, however, that there may be some e r r o r  in  

Klebanoff's diffusion (which was not measured directly) in this region, since the integral  

of the diffusion from his data would not be zero, as i t  should be. Comparison of the com 

puted diffusion (fig. 7(a)) with the measurements of Townsend, as quoted by Hinze (ref. 1,  

p. 498) shows that the trends in the computed values are in agreement with Townsend's 

data fo r  0.1 < x < 1.0. The agreement between the computed diffusion and the data 
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of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATownsend could probably be further improved by multiplying the original diffusion 

te rm by a simple function of x2 rather than by a constant. 

Nonequilibrium Boundary Layer 

Several investigations (refs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA36, 43,and 51, for example) have been made recently 

to determine the response of a turbulent boundary layer to changes in the external pres

su re  gradient. In the investigation of Goldberg (ref. 43),detailed hot-wire measurements 

of turbulent shear s t r e s s  and longitudinal turbulence intensities, as well as measurements 

of velocity profiles and wall shear stress, were made for six different pressure distribu

tions. The test  boundary layers of reference 43 were established on a 10-inch-diameter 

cylinder which was alined parallel to the free stream. The flow was carefully checked for 

axisymmetry from lateral variations of wall static pressures,  wall shear s t r e s s  measured 

with sublayer fences, and the separation line as indicated by tufts and the sublayer fences. 

Since the maximum boundary-layer thickness was about 1.5 inches (0.04m), the 

effects of the axisymmetric geometry on the boundary-layer characteristics must be con

sidered. Goldberg found that the maximum difference between values of 6* and e from 

axisymmetric and two-dimensional formulas was about 10 percent whereas the maximum 

difference for H* was only about 2 percent. Differences in skin friction and fluctuating 

properties would probably not be any larger.  It is considered likely that differences of 

this type a r e  smaller than three-dimensional effects in a conventional two-dimensional 

test channel, particularly if the boundary layer is near o r  at separation. The computer 

program described herein is at present limited to two-dimensional flows. The additional 

complexity of accounting for the axisymmetric geometry was not considered to be worth

while in view of the preliminary nature of the models used for the various turbulent 

correlations. 

It was concluded that from among the available investigations, the data by Goldberg 

would be the most useful as test  cases  and his pressure distribution number 3 (ref. 43) 

was selected as the most severe test  case since, as mentioned previously, the boundary 

layer was driven almost to separation by a severe adverse pressure gradient over the 

f i r s t  16 inches (0.40m) of the run and then allowed to relax toward a flat-plate boundary 

layer by imposing a constant pressure run for the next 24 inches (0.61 m). 

The distribution of external velocity and its derivative with respect to x1 as used 

to obtain the present results are shown in figure 8. There was some uncertainty in 

reading the small  graphs published in reference 43. Also, this case appears to be unusu

ally sensitive to initial conditions as shown by Bradshaw and Ferriss (ref. 44). Conse

quently, all input quantities as used in the present calculations are listed in tables 11 

and III. Second-order interpolation was used between these tabulated values to supply 

sufficient detail for the calculation. Table I1 l i s t s  the values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF and E used at the 
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input station corresponding to x1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4 inches (0.10 m) (presumably the distance from the 

nose of the 10-inch-diameter (0.25 m) test  cylinder). Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIII includes Ue, dUe/dxl, 

dUe/dt, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 as functions of XI. Two different tabulations, designated as velocity 

distributions a and b, are given in table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIII. These alternate velocity distributions are 

plotted in figure 8(a) and the differences between them are believed to be within the reading 

accuracy of the original figures in reference 43 and probably within the experimental 

e r r o r s  of the original data. The resulting derivatives of the two velocity curves are con

siderably different as shown in figure 8(b) where dUe/dxl used in the calculations is 

plotted against XI. These differences can become important when the boundary layer 

approaches separation. 

The initial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto (8 X 105) for  the input station (xi  = 4 inches (0.10 m)) was computed 

by assuming flat-plate flow a t  Ue = 85 ft/sec (25.9 m/s) over the upstream test  cylinder 

length taken as 1.5 feet (0.46 m). The solutions should not be sensitive to the values of 

to if all other input conditions a r e  held fixed. This insensitivity to to was verified by 

obtaining a repeat solution with to= 3 X 106, and all results were essentially identical to 

those obtained with to = 8 X lo5. The initial velocity profile was taken directly from the 

data plot of reference 43 at xi = 4 inches (0.10 m) and the initial E profile was taken 

from the measured longitudinal intensity a t  the same station as 

This expression is based on the data of reference 32 where all these components of the 

fluctuating velocity were measured. These data a r e  plotted in figure 5(a) which shows 

that the approximate expression (32) is accurate for 0.1 < x2/6 < 0.8. A constant value 

of Aq, corresponding to K = 1, was used for most of the solutions reported'herein. 

Repeat solutions with variable Aq, corresponding to K = 1.02 (see appendix B) gave 

essentially identical results and reduced the number of Aq steps to about 1/4 of the 

number required for K = 1.00. 

Relation between skin friction and profiles.- The calculated variation in skin 

friction is compared with the experimental data in figure 9. The shaded band represents 

the spread in the experimental skin-friction data obtained by four methods (ref. 43): 

(1) sublayer fence, (2) Preston tube, and from measured velocity profiles using (3) Clauser's 

method (ref. 42) and (4) the Ludwieg-Tillmann relation (ref. 52). Theoretical results are 

presented for both velocity distributions of figure 8, three values of C (dissipation con

stant), and three Z/6 functions. The @0.33 function is the same as that used for the 

flat-plate calculations given in table I and the other two functions as used herein are also 
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given in table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI. Linear interpolation between the tabulated values was used in the solu

tions. Prandtl's mixing length relation is thereby recovered in  the law-of -the-wall region 

(for example, x2/6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 0.2) where production and turbulent dissipation are approximately 

equal. That is, by equating production and dissipation 

and by eliminating Z between equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7),(sa), and (12) with R >> 1 (H(R) and 

H(KR)= l),there is obtained 

Then with Z = y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa =  0.2, K = 0.4, C = 3.93 

which corresponds to the Prandtl mixing-length relation for turbulent boundary layers. 

In the following discussion, the effect of velocity distribution and C are considered first. 

For velocity distribution a, C = 3.93, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ/6 = $0.33, the agreement with data is 

good (fig. 9) except in the region of the minimum Cf where the present method over-

predicts Cf by as much as 100 percent. The agreement is somewhat better when the 

alternate velocity distribution b was used. These different values for Cf in this region 

indicate the sensitivity of the results to the imposed velocity distribution. 

In order to determine the relative importance of the dissipation term (eq. (12)) for 

this particular type of flow, additional solutions with C = 5 and C = 6 for pressure 

distribution b and $o 33 were obtained. An increase in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC increases the dissipation 

and reduces the skin friction by an almost constant amount over the entire test  region and 

gives improved agreement with data near the minimum Cf region, at the expense of 

poorer agreement elsewhere. The turbulent kinetic energy equation can be paraphrased 

as 

DZ-= Production + Diffusion - Dissipation (35)
Dt 

where  - is the derivative following the particle. It is evident that an increase in
Dt 

dissipation should decrease e, and this decrease, in turn, should decrease the turbulent 
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shear  which from equation (10) is approximately 

f o r  R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> Ro. Since the skin friction depends directly on the magnitude of TT in the wall 

region, the decrease in Cf due to the increase in  C appears to be reasonable, although 

it is somewhat surprising to find the almost linear relation between the magnitudes of the 

dissipation and Cf. 

In order to arr ive a t  an explanation for the improved agreement between the com

puted and experimental skin friction in the minimum Cf region, as caused by larger  

values of C, profiles of @ are shown in figure 10. The theoretical values in this fig

u r e  were computed with the diffusion term taken as three times the Glushko diffusion 

(3 x eq. (13)), velocity distributions a and b, different values of C, and different Z/6 

functions. The f i r s t  thing to note is that all these various modifications had only minor 

effects on the magnitude and distribution of at a given x1 station. An increase in 

C does reduce @(= E), as it should according to equation (35), but the best agreement 

with the data is generally obtained with C = 3.93. (The effect of the change in the Z/6 

function is considered in a subsequent section.) The input profile of fi (fig. lO(a)) is 

similar to the flat-plate profiles of figure 5. Comparison of the @ profiles a t  

increasing x1 stations as shown in figures lO(a) and 10(b) shows that as the minimum 

Cf region (near xi  = 20 inches) is approached, the peak in both the computed and mea

sured @ profiles moves away from the wall and increases in magnitude. Consequently, 

there is a corresponding increase in the average turbulent energy (G)av ac ross  the entire 

boundary layer as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx1 increases. That this increase in (G)av can be associated with a 

decrease in a dissipation length scale id- can be seen by noting that for large R, the 

dissipation (eq. (12)) can be written approximately as 

a?' sui' 
V--

axj axj 
(3 7) 

where .?d is defined here  as a microscale of the turbulence (ref. 1, p. 37). Then if the 

quantity c/id2 is considered as an adjustable function but with C fixed as a universal 

constant, the larger values of C as used for the solutions of figure 9 should be considered 

as equivalent to corresponding decreases in the square of the dissipation scale Zd2. The 

quantity 2 i n  equation (37) is considered to be the same mean scale (analogous to an 

integral scale) as defined by equation (8) and as used by Glushko (ref. 17). 
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The relation between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI and Zd for isotropic turbulence (ref. 1, p. 185) may be 

written as 

where C' is a constant. This relation is seen to be in agreement with the results of 

figure 9 as related to the change in  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ profiles with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 1  (fig. 10) since as (e), 

increased, 2d should decrease which, according to the preceding reasoning, accounts for 

an increase in dissipation and the reduction in Cf, as computed. The reduction in  Cf 

follows from the approximate equivalence of production and dissipation (eq. (33)) but with 

the dissipation given by relation (37). Relation (34a) then becomes 

and substitution of the expression (38) into this relation gives 

which indicates that a functional relation for Ld of the type given by equation (38) would 

improve the agreement between theory and data over the entire test  length for this case 

because of the way (@)av varies with XI. This explanation depends on the assumption 

that the mean scale L is not affected by (E)av; that is, 2/6 is assumed to be a fixed 

function of x2/6. 

Boundary-layer thickness parameters and mean velocity profiles. - The computed 

values of 8 and 6 a r e  compared in figure 11 with the experimental data. In figure 11 

and all remaining figures, the theoretical values of 6 are taken at the point where 

F = 0.995, and the experimental values of 6 were taken directly from figure 20 of ref

erence 43. The differences between the theoretical and experimental values of 8 are 

small. However, these small  differences can lead to large effects on Cf since the 

momentum integral equation 

-+--(Hde e d u e  + 2) =-Cf 
(39)U e k 1  2 
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shows that when Cf approaches zero in a large adverse pressure gradient (negative 

dUe/dxl), the skin friction equals the difference between two large terms, and any small  

changes in either of these t e r m s  can lead to large changes in Cf.4 The difference 

between the theoretical and experimental values of 6 are also small, as shown in fig

u r e  l l(b).  The use of velocity distribution a, C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 3.93, and Z/6 = $0.25 generally 

gives the best agreement with the data except for the 0 distributions when x1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 20 inches 

(0.51 m) where the 33 solution (with C = 3.93 and velocity distribution a) gives the 

best agreement. However, it is obvious that a comparison of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 and 6 alone are not 

sufficient to judge the accuracy of a method when Cf approaches 0. 

