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DETAILED ERROR ANALYSISFOR A FRACTIONAL ADAMS METHOD�KAI DIETHELMy, NEVILLE J. FORDz, AND ALAN D. FREEDxAbstra
t. We investigate a method for the numeri
al solution of the nonlinear fra
tionaldi�erential equation D�� y(t) = f(t; y(t)), equipped with initial 
onditions y(k)(0) = y(k)0 , k =0; 1; : : : ; d�e � 1. Here � may be an arbitrary positive real number, and the di�erential operatoris the Caputo derivative. The numeri
al method 
an be seen as a generalization of the 
lassi
al one-step Adams-Bashforth-Moulton s
heme for �rst-order equations. We give a detailed error analysisfor this algorithm. This in
ludes, in parti
ular, error bounds under various types of assumptionson the equation. Asymptoti
 expansions for the error are also mentioned brie
y. The latter maybe used in 
onne
tion with Ri
hardson's extrapolation prin
iple to obtain modi�ed versions of thealgorithm that exhibit faster 
onvergen
e behaviour.Key words. Fra
tional di�erential equation, Caputo derivative, Adams-Bashforth-Moultonmethod.AMS subje
t 
lassi�
ations. Primary 65L06; se
ondary 26A33, 65B05, 65L05, 65L20, 65R20.1. Introdu
tion. We dis
uss a numeri
al method for the fra
tional initial valueproblem D�� y(t) = f(t; y(t)); y(k)(0) = y(k)0 ; k = 0; 1; : : : ; d�e � 1;(1.1)where the y(k)0 may be arbitrary real numbers and where � > 0. In (1.1), D�� denotesthe di�erential operator in the sense of Caputo [19℄, de�ned byD�� z(t) = J���D�z(t)where � := d�e is the smallest integer � �. Here D� is the usual di�erential operatorof (integer) order �, and for � > 0, J� is the Riemann-Liouville integral operator oforder �, de�ned by J�z(t) = 1�(�) Z t0 (t� u)��1z(u)du:Equations of this type arise in a number of appli
ations where models based on fra
-tional 
al
ulus are used. Some early examples for su
h models are given in the bookof Oldham and Spanier [33℄ (di�usion pro
esses) and the 
lassi
al papers of Caputo[5℄, Caputo and Mainardi [6, 7℄ and Torvik and Bagley [41℄ (these papers dealing withthe modeling of materials) as well as in the publi
ations of Marks and Hall [28℄ (signalpro
essing) and Olmstead and Handelsman [34℄ (also dealing with di�usion problems);more re
ent results are des
ribed, e.g., in the work of Benson [2℄ (adve
tion and dis-persion of solutes in natural porous or fra
tured media), Chern [8℄ and Diethelm and�Partially supported by the U.S. Army Medi
al Resear
h and Materiel Command Grant No.DAMD17-01-1-0673 to The Cleveland Clini
 to whi
h two of the authors (K. D. and A. D. F.) were
o-investigators.yInstitut f�ur Angewandte Mathematik, Te
hnis
he Universit�at Brauns
hweig, Po
kelsstra�e 14,38106 Brauns
hweig, Germany (K.Diethelm�tu-bs.de). Corresponding author.zDepartment of Mathemati
s, Chester College, Parkgate Road, Chester CH1 4BJ, UK (njford�
hester.a
.uk). Member of the Man
hester Centre for Computational Mathemati
s.xPolymers Bran
h, MS 49-3, NASA's John H. Glenn Resear
h Center at Lewis Field, 21000Brookpark Road, Cleveland, OH 44135, USA (Alan.D.Freed�gr
.nasa.gov).1



2 K. DIETHELM, N. J. FORD, AND A. D. FREEDFreed [13, 14, 15℄ (modeling of the behaviour of vis
oelasti
 and vis
oplasti
 materialsunder external in
uen
es), Gaul, Klein, and Kemp
e [16℄ (des
ription of me
hani
alsystems subje
t to damping), Gl�o
kle and Nonnenma
her [17℄ (relaxation and rea