The shape parameter H* is a more sensitive indicator of the accuracy of a method 

as shown by figure 12 where the effects of the two velocity distributions, the values of C, 

and the 2/6 functions are shown. The velocity distribution b and the largest value of 

C give the best agreement with the experimental data for Z/6 = $0 33. However, the use 

of the other two Z/6 functions gives the best overall agreement with the data, and the 

results bracket the data in the vicinity of the peak H*. 

The reason for the better agreement of H* with data for Z/6 = $0.20 and $o.25 

is apparent from figure 13 where the computed velocity profiles a t  three x i  stations a r e  

compared with the data. (Here again the subscripts denote the maximum values of the 2/6 

functions; these functions are given in table I.) The agreement between theoretical and 

experimental velocity profiles for all $ functions is fair at x1 = 12 inches (0.30 m) 

(fig. 13(a)) where dUe/d.Xl, according to figure 8(b), is near its peak value. However, a t  

x1 = 20 inches (0.51 m) (fig. 13(b)) where dUe/ dxl is approaching zero, the agreement 

is poor for Z/6 = $0.33 for both velocity distributions a and b and for all values of 

C.  When $0.20 and $0.25 a r e  used, the theoretical results bracket the data for this 

station of x1 = 20 inches (0.51 m), which is apparently a crit ical  region where the cal

culation is very sensitive to the Z/6 function. Near the end of the constant pressure run 

at x1 = 36 inches (0.91 m) (fig. 13(c)), the good agreement between the theory (with 

Z/6 = $o 33) and data may be fortuitous. 

Discussion of turbulence_ _ _  scale functions.- It has already been noted from figure 10 

that @? is relatively insensitive to changes in  free-stream velocity distribution, C, and 

the Z/6 function. Figure 13 shows that the mean velocity profiles a t  a given x1 station 

are insensitive to the two velocity distributions and the values of C considered, but can 

be affected considerably by a change in Z/6. Since the turbulent shear,  production, and 

dissipation a r e  the dominant t e rms  in the equations, it is apparent from the preceding dis

cussion and from the form of these t e rms  (see eqs. (36) and (37)) that the only way to 

4Note that in the present method Cf was not computed from equation (39), but from 
equation (30) which probably requires more stringent accuracy criteria in the calculation 
than equation (39) would. 
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change the mean velocity profiles, and hence the H* values to any appreciable extent is 

to modify the turbulence scale function 2/6. In the previous section, a change in C was 

related to a change in a dissipation microscale id, but from equation (34), a change in C 

is equivalent to a change in the mixing length constant of Prandtl. Since the mixing length 

relation of Prandtl is known to apply even in an adverse pressure gradient in the law-of

the-wall region, the 2/6 function was not changed for x2/6 < 0.2. Goldberg's experi

mental values of mixing length (ref. 43) indicate that 2/6 should be decreased in the 

region of x2/6 > 0.2. Since this decrease would reduce the turbulent shear and thereby 

result in a more linear velocity profile; the 2/6 functions were changed in the manner 

shown in figure 14(a). (See also table I.) 

The corresponding values of the eddy viscosity function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe / p  a t  x1 = 20 inches 

(0.51 m) are shown in figure 14(b). As would be expected, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE / ( J .  function does not 

depend on the two free-stream velocity distributions o r  the values of C used, since 

was independent of these parameters. However, the distribution and magnitude of E / ( J .  

are directly dependent on 2/6 and the theoretical curve for 2/6 = $1020 is closer to the 

experimental values of reference 43. This direct dependence of E / I J .  on 2/6 is, of 

course, the reason for the marked effect of the Z/6 function on both Cf (fig. 9) and 

Ul/Ue (fig. 13). 

The success of these modifications to 2/6 indicates that further minor adjustments 

to these functions should give further improvement in agreement with experimental data. 

In particular, the trends in fi (fig. 10) for this problem indicate the magnitude of the 

change in 2/6 should probably depend on the level of (e)av. Spalding (ref. 53) has 

applied to f ree  shear flows a differential equation for the mean scale of turbulence. This 

equation was based on Rotta's hypothesis (ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, part  11) and relates the scale of turbu

lence to (G)av and TT. It is possible that the use of a similar relation may improve the 

predictions of the present method. 

Comparisons with empirical correlations of mean velocity. - Comparisons between 

calculated and experimental values of mean velocity a r e  also shown in figure 15 in law

of-the-wall coordinates. At x1 = 12 inches (0.30 m) (fig. 15(a)) both the data and theory 

deviate from the logarithmic law of the wal l  for large values of u* X ~ / V  as is character

istic of boundary layers with adverse pressure gradients. In the minimum Cf region 

(xi = 20 inches (0.51 m),  fig. 15(b)), the data and the theory for $0 25 still follow the 

u*x2 
law of the wall up to 

V 
70. At the downstream station of x1 = 36 inches (0.91 m) 

(fig. 15(c)), after a constant pressure run of about 12 inches (0.30 m), the logarithmic 

u*x2 
variation is followed by both data and theory (with $0 25) for 25 < -V < 400. It can 
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be concluded, therefore, that the mean velocity profiles have completely adjusted to the 

zero -pressure -gradient condition. 

Fluctuating flow quantities.- The total turbulent intensity profiles i n  the form of lE 
are shown in figure 10 and have been discussed previously. Experimental values were 

obtained from the measured longitudinal intensities by the use of expression (32). The 

agreement in both trends and magnitude is generally good over the portion of the boundary 

layer where the approximate relation (32) is applicable. 

The variation in the ratio of turbulent shear to twice the turbulent kinetic energy 

ac ross  the boundary layer at three stations is shown in figure 16. As mentioned previ

ously, this ratio 7~/2pG tends to have an approximately universally constant value in 

the intermediate region of the boundary layer. By the use of equation (32), the ratio 

TT/2pG was obtained from the data of Goldberg (ref. 43) and Bradshaw and Ferriss for 

a relaxing boundary layer (ref. 36). These values are plotted for comparison with the 

theoretical results in figure 16. The stations of x1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 47, 59, and 95 inches (1.09, 1.5, 

and 2.41 m) should be comparable to Goldberg's stations x1 = 14, 20, and 36 inches 

(0.35, 0.51, and 0.91 m) (figs. 16(a), 16(b), and 16(c)), respectively, in t e rms  of the rela

tive distributions of external velocity and velocity gradient in the two investigations. The 

theoretical results a r e  generally in reasonable agreement with the data. (Note that the 

best agreement with Goldberg's data was generally obtained with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 /6 )  = $0.20 or $0.25.) 

It is seen that the ratio TT/2pG is roughly the same a t  all stations and for the two se t s  

of data shown except at the critical station of x1 = 20 inches (0..51 m) (fig. 16(b)). Note 

that at x1 = 36 inches (0.91 m) (fig. 16(c)), where the mean velocity profile and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH" 

have relaxed to flat-plate values (figs. 15(c) and 12), the experimental and theoretical val

ues of TT/2pe are sti l l  somewhat below that typical of flat-plate flow. 

The distributions ac ross  the boundary layer of the four t e rms  in the turbulent kinetic 

energy equation a t  four x1 stations a r e  shown in figure 17 for velocity distribution a, 

C = 3.93, and Z/6 = $0.25. The scales used in the figure correspond to the dimensionless 

parameters used in equation (28). At x i  = 8 and 12 inches (0.20 and 0.30 m) (figs. 17(a) 

and 17(b)), the distributions are similar to those of the equilibrium boundary layer of 

Bradshaw for a = -0.15 (fig. 14(c) of ref. 34). At x i  = 17.4 inches (0.44 m) (fig. 17(c)) 

the trends a r e  more nearly like those of Bradshaw for a = -0.255 (fig. 14(d) of ref. 34) in 

that the relative magnitude of the diffusion is increased in the central part of the boundary 

layer. The distribution of production and convection t e r m s  a t  x1 = 20 inches (0.51 m) 

and 36 inches (0.91 m) (figs. 17(c) and 17(d))are qualitatively similar to the corresponding 

results for the relaxing boundary layer of Bradshaw and Ferriss a t  x1 = 53 (1.35 m) and 

83 inches (2.11 m) (ref. 36). 

Comparison of the results shown in figure 17 with corresponding results for velocity 

distribution b and other values of C indicates that the trends and magnitudes of the 

various t e rms  a r e  not greatly affected by these changes in external velocity distribution 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC except near the wall. The location and magnitude of the peak values (nearest the 

wall) of the t e rms  a r e  shown in the following table: 

Velocity
listribution 

a 
$0.33 

3*93 0.021 

b 
$0.33 

3.93 .021 

.b 
$0.33 .026 

b 
$0.33 

.026 

a 
$0.33 

3.93 0.014 

b 
$0.33 

3.93 .014 

b 
$0.33 5 .017 

b 
$0.33 

6 .017 

a 
$0.20 

3.93 0.019  

a 
$0.25 

3.93 .017 

1.37 0.005 

1.4 .005 -3.86 

1.25 .016 -.833 .0106 

1.139 .0107. -.785 

0.533 0.0028 -1.08 

.483 .008 -.376 

.384 .0028 -1.44 .0055 

.315 .0028 -1.0 .0028 
-. ... 

Convectior 

-0.445  

.919  

-.597  

-.224  

0.154  

-.352  

.258  

.244  

0.137  

.246  

Comparison of these peak values shows that the dissipation is not always increased when 

C is increased. This result is presumably an indication of the nonlinear nature of the 

problem. It is also of interest to note that the location of the peaks in all t e r m s  is usually 

closer to the wall (in t e rms  of x2/6) at x1 = 20 inches (0.51 m) than at x1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 inches 

(0.20 m). Another item worth noting from the table is that when the velocity distribution 

and C are the same but zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 / 6  is different, the magnitude (except for the dissipation and 

diffusion) and location of the peaks are appreciably different, in spite of the fact that the 

1 / 6  function was not changed in the wall region. (See fig. 14(a).) This result  is, of 

course, an important confirmation of the experimental fact that the upstream history of 

the flow in this kind of a boundary layer has a large effect on local conditions. 

Other adverse-pressure-gradient cases. - Any method for predicting the development.~ 

of turbulent boundary layers cannot be considered satisfactory until the resul ts  for several  

different types of flows with a variety of initial and boundary conditions are compared with 

experimental data. Some comparisons of this type for the modified Glushko method have 

been reported by the present authors in reference 54. The method was applied to several  

ca ses  and reasonable agreement in H", Cf, and R e  was generally obtained. 
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CONCLUDING REMARKS 

The equations for the incompressible turbulent boundary layer with constant fluid 

properties have been solved by a numerical procedure in similarity type coordinates. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

parameter in  the definition of these coordinates could be adjusted to keep the turbulent 

boundary-layer thickness in the transformed coordinate system approximately constant; 

this procedure gives a nearly constant number of computing steps across  the boundary 

layer. The conservation equations for mass,  mean momentum, and turbulent kinetic 

energy a r e  solved simultaneously by a linearized, implicit, finite-difference procedure 

wherein all boundary conditions at  the surface and outside edge of the boundary layer a r e  

satisfied directly. 

Mathematical models of the turbulent production, dissipation, and diffusion t e rms  

developed by Glushko (Bull. Acad. Sci. USSR, Mech. Ser., no. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, 1965)for flat-plate turbu

lent flow have been modified and applied also to a nonequilibrium turbulent boundary layer 

subjected initially to a large adverse pressure gradient which is followed by a constant-

pressure region. Comparisons of calculated values for both mean and fluctuating flow 

properties with experimental measurements in this nonequilibrium boundary layer as well 

as the flat-plate boundary layer have indicated generally good agreement. 

For the flat-plate calculation, the laminar Blasius velocity profile and arbitrary 

small  disturbance-type profiles for the turbulent kinetic energy were used as initial con

ditions a t  a Reynolds number of lo4. As the calculation proceeded, little change in the 

mean profiles of velocity and turbulent kinetic energy were noted until a t  some downstream 

station, depending on the level of the input disturbance and a modification to the turbulence 

diffusion te rm,  rather abrupt changes began. The subsequent mean velocity profiles, tur

bulent kinetic energy profiles, and skin friction were qualitatively similar to those 

observed experimentally in,the transition region between laminar and fully turbulent flow. 

The dependence on the level of the input turbulent kinetic energy of the Reynolds number 

at which these changes in  the mean profiles were f i rs t  obtained in the calculation was 

shown by Glushko. It is shown herein that modifications to the models of the turbulent 

te rms  also affected this Reynolds number. The value of this Reynolds number was an 

order  of magnitude lower than minimum experimental transition Reynolds numbers and 

cannot yet be related to the physical phenomenon of transition. Nevertheless, the indica

tions a r e  that further development of the method may ultimately yield a useful technique 

fo r  the numerical investigation of transition. 

It was found that when the turbulent diffusion term of Glushko was multiplied by an 

arbi t rary factor of three, the agreement with experimental values of mean velocity and the 

ratio of turbulent shear  to turbulent energy was improved in  the outer portion of the fully 

turbulent boundary layer for both the flat-plate and nonequilibrium flows. It was also 
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found that when the dissipation term was changed, the skin friction w a s  reduced by almost 

constant increments that depended directly on reductions in the square of the dissipation 

scale. Analysis of these resul ts  indicated that the microscale (dissipation scale) may be 

related to the integral scale of turbulence in about the same way as that for isotropic tur

bulence. The best overall agreement with measured values of skin friction, form factor, 

mean velocity profiles, and fluctuating properties was obtained by reducing the value of 

the turbulence scale from a peak of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.33 to  0.20 or  0.25 of the boundary-layer thickness 

in the midregion of the boundary layer. The linear relation of turbulence scale with dis

tance from the wall, in accordance with Prandtl's mixing length theory and as used by 

Glushko, was retained in the law-of-the-wall region. It is concluded that simple modi

fications to the turbulence scale function and to the turbulent correlation t e rms  as modeled 

by Glushko result  in accurate calculations of mean and fluctuating characteristics of tur

bulent boundary layers with arbitrary boundary conditions. 

The existence of similar solutions to the equations with the turbulence correlation 

t e rms  modeled according to Glushko was investigated briefly. It is shown that exact 

similar solutions a r e  not possible in the coordinates used in the numerical calculation. 

However, approximate similar solutions exist for other coordinate systems. In one of 

these systems, the normal coordinate is simply the physical distance from the surface 

divided by the local boundary-layer thickness which is then required to increase linearly 

with distance along the surface in order to obtain similar solutions. 

Langley Research Center, 

National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., August 1, 1968, 

124-07-01-32-23. 
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APPENDIX A 

REQUIREMENTS FOR SIMILAR SOLUTIONS 

Analyses of results from many experimental investigations have shown that the 

mean velocity profiles in -the incompressible turbulent boundary layer, with dp
e/ dxl = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,x2u* 

u*' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv 2 in the inner and outer par ts  of theare similar in t e r m s  of -u1 - and 'l 
u* , 6 

boundary layer, respectively (ref. 41). For dpe/dxl # 0, Clauser (ref. 42) has  shown that 

velocity profiles are self-preserving or  approximately s imilar  if the parameter (q2;
is a constant. As the Reynolds number approaches infinity, all velocity and length scales 

except 6 and Ue should become independent of XI; therefore, even with an imposed 

pressure gradient, the entire mean velocity profile would presumably depend only on x2/6. 

For a limited range of conditions or within certain regions of the boundary layer, similar 

solutions to the turbulent boundary-layer equations are therefore possible as shown, for 

example, in references 9, 14, 20, 55, and 56. The purpose of this  appendix is to discuss 

briefly the conditions required for the existence of s imilar  solutions to the equations of 

mean momentum, turbulent kinetic energy, and mass  continuity in the form of equa

tions (16) to (18). It is hoped that the discussion will ass is t  in the evaluation of the models 

proposed by Glushko for the shear, dissipation, and diffusion of turbulence. 

For this purpose, it is convenient to introduce general coordinates defined as 

X(X1) = 

where P and Q are as yet unspecified functions of xl. It is necessary at the outset 

to exclude the viscous sublayer region in order to obtain similarity. Hence, the restric

tion R >> 1 is imposed and the coefficient functions M and D (eq. (19)) become 

The transformation of equations (16), (17), and (18) to the variables X and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY then gives 

for momentum: 
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for  energy: 

and for continuity: 

1 aF +-+--( F d %)=oav 
Q ax ay Q d x  l o g e ~ ~  

where 

From equations (A3), (A4), and (A5), it can be seen that the profile functions F, E, and 

V may be functions only of Y if  the following conditions a r e  satisfied: 

L d ( l o ge P Q  P Q d x l  logePQQ d X  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%)=LL( !k)=c2 

where the C values a r e  constants. The transformed variable Y then becomes simply 

x2
Y = C 3 -

6 (A1 1) 

and equation (A10) is the function @ as assumed by Glushko. The requirements on Ue 

and 6 a r e  obtained by combining equations (A7), (A8), and (A9) to give 
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Hence, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 must vary linearly with x1 in agreement with the results of reference 56 

(pp. 81-83). (See also ref. 7, pp. 105-109.) By means of Bernoulli's equation, condi

tion (A12) may be written as 

which is essentially the same as Clauser's condition for equilibrium boundary layers 

(ref. 42, pp. 49-50) 

provided that 6*/6Cf is approximately constant as would be the case for equilibrium 

layers. Consequently, the requirement of equation (A12) would be approximately satis

fied by equilibrium boundary layers (including the zero-pressure-gradient case) but the 

requirement of a linear variation of 6 with x1 would not be satisfied in general. 

Another class of similar solutions without this restriction on 6 can be derived by 

dividing equations (A3) to (A5) by P. (Note that in the previous class of solutions where 

Y varies as x2/6, P is arbitrary.) The transformed normal velocity is then defined by 

-
F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaY u2

V(Y) = --+ -
P ~ Q  PUe 

and the remaining requirements for  similar solution are 

d(loge2)= C2' 
P2Q 

Q = -C3' 
6 

where all C quantities a r e  constants. The function 2/6 in equations (A3) and (A4) is 

again required to be a function only of Y 

1 = @(Y) (A1716 

However, the dissipation scale ld  in the last t e rm of equation (A4) must now satisfy the 

relation 
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ld - c4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 P2 

where equations (A16) and (A17) have been used. 

To find the P function, equations (A14) to (A16) are combined to  give 

where C5 = (C2' - C1')C3'. Integration of this expression yields 

and the ratio of the dissipation scale to the transport scale (eq. (A18)) becomes 

where x1 = 0 represents the effective origin of the turbulent boundary layer. The con

ditions given by equations (A16), (A19), and (A20) are more general than those of equa

tions (A12) and (A13) since no restriction on 6 is required. 

The P and ld  functions given by equations (A19) and (A20) could presumably be 

determined by numerical iteration techniques for any boundary layer; however, equa

tions (A14), (A16), and (A19) give the additional requirement that 

C'6 dxl 
d(1oge ue) = 

d u eFor -= 0 and over a limited range of xl, the boundary-layer thickness var ies  
as hl 

v \ v l   

Substitution of this expression into equation (A20)yields 

Thus, if n = 0.8, which is a realistic value, the dissipation length scale would increase 

as the 0.2 power of the Reynolds number in order  to obtain similar solutions for  a 
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flat-plate boundary layer with 6 increasing according to relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A21). It is of interest 

to compare the ratio zd/z (ratio of dissipation microscale to the transport, or integral, 

scale) f rom equation (A22) t o  the corresponding ratio for isotropic turbulence as given by 

Hinze (ref. 1, p. 185, and eq. (57)). This result  for isotropic turbulence may be written 

as 

or by the use of relation (A21) 

Equation (A24) indicates that if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2/6 and E a r e  s imilar  profiles, and if the flat-plate 

dissipation varied in the same way as isotropic dissipation, zd/z would decrease with 

increasing Reynolds number. The isotropic expression (A23) appears to be in qualitative 

agreement with requirements for 2d in nonequilibrium boundary layers (see discussion 

concerning eq. (38)); however, by comparison with equation (A22), it can be concluded that 

the isotropic expression would not be applicable to a flat-plate equilibrium boundary 

layer. 

Other forms  for  P and Q that would yield s imilar  solutions can be derived by
Qmultiplying equations (A3) to (A5) by Pm i  where m and i a r e  constants. Since 

these other forms appear to give results of limited interest or  applicability, they a r e  not 

discussed. 
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NUMERICAL COMPUTATION PROCEDURE 

The system of equations (27) to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(29), along with auxiliary functions for M, D, 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;(XI) as defined in the section "Transformation to Similarity Coordinates" is 

solved by a linear implicit finite-difference procedure. This procedure combines ce r  
tain aspects of the methods given in  references 17 and 40. 

Grid Notation 

The boundary-layer region is divided into finite gr ids  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(  width and Aq height 

as shown in the sketch, where the grid or nodal-point notation is also illustrated. To 

increase the efficiency and accuracy of the finite-difference procedure, a variable grid 

size in the q-direction is included. The grid size in the &direction may also vary. 

N 
1,N 

7 

1 , N - 1  2 , N - 1  
N - 1  

1 , N - 2  2 , N - 2  
N - 2  

I m n  I J. 

4  

l + L , 3 + L
2 2 

L 3  1,3 
3 - l + i , 3  ~ 

2 

1
. l +  1 , 2 + i  -2+-,2+-

1 

2 2 2 2 

2 
192 

:1 + 1 2  
2 

I 

f I+: 1 + 1
2 2 

131 1 291 Wall  
1 5 1+- ,1  ~.2+i,1 

2 3 . . .  52 
m +  

5, 
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The variation in the Aq grid size is controlled by the parameter K where, as 

illustrated, 

When K is a constant, the successive Aqn values form a geometric progression; 

hence, 

The total number of steps ac ross  the boundary layer is N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1; thus, the size of the last 

step is 

The maximum thickness of the boundary layer qe is given by 

Thus if qe, Aql, and the number of steps N - 1 are specified, K and AqN-l can 

be determined from equations (B3) and (B4). Generally, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK will be a constant slightly 

greater than 1.0 in order  to give smaller steps near the surface. The smaller steps near 

the surface increase the accuracy and efficiency of the computation for a typical turbulent 

boundary layer because the changes in mean velocity near the surface are usually much 

greater than those in the outer part of the boundary layer. Other parameters such as E 

and 7 may also change rapidly near the outer edge where, with K > 1.0, the step size 

could be considerably larger than that near the surface. Check solutions, however, with 

K = 1.00 and 1.02 have given essentially identical resul ts  for  all quantities including E 

and 
T ~ .

Apparently, with K = 1.02, enough detail can be retained near the outer edge 

to  avoid any loss  of accuracy. 