-tion kineti
s of polymers), Goren
o and Rutman [21℄ (so-
alled ultraslow pro
esses),Goren
o, Mainardi et al. [18, 20, 27, 39℄ (
onne
tions to the theory of random walks,the latter two papers espe
ially with respe
t to appli
ations to mathemati
al mod-els in �nan
e), Metzler et al. [30℄ (relaxation in �lled polymer networks), Podlubny[35℄ (
ontrol theory), Podlubny et al. [37℄ (heat propagation), and Shaw, Warby andWhiteman [40℄ (modeling of vis
oelasti
 materials). Surveys or 
olle
tions of appli
a-tions 
an also be found in Goren
o and Mainardi [19℄, Mainardi [26℄, Matignon andMontseny [29℄, Nonnenma
her and Metzler [32℄ and Podlubny [36℄. Finally we referto the work of Woon [43℄ that essentially mentions mathemati
al appli
ations that, inturn, have important impli
ations in other s
ien
es like physi
s. Note that many ofthose papers formally use Riemann-Liouville fra
tional derivatives instead of Caputoderivatives. Typi
ally those authors then require homogeneous initial 
onditions. Itis known [36℄ that under those homogeneous 
onditions the equations with Riemann-Liouville operators are equivalent to those with Caputo operators. We 
hose theCaputo version be
ause it allows us to spe
ify inhomogeneous initial 
onditions too ifthis is desired. For the Riemann-Liouville approa
h, this generalization is 
onne
tedwith major pra
ti
al diÆ
ulties; 
f., e.g., [12, 15℄.It is well known that the initial value problem (1.1) is equivalent to the Volterraintegral equationy(t) = d�e�1X�=0 y(�)0 t��! + 1�(�) Z t0 (t� u)��1f(u; y(u))du(1.2)in the sense that a 
ontinuous fun
tion is a solution of (1.1) if and only if it is asolution of (1.2). For a brief derivation we refer to [11, Lemma 2.3℄.In order to indi
ate the approa
h that we will use for the fra
tional equation andto help highlight the distin
tive features of our method, we shall �rst brie
y re
allthe idea behind the 
lassi
al one-step Adams-Bashforth-Moulton algorithm for �rst-order equations. So, for a start, we fo
us our attention on the well-known initial-valueproblem for the �rst-order di�erential equationDy(t) = f(t; y(t));(1.3a) y(0) = y0:(1.3b)We assume the fun
tion f to be su
h that a unique solution exists on some interval[0; T ℄, say. Following [22, xIII.1℄, we suggest to use the predi
tor-
orre
tor te
hnique ofAdams where, for the sake of simpli
ity, we assume that we are working on a uniformgrid ftj = jh : j = 0; 1; : : : ; Ng with some integer N and h = T=N . The basi
 idea is,assuming that we have already 
al
ulated approximations yj � y(tj) (j = 1; 2; : : : ; k),that we try to obtain the approximation yk+1 by means of the equationy(tk+1) = y(tk) + Z tk+1tk f(z; y(z))dz:(1.4)This equation follows upon integration of (1.3a) on the interval [tk; tk+1℄. Of 
ourse,we know neither of the expressions on the right-hand side of eq. (1.4) exa
tly, but we



FRACTIONAL ADAMS METHOD 3do have an approximation for y(tk), namely yk, that we 
an use instead. The integralis then repla
ed by the two-point trapezoidal quadrature formulaZ ba g(z)dz � b� a2 (g(a) + g(b)) ;(1.5)thus giving an equation for the unknown approximation yk+1, it beingyk+1 = yk + h2 [f(tk; y(tk)) + f(tk+1; y(tk+1))℄ ;(1.6)where again we have to repla
e y(tk) and y(tk+1) by their approximations yk andyk+1, respe
tively. This yields the equation for the impli
it one-step Adams-Moultonmethod, whi