Boundary and Initial Conditions 

The external velocity Ue and its derivative dUe/dxl must be specified functions 

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  The nominal boundary-layer thickness 6, as used in equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8), is taken as 

the point where 1 - F = E 
6 

which is a specified small constant (e6 = 0.01, for example, 

in the computation of ref. 17). In order to  insure an asymptotic boundary condition at the 

outer edge of the boundary layer, another boundary-layer thickness 6e, defined as the 

point where 1 - F = ee, has been used with E e  << €6. (For further discussion of edge 

boundary conditions, see section "Determination of Number of Aq Steps.") For the 
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conventional boundary layers  to be treated herein, both €e and €6 would be small  

positive numbers. The corresponding values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr] f rom equation (22) are 

The initial conditions in the form of F, E, and V profiles are specified at to(m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1) 

from n = 1 to n = N, from which values of all variables are to be computed at the next 

station to + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA[ o r  m = 2. If it is assumed that the initial profiles for E and V are 

locally similar (that is, av/ag and aE/ag are neglected), these profiles may be com

puted from equations (27) and (29) and the input Fo profile. In this procedure, equa

tion (29) is solved first for V and then equation (27) can be solved directly for E since 

M is a function of E from equation (19). 

Linear Finite -Difference Expressions 

The various types of derivatives in equations (27), (28), and (29) are replaced by 

linear difference quotients and equations (27) and (28) are evaluated at the intermediate 

grid points represented generally by the subscript m + 1 n. The values at the interme
2’ 

diate points are computed to a satisfactory approximation as appropriate numerical aver -
ages illustrated by the expressions: 

- 1 
f m + -1n,i - Z(fm,n + fm+l,n,i- l)  

2, 

where f represents any desired quantity o r  function, and where the subscript i denotes 

the current step in the iteration cycle and the subscript i - 1 denotes the value obtained 

in the previous iteration. The partial and total derivatives in equations (27) and (28) are 

then written with first-order accuracy as illustrated by the following examples: 
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All other t e r m s  and coefficients of derivatives appearing in the equations are 

linearized by evaluating them at the intermediate points m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 according to equa- 2 

tions (B6). Furthermore, the (M - l ) ($r  te rm in equation (28) (which is treated as 

a linear equation for E) is evaluated as 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 j Fm + p n + l

2’ 
i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Fm + -1 n - -1 )1 i

2’ 2’ 

2 
(B10) 

m +  -n,i  (‘7, + Aqn-1)
2’ 

An alternate expression, which is equivalent to  the same accuracy as equations (B7) 

t o  (B9), is 

In this manner the direct coupling between equations (27) and (28) is removed during any 

one iteration; however, the coupling is actually retained in the complete iteration proce

dure wherein the intermediate m + -
2 
1 

values are continually improved, as indicated by 

equations (B6), until convergence to the desired degree of accuracy is attained. 
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Computational Equations 

Mean momentum.- Substitution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the linear-difference quotients given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby equa

tions (B7) to (B9) into equation (27) and collecting t e rms  gives 

AnFm+l,n+l+ BnFm+l,n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ CnFm+l,n- l= Dn 

where 

(2 p 
- C n F m p n - l +  [At U d  

m + -
2 

At) 

m + -
2 

(1.- F2m+i7,) 

where 
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Since all quantities appearing in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, B, C, and D coefficients are known 

from the completed calculation at the previous step m, or for the intermediate values at 

m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ -1 
from the previous iteration, equations (B12) represent  a system of N - 2 equa

2 
tions with N -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 unknowns which are the values of Fm+l f rom n = 2 to n =  N - 1. 

(The boundary conditions require Fm+l,l = 0 and Fm+l,N = Fe = 1 - ee).  The matrix 

of the linear system (B12) is tri-diagonal; thus, the unknown Fm+l values are easily 

obtained by successive elimination of the unknowns (refs. 40 and 57) with the formulas 

Fm+l,n = GnFm+l,n+l + gn 

which are applied by starting the calculation at the outer.edge of the boundary layer where 

Fm+l,N 
= Fe and successively obtaining all other values of Fm+l down to the wal l  

where F = 0 (eq. (20)). The functions Gn and gn a r e  computed from the recursion 

formulas 

Gn = 
-An 

Bn + CnGn-1 

which a r e  applied by starting at the wal l  (n = 1)and working out successively to 

n = N - 1. This procedure can be started by noting that with the wal l  boundary conditions, 

Fm+l, 1 = 0, G1 = g1 = 0 .from equation (B15). (See ref. 57.) Then, from equation (B16), 

A2 
G 2 = - -

B2 1 
Determination of number of Aq steps (N).- Before the complete set  of unknown. .  

values Fm+l can be obtained, it is necessary to determine the number of steps in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq 

required to satisfy the outer asymptotic boundary condition of Fe = 1 - E ~ .  The number 

of steps at any 5 location is determined from the physical requirement that 
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where is a small  specified e r r o r  c r i te r ia  (generally a positive number for conven

tional boundary layers). The finite-difference form of inequality (B18) is written 

Fm+l,N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 'm+l,N-l 'AqN-l 'e' (B19) 

Then from equation (B15) with Fm+l,N = 'e) 9 

which upon substitution into inequality (B19) gives the requirement 

The computer program (appendix C) is written so that Fe = F,=l,N = 1 - ee; that is, the 

value of is the same as that for the initial input profile. Thus with the e r r o r  c r i 

teria and E,' specified, successive values of Gn and gn are used in inequal

ity (B20), and when the outer edge of the boundary layer is approached, the point at which 

the inequality is first satisfied determines the value of N - 1 and hence the number of 

Aq steps required. 

If the value of r], increases  with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 (with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 constant), the computer program 

as described in appendix C is set up so that the required values of Fm,n,N 
0 

a r e  obtained 

from the initial input profile of F as a function of q. Part ly  fo r  this reason and partly 

because of the computing procedure used, it is necessary to specify Fm=l,N as a num

ber  very close to unity (that is, € e  = 1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX in order to obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 as 

required by equations (B18) to (B20). 

Continuity.- The values of V required in the An and Cn functions are 

m+Z.,n 
obtained from the continuity equation (29) which, evaluated in finite-difference form at 

point m + -
2' 

1 
n - -

2 
gives 
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After a set of Fm+l,n values a r e  obtained, equation (B21) is used to compute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan updated 

set of V values where from the wall boundary conditions (eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(20)) and the defini

m+2n 
tion of V (eq. 26)), 

For  zero mass  transfer at the wall, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU
2,w 

= 0; otherwise, this normal velocity at the wall 

may be a specified function of XI. Successive application of equation (B21) from n = 1 

to n = N then gives the new values of V 
1 

which may be utilized during the i tera
m + - n

2’ 

tion cycle for obtaining convergence of the Fm+lJn values f rom equation (B12). In the 

present method, this convergence c r i te r ia  is based on the shear s t r e s s  from the 

expression 

where eW w a s  generally specified as 0.01 unless otherwise stated. Since Fw = 0, this 

inequality may be written in finite-difference form as 

The convergence c r i te r ia  e W  is not an input quantity but appears in the program listing 

(appendix C) in the first statement in the section “Test for Iteration on FP.“ 

Since input values of G2 at to(m = 1) a r e  not generally available (for the com

putation of V directly f rom eq. (26)); it is necessary to compute the V 
11,n l + - n  i=l
2’ 

values from equation (29) by dropping the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 derivatives. The resulting equation is 

written as 
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For all the calculations presented, the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi was retained as a constant. It 

was  found that appreciable savings in computer time could be obtained by the use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a 

value of fi appropriate to the type of flow being computed. For example, for the flat-

plate problem, if  the value of ii at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( = 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX lo4 w a s  changed from 0.5 to 0.8, the num

ber of Aq steps required at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 = lo6 was reduced from 290 to 125. Actually, the 

problem had to be reinitialized at ( = 5 x 104 to  accommodate the new value of 5, but 

the computer time from that point on w a s  reduced by approximately one-half. 

Energy.- The finite-difference form of equation (28) is derived in the same way as 

equation (B12) and, with the use of equation (Bll) ,  is written in the same form as equa

tion (B12) 

The An, Gn, En, and fin coefficients a r e  obtained as 

ED
m+-,

1 
n + -

1 + K + Dm + -1 n - -1 

B n =  p2:l* - F + 2 2 2' 2 

1 m+-,n 2 Aqn Aqn-1
m + -

2 
2 

- EnEm,n- l - 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[g] At) 1 
E 

m+-,n 
F 

m + , nle 1 1 

m + Z  m + H  2 2 
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It should be noted that in these computations, 

because of the definition of (eq. (22)). The procedure for solving the system of equa

tion (B26)is identical to that outlined, except that the number of Aq steps required is 

not recomputed separately to satisfy directly the edge physical requirement that 

approach 0. Instead, the value of N already determined from equation (B20)is(z)e
used also for the solution of the energy equation, and at this value of N, the edge boundary 

condition of EN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= E, is imposed where E, is generally specified as a small  finite 

number. It has been found that in all cases  computed, this procedure gives (e),
approaching 0 to the desired degree of accuracy. 
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DIGITAL COMPUTER PROGRAM DESCRIPTION 

By Carolyn C. Thomas 

Langley Research Center 

This program computes the nonsimilar development of an incompressible turbulent 

or laminar boundary layer by the finite-difference procedure described in  appendix B. 

Minimum machine requirements on the Control Data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6400/6600 computer system 

are 67000 octal locations of core  storage. The program is written in FORTRAN 2.0 

which is compatible with FORTRAN IV in most instances. The time required to calcu

late a grid point is approximately 0.0014 second per iteration. The total computing t ime 

required for a typical Goldberg case was 122.5 seconds where the pertinent inputs were: 

K =  1.02, Aql zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.005, ii = 0.5, eW = 0.01, €e' = 1 X and A6 = 1X lo3. The 

average number of Aq steps across  the boundary layer was about 95 and there  were a 

total of 910 A6 steps for  this particular case. With the iteration c r i te r ia  of += 0.01, 

the solution was iterated only 34 t imes  over 910 6-stations (or columns) computed. Sev

era l  of these iterations were required in the first 3 or 4 A6 steps where the initial 

input profiles for F and E are being adjusted to achieve consistency with the equa

tions of motion. 

Input 

One card of case identification using all 80 columns. The remaining input is loaded 

by using the FORTRAN version 2.0 NAMELIST. The input symbols are as follows: 

Symbol (see section llSYMBOLS1l) Machine name 

NUMFP 

E O *  EO 

P RHO 

V NU 

Comments 

Input table.of up to  600 values 

Number of values in FPTAB table 

(Integer value) 

ETA table that corresponds to FPTAB 
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a! ALPHA 

K KN 

RO RO 

C C 

K  K 

XI0 
( 0  

ii NBAR 

NO 
NMAX 

DELXI 

DELETA 

ETAMOE 

TLODEL 

EPSLON 

NUMETA 

MPRINT 

FINLPRT 

Ratio of AT at n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1 t o  AT at n. 

Initial number of steps in boundary 

layer (Integer value) 

Initial value of Aq 

Table of up to 8 values 

Total number of values expected at 

end of case (can be 1 to 600) 

(Integer value) 

Table of values at which complete 

print out is desired - up to 

40 values 

Final value from MPRINT table 
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MTAB 

UETAB 

DUETAB 

NUME 

ETATABE 

IEREAD 

Table of values used to  obtain Ue 

value from UETAB and dUe/dc 

value from DUETAB (50 values) 

Table of up to  50 values. If Ue is 

constant, all values in table should 

be set  to this value-. 

Table of dUe/d( values (up to 

50 values) 

Input table of up to  600 values 

Number of values in ETAB (Integer 

value) 

ETA table that corresponds to ETAB 

input 

=O (E table read), #O (E table com

puted) (Integer value) 

The program will interpolate between input values of F and E to f i l l  a table having 

NUMETA values with a spacing of Aq. As mentioned in appendix B, i t  is necessary to 

specify No at a point on the input profile where 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Fn < 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX in order  to obtain 

the desired slope aF = ee' at subsequent profiles. Furthermore, because of theHqve
interpolation procedure used to f i l l  the F table, the last value of F in the input table 

must be slightly greater  than F at n = N. 

output 

Identifications of case and input data are printed at beginning of output. 

Symbol Machine name Comments 

MCOL (designates m column) 
These are printed at 

5m + 2  
XIA every m column 

1 
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5 

Cf 

e 

6*  

H* 

Re 

rl 

F 

E 

v m+-,n1 
2 

u*y/v 

n  

2 
(M-I)(%) 

aE(25)2fiF - + V - aE 
a t  arl 

XI  

CF 1
THETA (ft) 

DELSTAR (ft) 

H  

RTHETA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ 

\ 

ETA  

F P  (computed column)  

E (computed column)  

VA  

UUSTAR  

USYNU  

UUEUS  

KCH  

DISIP  

CONVEC  

DIFUS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

These are printed at 

every m column 

Group I 

Group II 
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DUETRM 

Group zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII 

7
T/

2 E  TORHOE 

Print out is controlled by MPFUNT table. Groups zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI and II are printed only when 5 
corresponds to a value in MPRINT table. XI  table must be filled with values in ascending 

order. 
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NASA-LANGLEY RESEARCH CENTER 
- _. 77 P R O G P A Y N O  1 01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl i  D A T E  

LAR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD2170 COMPUTER P R O G R A M  ABSTRACT 1 072268 
..  

01 23 T I T L f  OF PROGHAN t b l  CHARACTEH5UAXi ' iU ' :  

Calculation of Turbulent and/or Laminar 
~. 

12 2b 02 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1  02 42 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA02 3 7 - K E Y x R D I  S MAXIMUP.* SEPARATE0 BY COKfnASl 

:ATEGORY LANGUAGE ILANGUAGEI N~ 1 N O ?  IBoundary Layer, Turbulent, Laminar, Fbik Difference 

.. 

05 14 
_ _ _ _ .  ~ 

I5 14 CONTACT 
I 05 48 STATUS I 0 A THIS PROGR0 A UNDER OEVELOPlAEhT 

I S N O T  F O I  

C. C. Thomas B OPERATIONAL SHARING 

o c C O M ~ L E T E O  I____. 

CARD NUPARER 16 ABSTRACT 
I 

. _  

06 An im licit f i n s - d i f f e r e n c e  scheme is used to comgwte 
tP i  incompressl%le boundary layers  with arbi t rary ressure 

U* gradient and wall blowing. To compute a t u r b d n t  boundary I 
07 layer, an eddy viscosity concept is used wherein the eddy 
i n  viscositv is assumed to  be a certain function of the kinetic I 
I 1  :energy 6f turbulent fluctuations and the scale  of the turbu- I 
12  .lence. The differential equation for  this  turbulent energy is 
13 . then solved simultaneously with the conventional momentum 
11 equation to obtain the distribution of the mean velocity and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII 
I5 distribution of the turbulent energ . Auxiliary functions are 
16 supplied for  the eddy viscosity a d t h e  turbulence scale. The I 
1.  objectives of the present investigation are to develop the com- 1 
Ifi puting procedure and to  determine the range of applicability of 

I11 the  auxiliary functions. 
20 I 
7 1  

I 

7 I 
23  1  
7: 

75 

2fi I I
I 

27 

28 

29 I
I 

3J I 
31 

32 t  
3 1  I  
31 

..- I  
35 

Ih I 
37 I 
38 I  
39  

IO 
I  

I I  I 
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Flow Diagram 

Start 
Read and Print  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

@ input data
-
- table - Compute

FP and E tables 
by using FPTAB 
and ETAB tables 

FPTEST = 

FP(NMAX+ 1) 

Compute
initial VA 

table 

If initial ETAB 
(turbulent energy)
table was not read 
in, compute E tabler ifrom eauation (31a) 

Compute
6 and 6, 

Compute
auxiliary

unctions: 

no values of 
column zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = 
column zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

I 
t 

Compute Select cor rec t  
' average values
for  momentum. 

equation 

Ue and d U e / d [ a  
f rom UETAB

- andDUETAR 
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L 

Compute new FP 
and VA tables-

f o r  momentum -bCompute CF, -)r 

THETA, DELSTAR, 
H, and RTHETA 

no 

for turbulent 

1  
Compute 

new E 
table 

8 

Pr in t  

Pr int  
E@)

+
7,
VA,

“1,
UUSTAR,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

USYNU, and7 UUEUS 
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Acceptable 

no
Iterating 

Initialize to 
start next 

61  



1 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 

APPENDIX 'C  

Program Listing 

J O B r 3 1 r 2 0 0 0 r 6 7 0 0 0 .  D 2 1 7 0 r 3 1 3 6 6 t l r C A R O L Y N  C THOMAS9 1192-'C R1.6  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr 

L I N E C N T ( 4 0 0 0 0 )  

R U N  (51 

S E T  IN D F  

L G O  

E X I T .  

DMP (FL
-

PROGRAM D2170 ( INPUT~OU.TPUT*TAPE5=INPUTrTAPE6=OUTPUT)  
C ********** 
C PROGRAM T O  COMPUTE T H E  N O N - S I M I L A R  D E V E L O P M E N T  OF A N  1 N C O M P R E S S . I U L E  

C T O R B O L E N T  OR L A M  I N A R  BOUNDARY L A Y E R  
C ********** 
C *+**+CAROLYN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt o  T H O M A S * * * * * A N A L Y S I S  A N D  C O M P U T A T I O N  D I V I S I O N * * + * * 1 9 6 7  

C 

D I M E N S I O N  I D ~ 8 ) r F P ~ 6 0 0 ~ 2 ~ * F P 1 ~ 6 0 0 ~ ~ F P 2 ~ 6 0 0 ~ r F P T A B ~ 6 0 0 ~ ~ F P A ~ 6 0 0 ~ ~  

F P A ~ ~ 6 0 0 ) r E ~ ~ 0 0 r 2 ~ r E A ~ 6 O O ~ * E T A B ~ 6 O O ~ r E T A ~ 6 O O ~ r E T A T A B F ~ 6 O O ~ r  

E T A T A B E  (600 r M  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(600 9 2  ) * M A 1  (600 ) * M A 2  (600 1 *MA (600) r  D ( 6 0 0 * 2  1 r D 4  (6001 r 

D A 1  (600) r D A 2  ( 6 0 0  ) A ( 6 0 0  ) 9 3  (600 ) * T (600 ) * S  (600) r Q  (600 ) t U  (600 1 

W ~ 6 0 0 ) r Z ~ 6 0 C ) r V A ~ 6 0 0 ) ~ V A I N T ~ 6 O O ~ ~ X 2 ~ 6 ~ O ~ ~ T X 2 O D E L ~ 8 ~ ~ T L O D E L ~ ~ ~ ~  

L O D E L ~ 6 0 0 r 2 ) r L O D E L A ~ 6 O O ~ r D E L T A ~ Z ~ ~ C A P G ~ 6 O O ~ r S M L G ~ 6 ~ ~ ~ r U E T A ~ ~ 5 O ) ~  

D U E T A B  ( 5 0  ) * X I  T A U  ( 5 0  ) r M P R I  N T  ( 4 0  ) * D E L E T A  (600 

E Q U I V A L E N C E  ( M A 2 ( 1 ) r M A 1  ( 2 ) ) r ( D A 2 ( 1 ) r D A l  ( 2 ) )   

E Q U I V A L E N C E  (FPltl)tFP(ltl))r(FP2(l)*FP(lr2))  
E Q U I V A L E N C E  ( A  ( 1 ) r Q  ( 1 1 * ( 6  ( 1 ) r U ( 1 1 1 7 ( T  ( 1 1 W ( 1 1 ) ( S  ('1 r Z  ( 1 ) )  

E Q U I V A L E N C E  ( F P T U B (  1 ) rFP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  r 2  1 r ( E T A B  ( 1 ) r E  ( 1  9 2 )  )  

1 ( E T A T A B F ( l ) * V A I N T ( l )  ) r  ( E T A T A R E ( l ) r M ( 1 * 2 ) )  

R E A L  L I L O D E L ~ M ~ K ~ M A ~ ~ M A ~ ~ N U ~ N ~ A R ~ M A ~ L O ~ E L A ~ ~ P R I N T ~ I F P T * K N  

LOGICAL K F I R S T   
N A M E L I S T  / D A T A / F P T A B I E T A B I E T A T A B F I E T A T A T A B E ~ E O ~ R H O * N U ~ A L P H A ~ R O ~ C * K ~   

1 X I O ~ N R A R r N M A X r D E L X I r D E L E T A I E T A r E T A M O E r E ~ ~ T X 2 O D E L ~ T L O D E L r ~ P S L O N ~  
P N U M E T A * M P R I N T * F I N L P R T I X I T A a t U E T A R I D U E T A B r  I E R E A D I N U M F P ~ N U M E ~ K N  

C 
C I N P U T  AND I N I T I A L I Z A T I O N  

NIJMF=O 

1 R E A D  (592) I D  

2  F O R M A T  ( 8 A 1 0 )  
R E A D  ( 5 r D A T A )  

I F P T = M P R I N T ( l ) + D E L X I  

I P = 1  

W R I T E  ( 6 r D A T A )  

P R I N T  3 , I D  

3 F O R M A T  ( l H l / / 8 A l O / / / )  

U E P R E S = U E T A B  ( 1  ) 

D E L U E P S = D U E T A B ( l ) * D E L X I  
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MCOL= 1 
IT E R = O  

x I = x I o  
X I A = ( X I O + D E L X I + X I O ) / 2 0 0  

J=1 

KFIRST=oTRUEo 

X M U L T 1 = 2 o O * K N / ( l o O + K N )  

X M U L T 2 = 2 o O / ( l o O + K N )  

N E M l = N U M E T A - l  

T W O N B A R = 2 o O * N B A R  

N MA X  20 =N MA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX.+ 20 

N M A X 4 0 = N M A X + 4 0  

M O R D F = 2  

MORDE =2 

E T A ( 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA)=000 

I F  ( I E R E A D  ONE. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 )  GO T O  200 

N E C K = o 9 0 * F L O A T ( N U M E )  

E T A N E C K = E T A T A R E ( N E C K )  

2nn CO 300 I T A B = l r N U M E T A  

C A L L  F T L U P  ( E T A ( I T A U ) ~ F P ( I T A B I ~ ) ~ M O R D F I N U M F P I E T A T A T A B F ( ~ ) * F P T A B ( ~ )1 

I F  ( F P ( I T A B t 1 )  0GE. 0 9 )  M O R D F z l  

I F  ( I E R E A D  ONE. 0 )  GO T O  250 

C A L L  F T L U P  ( E T A ( I T A a ) ~ E ( I T A B ~ l ) ~ M O R D E ~ N U M E ~ E T A T A B E ( l ~ ~ E T A B ~ l ~ ~  