h is yk+1 = yk + h2 [f(tk; yk) + f(tk+1; yk+1)℄ :(1.7)The problem with this equation is that the unknown quantity yk+1 appears on bothsides, and due to the nonlinear nature of the fun
tion f , we 
annot solve for yk+1dire
tly in general. Therefore, we may use eq. (1.7) in an iterative pro
ess, insertinga preliminary approximation for yk+1 in the right-hand side in order to determine abetter approximation that we 
an then use.The preliminary approximation yPk+1, the so-
alled predi
tor, is obtained in a verysimilar way, only repla
ing the trapezoidal quadrature formula by the re
tangle ruleZ ba g(z) dz � (b� a)g(a);(1.8)giving the expli
it (forward Euler or one-step Adams-Bashforth) methodyPk+1 = yk + hf(tk; yk):(1.9)It is well known [22, p. 372℄ that the pro
ess de�ned by eq. (1.9) andyk+1 = yk + h2 �f(tk; yk) + f(tk+1; yPk+1)� ;(1.10)
alled the one-step Adams-Bashforth-Moulton method, is 
onvergent of order 2, i.e.maxj=0;1;:::;N jy(tj)� yj j = O(h2):(1.11)Moreover, this method behaves satisfa
torily from the point of view of its numeri
alstability [23, Chap. IV℄. It is said to be of the PECE (Predi
t, Evaluate, Corre
t,Evaluate) type be
ause, in a 
on
rete implementation, we would start by 
al
ulatingthe predi
tor in eq. (1.9), then we evaluate f(tk+1; yPk+1), use this to 
al
ulate the
orre
tor in eq. (1.10), and �nally evaluate f(tk+1; yk+1). This result is stored forfuture use in the next integration step.Having introdu
ed this 
on
ept, we now try to 
arry over the essential ideas to thefra
tional-order problem with some unavoidable modi�
ations. The key is to derive anequation similar to (1.4). Fortunately, su
h an equation is available, namely eq. (1.2).This equation looks somewhat di�erent from eq. (1.4), be
ause the range of integrationnow starts at 0 instead of tk. This is a 
onsequen
e of the non-lo
al stru
ture of the



4 K. DIETHELM, N. J. FORD, AND A. D. FREEDfra
tional-order di�erential operators. It is straightforward in prin
iple to 
onstru
ta formula that generalizes the Adams method to fra
tional equations. However nowthe dis
rete equations we derive have unbounded memory and are therefore of a 
lassthat is more 
hallenging to analyze than in the 
lassi
al 
ase. One 
annot expe
tinsights from the 
lassi
al 
ase to 
arry over to the fra
tional Adams method, as weshall see in the sequel.To 
onstru
t the required formula, we use the produ
t trapezoidal quadratureformula with respe
t to the weight fun
tion (tk+1 � �)��1 to repla
e the integral,where nodes tj (j = 0; 1; : : : ; k + 1) are used as before. In other words, we apply theapproximationZ tk+10 (tk+1 � z)��1g(z)dz � Z tk+10 (tk+1 � z)��1~gk+1(z)dz;(1.12)where ~gk+1 is the pie
ewise linear interpolant for g with nodes and knots 
hosen atthe tj , j = 0; 1; 2; : : : ; k+ 1. As stated in [25℄ (see also [1, 4℄) the produ
t integrationidea is a rather natural approa
h in this situation. Using standard te
hniques fromquadrature theory (
f. [13℄), we write the integral on the right-hand side of (1.12) asZ tk+10 (tk+1 � z)��1~gk+1(z)dz = k+1Xj=0 aj;k+1g(tj)(1.13)whereaj;k+1 = h��(� + 1) �8>>><>>>:�k�+1 � (k � �)(k + 1)�� if j = 0,�(k � j + 2)�+1 + (k � j)�+1�2(k � j + 1)�+1� if 1 � j � k,1 if j = k + 1.(1.14)This then gives us our 
orre
tor formula (i.e. the fra
tional variant of the one-stepAdams-Moulton method), whi