I F  ( E T A ( 1 T A B )  * C E O  E T A N E C K )  M O R D E z 1  

250 DELETA(ITAB+l)=KN*DELETA(ITAB) 

E T A ( I T A B + l ) = E T A ( I T A R ) + D E L E T A (  I T A B )  

30n CONT I MJE 

I F  ( I E R E A D  o E Q o  0 )  GO T O  400 

C 

C C O M P U T E  E ( N 9 1 )  F O R  N = l * N U M E T A  ( I N I T I A L  V A L U E S )  

E T A E = E T A ( N M A X )  

E T A M = E T A M O E * E T A E  

DO 4 N z l e N U M E T A  

E T A Q = E T A ( N ) / E T A M  

4 E ( N ~ I ) = E O * E T A Q + * ~ * ( E X P ( O ~ * ( ~ ~ O - E T A Q * ~ ~ )1 )**2 

400  C O N T I N U E  

V A ( 1  ) z o o 0  
D O  126 N A z l t N E M l   

V A O = V A  ( N A  )  

V A ( N A + l  ~ ~ V A O - D E L E T A ~ N A ) ~ T W O N ~ A R * ~ 2 o * X I A ~ * * ~ T W O N B A R ~ l o O ~ * F P ~ N A + l ~ l ~   

1 2 6  C O N T I N U E  

C 

F P T E S T = F P ( N M A X * l )  

C  

C C O M P U T A T I O N  O F  D E L T A  A N D  D E L T A ( E )   
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C 
39 X F P = . 9 9 0  

393  NEWE=O 

IF  ( J  ONE. 1 )  GO T O  391 
C A L L  F T L U P  ( X F P . * X E T A r  1 r N M A X 9 F P l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  ) * E T A (  1 ) 1 

GO T O  392 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
391 C A L L  FTLUP ( X F P * X E T A r l r N M A X * F P E ( l ) r E T A ( 1 )  1 

392 D E L T A ( J ) = ( N U * ( E o O * X I  ) * * N B A R ) / U E P R E S * X E T A  

C  F R E Q U E N T L Y  U S E D  E X P R E S S I O N S .  

NMAXEO=NMAX+EO 

I F  ( N M A X E O  O C T O  N E M I )  N M A X E O = N E M l  

N M A ' X 4 0 = N M A X + 4 0  

I F  ( N M A X 4 0  O C T O  N E M 1 )  N M A X 4 0 x N E M l  

T W O X I A = E o O * X I A  

T X I A N B R = T W O X I A * * N B A R  

T X I A 2 N B = T W O X I A * * T W O N B A R  

C 

C C O M P U T A T I O N  O F  A U X I L I A R Y  F U N C T I O N S  R r H ( R ) r M r D * L  

C 

H R = H K R = O a O  

N M A X 7 1 = N M A X 4 0 + 3 1  

I F  ( N M A X 7 1  o G T o N U M E T A )  N M A X 7 1  =NUMETA 

40  CO 6 N R O W = l r N M A X 7 1  

X 2 ( N R O W ) = ( N U * T X I A N B R ) / U E P i ? E S * E T A ( N R O W )  

X E O D E L = X 2 ( N R O W ) / D E L T A ( J )  

I F  ( X E O D E L  O L E O  1 . 4 )  GO T O  46 

L O D E L  (NROW 9 J ) = O  001 

GO T O  47 

46 C A L L  F T L U P  ( X E O D E L  L O D E L  (NROW * J 1 * 1 9 8 r T X E O D E L  ) * TLODEL ( 

47 L=LODEL(N~OW*J)*DELTA(J) 

I F  ( E ( N R O W 9 J )  o L T 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 . 0 )  E ( N R O W * J ) = O o O  

R = S Q R T ( E ( N R O W * J )  ) * U E P R E S * L / N U  

RRO=R/RO 

I F  (HRmEQ. 1 0  ) G O  TO 45 

I F ( R R 0  .LT .  1 - 2 5 ]  GO T O  4 1  

H R = I  00 

GO T O  45 

4 1  I F  ( R R O  * L T .  0075) GO T O  42 

H R = R R O - ( R R O - 0 . 7 5 ) * * 2  

GO T O  45 

42 I F  ( R R O  .CEO 0 . 0 )  GO T O  44 

P R I N T  4 3 r R r R O r N R O W  

43 F O R M A T  ( / / 3 2 H  M = l r R / R O  N E G A T I V E q W H A T  H A P P E N E D / 3 H  R = E 1 6 * 8 t 5 X r  

1 3 H R O = E 1 6 . 8 r 5 X r E H N = I 5 / )  

44 HR=RRO 
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45  E P S L O N R = A L P H A * R + H R  

M ( N R O W * J ) = l . O + E P S L O N R  

R K = R + K  

R K R O = R K / R O  

I F ( H K R . E Q . l . ) G O  T O  50 

I F  ( R K R O  .LT.  1.25) GO T O  4 5 1  

H K R =  1 0 

GO T O  50 

4 5 1  I F  ( R K R O  .LT .  0.75) GO T O  452 

H Y R = R K R O - ( R K R O - O . 7 5 ) + + 2  

GO T O  50 
452 I F  ( R K R O  .GE. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 . 0 )  GO T O  49  

P R I N T  ~ ~ ~ R K I R O I N R O W  

48 F O R M A T  ( / / 33H M = l r R K / R O  N E G A T I V E I W H A T  H A P P E N E D / 4 H  R K = E 1 6 0 8 r 5 X +  

1 3 H R O = E 1 6 . 8 r 5 X . 2 H N = I 5 / 1  

49 H K R = R K R O  

5cI E P S L N K R = A L P H A * R + K * H K R  

D ( N R O W I J ) = I . O + E P S L N K R  

6 C O N T I N U E  

C 

X I R A R = T X I A E N B / D E L X I  

C 

I F  ( K F I R S T )  61.51 

C S E T  I N I T I A L  V A L U E S  O F  V A R I A B L E S  I N  COLUMN 2 E Q U A L  TO V A L U E S  I N  C O L U M N  1 

C 
61  D E L T A  ( 2  ) = D E L T A  ( 1 ) 

DO 5 N = l r N M A X 7 1  

L O D E L ( N I ~ ) = L O D E L ( N * ~ )  

M ( N 9 2 ) = M ( N r l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

5  D ( N * 2 ) = D ( N * l )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
DO 53 N = l . N U M E T A  

F P ( N * 2 ) = F P ( N * I1 

E ( N * E ) = E ( N * I )  

VA I N T  ( N )  = V A  ( N )  

53 C O N T I N U E  

C  

C I N I T I A L I Z E  X I q U E t A N D  D E L U E  F O R  E A C H  C O L U M N   

S L O P E = F P  ( 2  9 2 ) / D E L E T A  ( 1 1  

J=2  

X I = X I + D E L X I   

T W O X I = 2 o O + X I   

T X I N B A R = T W O X I + * N B A R   

U E P R E V = U E P R E S   

D E L U E P V = D E L U E P S   

C A L L  F T L U P  ( X I  ~ U E P R E S ~ ~ ~ ~ O ~ X I T A B ( ~ ) I U E T A B ( ~ ) )   
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C A L L  F T L U P  (XIrDELUEPS~lr50*XITAb(l)*DUETAI3(1)) 
D E L U E P S = D E L U E P S * D E L X I  

C C O M P U T A T I O N  O F  A V E R A G E  V A L U E S  O F  M r F P q U E r A N D  O E L U E  F O R  MOMENTUM E Q U A T I O N  

C 

51  F P A l = O o O  

M A l ( 1  ) = l o 0  

F P A  ( 1 1 = (FP ( 1 r 1 )+FP ( 1 r 2  ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA)/2zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0 

CO 7 N A r l r N M A X 4 0  

F P A  ( N A + l  ) = (FP ( N A + l *  1 1 + F P ( N A + l r 2  1 1 / 2 0  0 

F P A l  ( N A + l  ) = ( F P ( N A r l  ) + F P ( N A r 2 ) + F P ( N A + l  r l  ) + F P ( N A + l  * 2 )  )/400 

M A 1  ( N A + l  ) = ( M ( N A r I  ) + M ( N A r 2 ) + M ( N A + l r l  ) + M ( N A + l  re) ) / 4 0 0  

7  C O N T I N U E  

U E A =  ( U E P R E S + U E P R E V  1 / 2 0  0 

DELUEA=(DELUEPS+DELUEPV)/2oO 

U E A  1 = U E A  

D E L U E A l = D E L U E A  

C 

K F I R S T = o F A L S E o  

C 

C C O M P U T A T I O N S  T O  O B T A I N  G C O N S T A N T S  F O R  MOMENTUM E Q U A T I O N  

C 

N M A X 3 9 = N M A X 4 0 - 1  

76  DO 8 K G z 2 r N M A X 3 9  

C O N 7 = 2 o O * D E L E T A ( K G ) * D E L E T A ( K G - l )  

C O N 1  = V A  ( K G  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI /  (200" ( D t L E T A  ( K G  ) + D E L E T A  ( K G - 1  1 1 1 

C O N 2 =  ( M A 1  ( K G  ) + X M U L T l + M A 2 ( K G ) * X M U L T 2  ) / C O N 7  

C O N 3 = X I B A R * F P A ( K G )  

A ( K G ) = C O N l - M A 2 ( K G ) * X M U L T 2 / c O N 7  

B ( K G ) = C O N 3 + C O N 2  

T ( K G ) = - ( C O N l + M A l ( i < G ) * X M U L T l ' / C O N 7 )  

C O N 4  = CON3-C O N 2  

C O N ~ = X I B A R * D E L W E A / U E A * ( ~ O O - F P A ( K G ) * * ~ )   
S ~ K G ) ~ ~ A ~ K G ) * F P ( K G + l ~ l ~ + C O N 4 * F f ~ K G ~ l ) ~ T ~ K G ~ * F P ~ K G ~ l ~ l ~ + C O N 5   

8  C O N T I N U E  

C A P G  ( 2 )=-A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2  ) / e  ( 2  ) 
S M L G  ( 2) = ( S  ( 2  ) - T  ( 2  )*FP ( 1 12 ) 1/6 ( 2  1 

DO 9 K G z 3 9 N M A X 3 9  

C A P G ( K G ) = - A ( K G ) / ( D ( K G ) + T ( K G ) * C A P G ( K G - l )  1 

9 S M L G  ( K G  ) = ( S  ( K G  ) - T  ( K G )  * S M L G  ( K G - 1  1 ) /  ( B  ( K G  ) + T  ( K G ' ) * C A P G  ( K G - 1  ) ) 

C 
C C O M P U T E  NEW BOUNDARY H E I G H T  

K M A X Z N M A X - 1 0  

DO 90 J J = K M A X * N M A X E O  

TSTVAL=EPSLON*DELETA(JJ) 
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C K V A L = F P T E S T * ( l . O - C A P G ( J J )  ) - S M L G ( J J )  
NMAX= JJ+2 
I F  ( C K V A L  .LE. T S T V A L )  GO T O  9 1  

91? C O N T I N O E  

C 

C COMPlJTE NEW FP A N D  V A  V A L U E S  

C 

9 1   N R A C K = - ( N M A X - 1  ) 

F P P R E V z F P  ( 29 2 ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1)O 1 0  N F = N B A C K v - E  