h isyk+1 = d�e�1Xj=0 tjk+1j! y(j)0 + 1�(�) 0� kXj=0 aj;k+1f(tj ; yj) + ak+1;k+1f(tk+1; yPk+1)1A :(1.15)The remaining problem is the determination of the predi
tor formula required to
al
ulate yPk+1. The idea we use to generalize the one-step Adams-Bashforth methodis the same as the one des
ribed above for the Adams-Moulton te
hnique: We repla
ethe integral on the right-hand side of eq. (1.2) by the produ
t re
tangle ruleZ tk+10 (tk+1 � z)��1g(z)dz � kXj=0 bj;k+1g(tj);(1.16)where now bj;k+1 = h�� ((k + 1� j)� � (k � j)�)(1.17)(see also [13℄). Thus, the predi
tor yPk+1 is determined by the fra
tional Adams-Bashforth methodyPk+1 = d�e�1Xj=0 tjk+1j! y(j)0 + 1�(�) kXj=0 bj;k+1f(tj ; yj):(1.18)



FRACTIONAL ADAMS METHOD 5Our basi
 algorithm, the fra
tional Adams-Bashforth-Moulton method, is 
ompletelydes
ribed now by eqs. (1.18) and (1.15) with the weights aj;k+1 and bj;k+1 beingde�ned a

ording to (1.14) and (1.17), respe
tively.We have thus 
ompleted the des
ription of our numeri
al algorithm. The re-mainder of this paper will be devoted to the error analysis for this s
heme. For thispurpose, we shall �rst (in x2) present some auxiliary results, and then (in x3) we willuse these results to give a thorough investigation of the error. Finally, in x4 we willpresent some numeri
al examples illustrating the theoreti
al results.2. Auxiliary Results. Throughout the rest of the paper we assume that theAdams method (with the predi
tor given by (1.18) and the 
orre
tor as in (1.15)) isused to solve the initial value problem (1.1). As usual we demand that the fun
tionf is 
ontinuous and ful�ls a Lips
hitz 
ondition with respe
t to its se
ond argumentwith Lips
hitz 
onstant L on a suitable set G. Then, by [11, Thms. 2.1 and 2.2℄, auniquely determined solution y of the problem exists on some interval [0; T ℄, say. Itis this solution that we aim to approximate.For the error analysis it is useful to know additional properties of the solution.Spe
i�
ally, we require information about the smoothness. From [24, x2℄ we take thefollowing result (note that � in that paper 
orresponds to �� 1 in our work).Theorem 2.1.(a) Assume that f 2 C2(G). De�ne �̂ := d1=�e � 1. Then there exist a fun
tion 2 C1[0; T ℄ and some 
1; : : : ; 
�̂ 2 R su
h that the solution y of (1.1) 
an be expressedin the form y(t) =  (t) + �̂X�=1 
�t��:(b) Assume that f 2 C3(G). De�ne �̂ := d2=�e � 1 and ~� := d1=�e � 1. Thenthere exist a fun
tion  2 C2[0; T ℄ and some 
1; : : : ; 
�̂ 2 R and d1; : : : ; d~� 2 R su
hthat the solution y of (1.1) 
an be expressed in the formy(t) =  (t) + �̂X�=1 
�t�� + ~�X�=1 d� t1+��:Moreover it is useful to relate the smoothness properties of a given fun
tion tothe smoothness properties of its Caputo derivatives. In this 
ontext we state a quitesimple theorem.Theorem 2.2. If y 2 Cm[0; T ℄ for some m 2 N and 0 < � < m thenD�� y(t) = m�d�e�1X̀=0 y(`+d�e)(0)�(d�e � �+ `+ 1) td�e��+` + g(t)with some fun
tion g 2 Cm�d�e[0; T ℄. Moreover, the (m � d�e)th derivative of gsatis�es a Lips
hitz 
ondition of order d�e � �.Proof. This is a dire
t 
onsequen
e of the de�nition of the Caputo di�erentialoperator and [38, Thm. 3.2℄.Note that this immediately yields a very elementary but useful 
orollary thatgeneralizes the 
lassi
al result for derivatives of integer order.Corollary 2.3. Let y 2 Cm[0; T ℄ for some m 2 N and assume that 0 < � < m.Then D�� y 2 C[0; T ℄.