K F = I A B S ( N F )  

FP ( K F  2 = C A P G  ( KF ) *FP ( KF+ 1 * 2 ) + S M L G  ( K F  

10 C O N T I N U E  

C 
V A  ( 1  )=000 

DO 1 8  N A = l  q N M A X 4 0  

92 V A O = V A  ( N A  ) 

1 8  V A ( N A + l ) = V A O - D ~ L E T A ( N A ) / 2 . 0 9 X I e A H + ( F P ( N A + l * 2 ) - F P ( N A + l * l ) + F P ( N A * 2 ) 

1 F P ( N A r  1 ) ) - D E L E T A ( N A ) * T W O N B A R * T W O X I A * + ~ ( T W O N 6 A R - l  . O ) * F P A l  ( N A + 1  

C 

C C O M P U T E  C F  A N D  T H E T A  

1 0 0 3   S L O P R E V = S L O P E  

S L O P E = F P ( 2 * 2 ) / D E L E T A ( l )  

C F = 2 * 0 / T X I N B A R * S L O P E  

P R I N T  1 0 1 2 r S L O P R E V * S L O P E  

1 0 1 2   F O R M A T  ( / 9 H  S L O P R E V = E ~ ~ . B * ~ X I ~ H S L O P E = E ~ ~ O ~ / ' )  

DFLSTAR=O.O 

THETA=O.O 

DO 1 0 2 0  K G T = l * N M A X  

D E L S T A R = D E L S T A R + ( l . O - F P ( K G T v 2 )  ) * D E L E T A ( K G T )  

1020 T H E T A = T H E T A + F P ( K G T I ~ ) * ( ~ . O - F P ( K G T * ~ ) ) * D E L E T A ( K G T )  

D E L S T A R = T X I N R A d + N U / U E A * D E L S T A Q  

T H E T A = N U * T X I N R ~ ~ * / U E A * T H E T A  

R T H E T A = U E A + T H E T A / N U  

H = D E L S T A R / T H E T A  

P R I N T  ~ ~ ~ ~ ~ M C O L * X ~ A I X I ~ C F ~ T H E T A * L ~ E L S T A R * H * R T H E T A  

1 0 5 0  F O R M A T  ( 1 9 H  R E A D Y  F O R  COLUMN I 5 / 5 H  X I A = E ~ ~ . B * ~ X I ~ H X I ' E ~ ~ ~ ~ * ~ X *  

1 ~ H C F = E ~ ~ . ~ * ~ X * ~ H T H E T A = E ~ ~ O ~ / ~ O X * ~ ~ H D E L T AS T A R = E 1 6 * 8 * 5 X *  

2 2 H H = E l 6 . 8 r 5 X * 7 H R T H E T A = E 1 6 . 8 / )  

C 

C T E S T  F O R  I T E R A T I O N  O N  FP 

I F ( A B S ( ( F P ( 2 * 2 ) - F P P R E V ) / F P P R E V ) - o C l O 5  .GT. 0 . 0 )  GO T O  1005 

C 
I F  ( A R S ( X I - I F P T )  aGE. D E L X I )  GO T O  800 

IP= I P + l  
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I F P T = M P R f N T (  I P )  

92 W R I T E  ( 6 r 9 9 9 )  
999 F O R M A T  ( ~ X I ~ H E T A ( K C H ) * ~ X * ~ H F P ( K C H ~ ~ ) ~ ~ X * ~ H E ( K C H ~ ~ ) * ~ O X ~  

1 7 H V A ( K C H ) r 6 X t l 1 H U U S T A R ( K C H ) r 7 X I 1 O H U S Y N U ( K C H ) ~ 7 X t l O H U ~ ~ U S ( K C H ) t  

2 S X I J H K C H )  

S Q k T C F E = S Q R T  ( C F / 2 . 0  ) 

GO l o o ; ?  K C H z l r N M A X  

U U S T A R = F P ( K C H q 2 ) / S Q R T C F 2  

U S Y N U = E T A ( K C H ) * T X I N B A R * S Q R T C F 2  

U U E L J S = ( l o O - F P ( K C H t 2 )  ) / S Q R T C F 2  

P R I N T  1 0 0 1  ~ E T A ( K C ~ ) * F P ( K C H I ~ ) ~ E ( K C H . ~ ) ~ V A ( K C H ) ~ U U S T A R ~ U S Y N U ~  

1 U U E U S t K C H  

1001 F O R M A T  ( 7 E 1 7 0 6 r  1 8 )  

1 O n 2  C O N T  I NUE 

C  

C COMPUTE AND P R I N T  PMODtDISIPtCONVECtDIFUStDUETERM~ANDTORHOE  

DO 16 K G E = 2 t N M A X  

C O N 7 = 2 . O * D E L E T A ( K G E ) * D E L E T A ( K G E - l )  

F O R @ E T A = 2 o O * ( D E L E T A ( K G ~ ) + D E L ~ T ~ ( K G ~ - l ) ~  

C O N 1 2 = E A ( K G E ) / L O D E I _ A ( K C E ) * * 2 '  

P R O D  = ( M A ( K G E  ) - ? ) / ( DELE T A ( I<GE ) +DEL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE T A ( K G E- 1 ) ) 9*2* ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFP ( K G  E+1 t 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
l F P ( K C E - l t 1  ))*(FP(~GE+lr~)-FP(l<GE-lr2)) 

DISIP=TXIA2NB*C*(NU/(UEA*DELTAA) ) * % 2 * D A ( K C E ) * C O N 1 2  

C O N V E C = V A ( ~ G E ) / F O R D E T A * ( E ( K G + l 2 + E ( K G E + l ~ l ) ) - V A ( K G E ) / F O ~ ~ E T A *   
1 ( E  ( K G E - 1 ( 2  ) + E ( K G E - 1  t 1 1 ) + T X I A Z N B / D E L X I * F P A  (KGE I *  (E ( K G E  t2 )-E ( iCGEt  1 ) 

DIFUS=PA2(KGE)*XMULT2/CON7*(E(KGE+l~2)-E(KGE~2)-E(KGEtl)+  
1 E ( K G E +  1 t 1 1 1 +DA 1 ( K G E  ) * X M U L T  1 / C O N 7 *  ( E  ( K G k - 1 1 2  ) - E  ( K G E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq 2 )-E ( K G E I  1 ) +  

2 E ( K G E - l q 1 ' ) )  

D U E T R M = 2 . 0 * T X I A 2 N B / U E A * D E L U E P S / D E L X I ~ E A ( K G E ) * F P A ( K G E )  

IF ( E A ( K G E )  -NE. 0 . 0 )  GO T O  1 0 0 8  

TORHOF=O.O 

GO T O  1 0 0 9  

1008 T O R H O E ~ ~ M A ~ K G E ~ ~ l ~ O ~ / ~ € A ~ K G ~ ~ * 2 ~ * T X I A N B R ~ * l ~ / F O R D E T A ~  

I((FP(KGE+lr2)+FP(KGE+lrl ))-(FP(KGE-lrZ)+FP(KGE-l 9 1  1 ) )  

1009 I F  ( K G E  .NE. 2 )  GO TO 705 

P R I N T  706 

706 F'ORMAT ~/10Xt1OHPRODlJCTION*9X~11HDISSIPATIONt10XrlOHCONVECTIONt 

1 ~ ~ X ~ ~ H D I F U S I O N I ~ ~ X ~ ~ H D U ET E R M q 1 2 X t 8 H T A U O R H O E )  

705 P R I N T  7 0 7 ~ P R O D ~ D I S I P q C O N V E ~ ~ D I F U S ~ D U E T ~ M t T O R H O E t K G E  

707 F O R M A T  (6E20 08t I8 ) 

16 C O N T  I NUE 

R O O  MCOL=k lCOL+ 1 

NFWE= 1 

GO T O  105 

C  
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C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI N I T I A L I Z A T I O N  FOR N E X T  C O L U M N  

103 D O  102 K S = l r N M A X 2 0  

FP (KS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ) =FP ( K 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe2 ) 

102 E ( K S * l ) = E ( K S i 2 )  

1 0 6  X I A = X I A + D E L X I  

K F I R S T = o T R U E o  

J=1 

I T E R = O  

I F  ( X I  .CEO F I b ' ! " R T )  GO T O  1 

GO T O  39 

C 
C CHECK T O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASEE I F  M A X I M U M  I T E R A T I O N S  H A V E  T A K E N  P L A C E  

1005 I T E R = I T E R + l  

I F  ( I T E R  e L T o  1 0 )  GO T O  105 

C 

C H A L V E  T H E  I N T E R V A L  D E L X I  A N D  R E - I N I T I A L I Z E  A N D  T R Y  A G A I N  

IT E R = O  

J=1 

X I = X I - D E L X I  

D E L X I = D E L X I / 2 o O  

X I A = ( X I + X I + @ E L X I  ) / 2 0 0  

K F I R S T = . T Q U E o  

CJ FPR E  5= UF PR E  V 

C E L U E P S = D E L U E P V  

C.0 1 0 4  N V A = 1  w N M A X 4 0  

104 V A ( N V A ) = V A I N T ( N V A )  

GO T O  39 

C 

C C O M P U T A T I O N  O F  A V E R A G E  V A L U E S  O F  EIMIAND D FOR E N F R G Y  E Q U A T I O N  

C 
105 D E L T A A = ( D E L T A ( l ) + D E L T A ( 2 ) ) / 2 0 0  

D A 1  ( 1  ) = l o 0   

130 1 1  N A Z l r N M A X 4 0   

D A ( N A ) = ( D ( N A * l  ) + D ( N A i 2 )  ) / Z O O   

D A I  ( N A + ~) = ( D ( N A . I  ) + D ( N A * ~ ) + D ( N A + I + I  ) + D ( N A + ~* 2 ) ) / 4 . 0   

D A 1  ( N A + 1  ) = I l A l  ( N A + l  ) * 3 * 0   

L O D E L A ( N A ) = ( L O D E L ( N A , 1 ) + L O D E L o ) / 2 . O   

E A ( N A ) = ( E ( N A * l  ) + E ( N A * 2 )  ) / Z O O   

1 1  M A ( N A ) = ( M ( N A i l  ) + M ( N A * 2 )  )/200 

C  
c C O M P U T A T I O N S  T O  O 3 T A I N  G C O N S T A N T S  F O R  E N E R G Y  E Q U A T I O N   

C  
D O  1 2  K G E = 2 r N M A X  

CON7=2oO*DELETA(KGE)*DELETA(KGE-l)  
C O N h = V A ( K G E ) / ( 2 o O * ( D E L E T A ( K G F ) + D E L E T A ( K G E - l ) ) )  
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Q(KGF)=CON6-DA2(KGE)*XMULT2/CONi'  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C O N 8 = X  I B A R * F P A  ( K G E   

CON9=(DAl(KGE)+XMULTl+DA2(KGE)*XMULT2)/CON7  
U ( K G E ) = C O N 8 + C O N 9  

W(KGE)=-(CON6+DAI(KGE)*XMULTl/CON7)  
I F  ( L O D E L A ' ( K G E )  *NE. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA000) GO T O  1 1 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CON zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2=0 0 