6 K. DIETHELM, N. J. FORD, AND A. D. FREEDVery simple 
ounterexamples show that su
h a result 
annot hold for the Riemann-Liouville derivatives. We therefore interpret this 
orollary as an indi
ation for thepra
ti
al usefulness of the Caputo derivatives. However, we expli
itly point out thatwe 
an only prove the 
ontinuity of D�� y but not the di�erentiability. The representa-tion from Theorem 2.2 reveals that di�erentiability will in general only hold if 
ertain(integer-order) derivatives of y vanish at the origin. Sin
e the deeper investigation ofthis topi
 is outside the s
ope of this paper, we shall not pursue it any further here.What we do need for our purposes is some information on the errors of the quadra-ture formulas that we have used in the derivation of the predi
tor and the 
orre
tor,respe
tively. We �rst give a statement on the produ
t re
tangle rule that we haveused for the predi
tor.Theorem 2.4.(a) Let z 2 C1[0; T ℄. Then,������Z tk+10 (tk+1 � t)��1z(t)dt� kXj=0 bj;k+1z(tj)������ � 1�kz0k1t�k+1h:(b) Let z(t) = tp for some p 2 (0; 1). Then,������Z tk+10 (tk+1 � t)��1z(t)dt� kXj=0 bj;k+1z(tj)������ � CRe�;pt�+p�1k+1 hwhere CRe�;p is a 
onstant that depends only on � and p.Proof. By 
onstru
tion of the produ
t re
tangle formula, we �nd in both 
asesthat the quadrature error has the representationZ tk+10 (tk+1 � t)��1z(t)dt� kXj=0 bj;k+1z(tj)= kXj=0 Z (j+1)hjh (tk+1 � t)��1(z(t)� z(tj))dx:(2.1)To prove statement (a), we apply the Mean Value Theorem of Di�erential Cal
ulusto the se
ond fa
tor of the integrand on the right-hand side of (2.1) and derive������Z tk+10 (tk+1 � t)��1z(t)dt� kXj=0 bj;k+1z(tj)������� kz0k1 kXj=0 Z (j+1)hjh (tk+1 � t)��1(t� jh)dt= kz0k1h1+�� kXj=0� 11 + � [(k + 1� j)1+� � (k � j)1+�℄� (k � j)��= kz0k1h1+�� 0� (k + 1)1+�1 + � � kXj=0 j�1A= kz0k1h1+�� 0�Z k+10 t�dt� kXj=0 j�1A :



FRACTIONAL ADAMS METHOD 7Here the term in parentheses is simply the remainder of the standard re
tangle quadra-ture formula, applied to the fun
tion t�, and taken over the interval [0; k + 1℄. Sin
ethe integrand is monotoni
, we may apply some standard results from quadraturetheory [3, Thm. 97℄ to �nd that this term is bounded by the total variation of theintegrand, viz. the quantity (k + 1)�. Thus,������Z tk+10 (tk+1 � t)��1z(t)dt� kXj=0 bj;k+1z(tj)������ � kz0k1h1+�� (k + 1)�:Similarly, to prove (b), we use the monotoni
ity of z in (2.1) and derive������Z tk+10 (tk+1 � t)��1z(t)dt� kXj=0 bj;k+1z(tj)������� kXj=0 jz(tj+1)� z(tj)j Z (j+1)hjh (tk+1 � t)��1dt= h�+p� kXj=0((j + 1)p � jp)((k + 1� j)� � (k � j)�)� h�+p� 0�2(k + 1)� � 2k� + p� k�1Xj=1 jp�1(k � j + q)��11A� h�+p� 0�2�(k + q)��1 + p� k�1Xj=1 jp�1(k � j + q)��11Aby additional appli
ations of the Mean Value Theorem. Here q = 0 if � � 1, andq = 1 otherwise. In either 
ase a brief asymptoti
 analysis using the Euler-Ma
Laurinformula [42, Thm. 3.7℄ yields that the term in parentheses is bounded from above byC�;p(k + 1)p+��1 where C�;p is a 
onstant depending on � and p but not on k.Next we 
ome to a 
orresponding result for the produ
t trapezoidal formula thatwe have used for the 
orre
tor. The proof of this theorem is very similar to the proofof Theorem 2.4; we therefore omit the details.Theorem 2.5.(a) If z 2 C2[0; T ℄ then there is a 
onstant CTr� depending only on � su