GO TO 12 

1 1 3  C O N 1 2 = E A ( K G E ) / L O D E L A ( K G E ) * * 2  

Z ~ K G E ) ~ - Q ( K G E ) * E ~ K G E + l r l ~ + ~ C O N 8 ~ C O N ~ ~ ~ E ~ K G E ~ l ~ ~ W ~ K G E ~ * E ~ K G E ~ l r l ) ~   
1 2 . 0 * X I B A R * D E L U E A / U E A * ~ A ( K G E ) * F P A ( K G ~ ) - X l ~ A ~ * D E ~ X I * C * ( N U / ( U E A *  

~ D E L T A A ) ) * * ~ * D A ( K G E ) * C O N ~ ~ + ~ ~ M A ~ K G E ~ ~ ~ O O ~ / ~ D E L E T A ~ K G E ) +  

3 L . E L E T A ( K G F - l  ) ) * *2  

3 * ( F P ( K G E + I  r l  ) - F P ( K G E - l  r 1 )  ) * ( F P ( K G E + l  r E ) - F P ( K G E - l  r 2 ) )  

1 2   C O N T I N U E  

C A P G  ( 2  1 =-Q ( 2  ) / U  ( 2  1 

S M L G ( 2  ) =  ( 2  ( 2)-\W ( 2) * E (  1 v2 1 ) / U ( 2  1 

D O  1 3  K G E z 3 r N M A X  

C A P G ( K G E ) = - Q  ( K G E I / ( U ( ! < G E ) + W ( K G E ) * C A P G ( i ( G E - l  1 )  

13 S M L G ( K G E ) = ( Z ( K G E ) - W ( I < G E ) * S M L G ( K G E - l )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA)/(U(KGE)+W(I<GE)*CAPG(KGE-l)) 
C  

C C O M P U T A T I O N  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF NEW E V A L U E S   

C 

00 1 4  N E = N B A C K * - 2  

K E = I A B S ( N E )  

14 E ( K E r 2 ) = C A P G ( K E ) * E ( K ~ + l r 2 ) + S M L G ( K E )  

C 

C CHECK T O  SEE I F  I T E R A T I N G  OR I F  YOU H A V E  A C C E P T A B L E  ANSWERS 

C I F  I T E R A T I N G  GO T O  39 *** I F  A C C E P T A B L E  ANSWERS GO T O  103 

1922 I F  (NEWE . E Q *  1 )  GO T O  103 

GO T O  39 

E N D  
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TABLE I.- FUNCTIONS FOR MEAN SCALES 

OF TURBULENCE 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ 6
x 2 p  - . - - .~ 

$0.33 $0.20 
~ $0.25 

0- 0 0 0  

.2 .20 -20 .20  

.4 .30 .20 .25  

.5 .33 ,20 .25  

.6 .32 .20 .25  

.7 .30 .20 .25  

.8 .26 .20 .20  

21.4 .01 .01 .01  
-~ 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII.- INITIAL VELOCITY AND ENERGY PROFILES AND OTHER 

INPUT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADATA FOR ADVERSE PRESSURE GRADIENT CASE 

p a l u e s  based on Goldberg's data (ref. 43): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 8 X lo5; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v = 1.8 X fta/sec (16.7 X 10-6 m2/s); zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0.0765 lb/ft3 

(1.23 kg/m3); Ueyo= 77.8 ft/sec (23.7 m/s); A <  = 625; 

Aq1 = 0.025; E =  0.5; Ee,O 

EW = 0.01; 6= 1 x 10-21 

. .. 

F50 

0 0 

.1 .215 

.2 .415 

.3 .540 

.4 .580 

.5 .608 

.6 .626 

.8 .644 

1.o .662 

1.2 .681 

1.4 .700 

1.8 .731 

2.2 .760 

2.6 .790 

3.O .818 

4 .O .880 

5.0 .924 

6.0 .956 

6.5 .968 

7.0 .975 

7.5 .982 

8.O .991 

8.5 -996 

9 .o .999 

= 9 X I O m 4 ;  €e' = 1zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 

E<O 

0 

.22 x 10-2 

.54 

1.05 

1.04 

.92 

.86 

.78 

.72 

.675 

.64 

.615 

.579 

.530 

.474 

.321 

.203 

,108 

.069 

.039 

.010 

.01 

.01 

.01 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIII.- FREE-STREAM DISTRIBUTIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF VELOCITY AND VELOCITY DERIVATIVES  

FOR ADVERSE PRESSURE GRADIENT CASE 

palues  based on Goldberg’s data (ref. 431 

(a) Velocity distribution a. 

X1 Ue due 

kl’ 5 
in. m ft/sec 4 s  sec-1 

4.O 0.10 77.8 23.7 20.7 8 x 105 

4.55 .ll 76.8 23.4 23.7 8.2  

5.1 .13 75.7 23.O 25.0 8.4  

5.7 .14 74.5 22.7 26.3 8.6  

6.3 .16 73.2 22.3 27.2 8.8  

6.9 .17 71.8 21.8 27.9 9.0  

7.55 .19 70.36 21.4 28.1 9.2  

8.2 .21 68.9 21.0 28.1 9.4  

8.8 .22 67.42 20.5 27.7 9.6  

9.45 .24 65.98 20.1 27.4 9.8 

10.1 .26 64.52 19.6 27.0 10.0 

10.8 .27 63.06 19.2 26.4 10.2 

11.5 .29 61.60 18.8 25.8 10.4 

12.2 .31 60.14 18.3 25.1 10.6 

12.85 .32 58.68 17.9 23.9 10.8 

13.5 .34 57.28 17.4 22.3 11.o 
14.25 .36 56.04 17.1 20.3 11.2 

15.0 .38 54.92 16.7 16.9 11.4 

15.7 .40 53.92 16.4 14.37 11.6 

16.5 .42 53.O 16.1 12.37 11.8 

17.4 .44 52.2 15.9 10.5 12.0 

18.25 .46 51.8 15.8 9.12 12.2 

19.2 .49 50.9 15.5 7.6 12.4 

20.0 .51 50.4 15.3 6.16 12.6 

20.85 .53 50.0 15.2 4.92 12.8 

21.7 .55 49.7 15.1 3.65 13.O 

22.6 .57 49.5 15.1 2.50 13.2 

23.45 .59 49.35 15.0 1.43 13.4 

24.35 .62 49.25 15.0 0 13.6 

32.3 .82 49.25 15.0 0 15.4 

40.O 1.o 49.25 15.0 0 17.1 

.

ft/sec 

4.8 x 10-5

5.55 

5.95 

6.35 

6.7 

7.0 

7.2 

7.35 

7.41 

7.49 

7.52 

7.54 

7.55 

7.52 

7.34 

7.O 

6.47 

5.55 

4.8 

4.2 

3.61 

3.17 

2.68 

2.20 

1.77 

1.32 

.91  

.52  

0 

0 
0 

1.46 x 10-5  

1.69  

1.81  

1.93  

2.04  

2.13  

2.19  

2.24  

2.26  

2.28  

2.29  

2.29  

2.30  

2.29  

2.24  

2.13  

1.97  

1.69  

1.46  

1.28  

1.10  

.97  

.82  

.67  

.54  

.40  

.28  

.16  

0 

0 

0  
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAID.-FREE-STREAM DISTRIBUTIONS OF VELOCITY AND VELOCITY DERIVATIVES 

FOR ADVERSE PRESSURE GRADIENT CASE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Concluded 

Ealues based on Goldberg’s data (ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA438 

(b) Velocity distribution b. 

X1 Ue due 

dxl’ 
- -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 ~ 

-zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

in. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm ft/sec sec-1 ft/sec m/s 

4.0 0.10 77.8 23.7 23.8 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX lo5 5.55 x 10-5 1.68 x 10-5 
4.55 .ll 76.7 23.4 23.9 8.2 5.62 1.71 
5.1 .13 75.58 23.0 24.4 8.4 5.8 1.77 
5.7 .14 74.42 22.7 24.8 8.6 6.0 1.83 
6.3 .16 73.22 22.3 25.3 8.8 6.2 1.89 
6.9 .17 71.98 21.9 25.5 9.0 6.4 1.95 
7.55 .19 70.70 21.5 26.0 9.2 6.62 2.02 
8.2 .21 69.38 21.1 26.6 9.4 6.9 2.10 
8.8 .22 68.O 20.7 27.2 9.6 7.21 2.20 
9.45 .24 66.56 20.3 28.4 9.8 7.67 2.34 

10.1 .26 65.03 19.8 28.9 10.0 8.0 2.44 
10.8 .27 63.43 19.3 31.0 10.2 8.8 2.68 
11.5 .29 61.67 18.8 32.9 10.4 9.6 2.93 
12.2 .31 60.75 18.5 32.7 10.6 9.7 2.96 
12.85 .32 58.81 17.9 31.5 10.8 9.65 2.94 
13.5 .34 56.88 17.3 25.5 11.0 8.1 2.47 
14.25 .36 55.26 16.8 18.9 11.2 6.15 1.87 
15.0 .38 54.03 16.4 16.0 11.4 5.3 1.62 
15.7 .40 52.97 16.1 13.5 11.6 4.6 1.40 
16.5 .42 52.05 15.8 11.1 11.8 3.85 1.17 
17.4 .44 51.28 15.6 9.0 12.0 3.15 .96 
18.25 .46 50.65 15.4 7.18 12.2 2.55 .78 
19.2 .49 50.14 15.3 5.76 12.4 2.07 .63 
20.0 .51 49.74 15.16 4.55 12.6 1.65 .50 
20.85 .53 49.42 15.06 3.6 12.8 1.3 .40 
21.7 .55 49.16 14.98 2.54 13.0 .93 .28 
22.6 .57 49.O 14.94 1.635 13.2 .6 .18 
23.45 .59 48.9 14.9 .543 13.4 .2 .06 
24.35 .618 48.9 14.9 0 13.6 D 0 

32.3 .820 48.9 14.9 0 15.4 3 0 
40.0. 1.02 48.9 14.9 0 17.1 1 0 
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Figure 1.- Effect of modifications to the H(R) function. the A€, step size, the diffusion term, and Eo* value on form factor H* for flat-plate flow. 
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Qo
0  

10-2 

1 I Cf = .0592 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(R )-'I5
X 1  

Schlichting (ref. 39) 

\(Table 21.-1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApg. 540) 

.0592 ( R x l - l l 5  1 

L Laminar theory (Blasius) 

-

- H(R)x2/b '.5 Diffusion term 
EO* 

-
Eq. (9b) and 1.0 Eq. (13) , < 2.5 x 10-

4 

- 1.0 3 times eq. (13) 2.5 10-4 
I - 
I 

1.0 3 times eq. (13) 1.0 x  

I I I I I I  I I I I I I I I 

Figure 2.- Effects of modification to diffusion term and of different values of EoX on Cf distribution for flat-plate flow. 
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(a) Development of velocity profiles from laminar input at Rxl = 1 X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAldr to turbulent at Rxl 2 1 X 106 for dp/dx = 0. 

Figure 3.- Mean velocity distributions. 
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H(R)x2/6 > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 5  Diffusion Term 

Eq. (9b)  Eq. (13) '1 
6 

Eq. (13)
24 

---1.0 
1.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 times eq. (13) 

} Rxl = 1x 10 except as noted 

(ref. 41) 
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Figure 3.- Continued. 
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LOSS 
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Convection 

Gain 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 .1 .2 .3 .4 .5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.6 .7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.6 .9 1.o  

x2’6F=. 995  

( c )  x i  = 20 inches (0.51 meter). 

Figure 17.- Continued. 
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'2/'F=. 995  

(d) x1 = 36 inches (0.91 meter). 

Figure 17.- Concluded. 
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