h that������Z tk+10 (tk+1 � t)��1z(t)dt� k+1Xj=0 aj;k+1z(tj)������ � CTr� kz00k1t�k+1h2:(b) Let z 2 C1[0; T ℄ and assume that z0 ful�ls a Lips
hitz 
ondition of order �for some � 2 (0; 1). Then, there exist positive 
onstants BTr�;� (depending only on �and �) and M(z; �) (depending only on z and �) su
h that������Z tk+10 (tk+1 � t)��1z(t)dt� k+1Xj=0 aj;k+1z(tj)������ � BTr�;�M(z; �)t�k+1h1+�:



8 K. DIETHELM, N. J. FORD, AND A. D. FREED(
) Let z(t) = tp for some p 2 (0; 2) and % := min(2; p+ 1). Then,������Z tk+10 (tk+1 � t)��1z(t)dt� k+1Xj=0 aj;k+1z(tj)������ � CTr�;pt�+p�%k+1 h%where CTr�;p is a 
onstant that depends only on � and p.Remark 2.1. Noti
e that in part (
) of Theorem 2.5 it may happen that � < 1and p < 1. This implies % = p+1. Thus, the exponent of tk+1 on the right-hand side ofthe inequality is equal to ��1 whi
h is negative. At �rst sight this may seem 
ounter-intuitive be
ause it means that the overall integration error be
omes larger if the sizeof the interval of integration be
omes smaller. The explanation for this phenomenonis that by making tk+1 smaller we do not only shorten the length of the integrationinterval (whi
h should lead to a smaller error) but we also 
hange the weight fun
tionin a way that makes the integral more diÆ
ult, and this se
ond feature leads to anin
rease in the error.A similar observation 
an be made in Theorem 2.4 (b).3. Error Analysis for the Adams Method. In this se
tion we present themain results of this paper, namely the theorems 
on
erning the error of our Adamss
heme. It is useful to distinguish a number of 
ases. Spe
i�
ally, we shall see thatthe pre
ise behaviour of the error di�ers depending on whether � < 1 or � > 1.Moreover, the smoothness properties of the given fun
tion f and the unknown solutiony play an important role. In view of Theorem 2.1, we �nd that smoothness of one ofthese fun
tions will imply non-smoothness of the other unless some spe
ial 
onditionsare ful�lled. Therefore we shall also investigate the error under those two di�erentsmoothness assumptions.3.1. A general result. Based on the error estimates of x2 we shall now presenta general 
onvergen
e result for the Adams-Bashforth-Moulton method. In the sub-se
tions below we shall spe
ialize this result to parti
ularly important spe
ial 
ases.Lemma 3.1. Assume that the solution y of the initial value problem is su
h that������Z tk+10 (tk+1 � t)��1D�� y(t)dt� kXj=0 bj;k+1D�� y(tj)������ � C1t
1k+1hÆ1and ������Z tk+10 (tk+1 � t)��1D�� y(t)dt� k+1Xj=0 aj;k+1D�� y(tj)������ � C2t
2k+1hÆ2with some 
1; 
2 � 0 and Æ1; Æ2 > 0. Then, for some suitably 
hosen T > 0, we havemax0�j�N jy(tj)� yj j = O(hq)where q = minfÆ1 + �; Æ2g and N = bT=h
.Proof. We will show that, for suÆ
iently small h,jy(tj)� yj j � Chq(3.1)for all j 2 f0; 1; : : : ; Ng, where C is a suitable 
onstant. The proof will be based onmathemati
al indu
tion. In view of the given initial 
ondition, the indu
tion basis



FRACTIONAL ADAMS METHOD 9(j = 0) is presupposed. Now assume that (3.1) is true for j = 0; 1; : : : ; k for somek � N � 1. We must then prove that the inequality also holds for j = k + 1. To dothis, we �rst look at the error of the predi
tor yPk+1. By 
onstru
tion of the predi
torwe �nd thatjy(tk+1)� yPk+1j = 1�(�) ������ tk+1Z0 (tk+1 � t)��1f(t; y(t))dt� kXj=0 bj;k+1f(tj ; yj)������� 1�(�) ������Z tk+10 (tk+1 � t)��1D�� y(t)dt� kXj=0 bj;k+1D�� y(tj)������+ 1�(�) kXj=0 bj;k+1jf(tj ; y(tj))� f(tj ; yj)j� C1t
1k+1�(�) hÆ1 + 1�(�) kXj=0 bj;k+1LChq � C1T 
1�(�) hÆ1 + CLT��(� + 1)hq :(3.2)In this derivation, we have used the Lips
hitz property of f , the assumption on theerror of the re
tangle formula, and the fa
ts that, by 
onstru
tion of the quadratureformula underlying the predi
tor, bj;k+1 > 0 for all j and k andkXj=0 bj;k+1 = Z tk+10 (tk+1 � t)��1dt = 1�t�k+1 � 1�T�:On the basis of the bound (3.2) for the predi
tor error we begin the analysis of the
orre
tor error. We re
all the relation (1.14) whi
h we shall use in parti
ular forj = k + 1 and �nd, arguing in a similar way to above, thatjy(tk+1)� yk+1j= 1�(�) ������Z tk+10 (tk+1 � t)��1f(t; y(t))dt� kXj=0 aj;k+1f(tj ; yj)� ak+1;k+1f(tk+1; yPk+1)������� 1�(�) ������Z tk+10 (tk+1 � t)��1D�� y(t)dt� k+1Xj=0 aj;k+1D�� y(tj)������+ 1�(�) kXj=0 aj;k+1jf(tj ; y(tj)) � f(tj ; yj)j+ 1�(�)ak+1;k+1jf(tk+1; y(tk+1))� f(tk+1; yPk+1)j� C2t
2k+1�(�) hÆ2 + CL�(�)hq kXj=0 aj;k+1 + ak+1;k+1 L�(�) �C1T 
1�(�) hÆ1 + CLT��(�+ 1)hq�� �C2T 
2�(�) + CLT��(�+ 1) + C1LT 
1�(�)�(� + 2) + CL2T��(�+ 1)�(�+ 2)h��hqin view of the nonnegativity of 
1 and 
2 and the relations Æ2 � q and Æ1 + � � q.By 
hoosing T suÆ
iently small, we 
an make sure that the se
ond summand in the



10 K. DIETHELM, N. J. FORD, AND A. D. FREEDparentheses is bounded by C=2. Having �xed this value for T , we 
an then makethe sum of the remaining expressions in the parentheses smaller than C=2 too (forsuÆ
iently small h) simply by 
hoosing C suÆ
iently large. It is then obvious thatthe entire upper bound does not ex
eed Chq .3.2. Error bounds under smoothness assumptions on the solution. Firstwe assume that the given data is su
h that the solution y itself is suÆ
iently di�er-entiable. As mentioned above, the result depends on whether � > 1 or � < 1.Theorem 3.2. Let 0 < � and assume D�� y 2 C2[0; T ℄ for some suitable T . Then,max0�j�N jy(tj)� yj j = �O(h2) if � � 1,O(h1+�) if � < 1.Before we 
ome to the proof, we note one parti
ular point: The order of 
onver-gen
e depends on �, and it is a non-de
reasing fun
tion of �. This is due to the fa
tthat we dis
retize the integral operator in (1.2) whi
h behaves more smoothly (andhen
e 
an be approximated with a higher a

ura
y) as � in
reases. In 
ontrast, themethod of [10℄ uses a di�erent approa
h; it is based on a dire
t dis
retization of thedi�erential operator in (1.1). The smoothness properties of this operator (and thusthe ease with whi
h it may be approximated) deteriorate as � in
reases, and so we�nd that the 
onvergen
e order of the method from [10℄ is a non-in
reasing fun
tionof �; in parti
ular no 
onvergen
e is a
hieved there for � � 2. It is a distin
tiveadvantage of the Adams s
heme presented here that it 
onverges for all � > 0.Proof of Theorem 3.2. In view of Theorems 2.4 and 2.5, we may apply Lemma3.1 with 
1 = 
2 = � > 0, Æ1 = 1 and Æ2 = 2. Thus we �nd an O(hq) error boundwhere q = minf1 + �; 2g = n 2 if � � 1,1 + � if � < 1.Note that in a 
ertain sense the theorem above deals with the \optimal" situation:The fun
tion that we approximate in our pro
ess is f(�; y(�)) = D�� y. In order toobtain very good error bounds, we need to make sure that the quadrature errors forthis fun
tion are (asymptoti
ally) as small as possible. A suÆ
ient 
ondition for thisto hold is, as is well known from quadrature theory [3℄, that this fun
tion is in C2 onthe interval of integration. This is pre
isely the setting dis
ussed in Theorem 3.2. Sothis theorem shows us what kind of performan
e the Adams method 
an give underoptimal 
ir
umstan
es, and it also states suÆ
ient 
onditions for su
h results to hold.There is of 
ourse a disadvantage in the formulation of the hypotheses of thetheorem: They are stated in terms of the solution y (or, more pre
isely, its Caputoderivative of order �), whi
h is unknown in general. Even though it is sometimespossible to determine the smoothness properties of D�� y from the given data, therestill is some need for a 
orresponding error theory for the Adams method underassumptions formulated dire
tly in terms of the given data, i.e. in terms of the fun
tionf . Su
h results will be the topi
 of the next subse
tion.Before we 
ome to those results however, we want to give some more informationunder assumptions similar to those of the previous theorem. Spe
i�
ally we want tostate the 
onje
ture that the error of our s
heme, taken at a �xed abs
issa, possessesan asymptoti
 expansion in powers of the step size h under additional smoothness
onditions on D�� y. If this were true, and most of the numeri
al results shown in x4indi
ate this, we 
ould 
onstru
t a Ri
hardson extrapolation algorithm [42℄ based on



FRACTIONAL ADAMS METHOD 11the Adams s
heme. The use of this extrapolation pro
edure then would permit us toobtain more a

urate numeri
al approximations for the desired solution.Conje
ture 3.1. Let � > 0 and assume that D�� y 2 Ck[0; T ℄ for some k � 3and some suitable T . Then,y(T )� yT=h = k1Xj=2 
jh2j + k2Xj=1 djhj+� +O(hk3 )where k1, k2 and k3 are 
ertain 
onstants depending only on k and satisfying k3 >max(2k1; k2 + �).Noti
e that the asymptoti
 expansion begins with an h2 term and 
ontinues withh1+� for 1 < � < 3, whereas it begins with h1+�, followed by h2, for 0 < � < 1.Our belief in the truth of this 
onje
ture is not only supported by the numeri
alresults but also by the results of de Hoog and Weiss [9, x5℄ who show that asymp-toti
 expansions of this form hold if we use the fra
tional Adams-Moulton method(i.e. if we solve the 
orre
tor equation exa
tly) and that a similar expansion 
an bederived for the fra
tional Adams-Bashforth method (using the predi
tor as the �nalapproximation rather than 
orre
ting on
e with the Adams-Moulton formula). Forthe moment however, we leave the question of the in
uen
e of the 
orre
tor step (that
ombines the two approa
hes) on this expansion open.Rather, we turn our attention to another related problem. In the previous the-orems we had formulated our hypotheses in the form of smothness assumptions onD�� y. Now we want to repla
e this by similar assumptions on y itself. In view ofTheorem 2.2 we must be aware of the fa
t that smoothness of y in general impliesnon-smoothness of D�� y (the fun
tion that we have to approximate), so some diÆ
ul-ties are likely. Fortunately Theorem 2.2 also informs us about the pre
ise nature ofthe singularities in the derivatives of D�� y. We 
an exploit this information to obtainthe following results.Theorem 3.3. Let � > 1 and assume that y 2 C1+d�e[0; T ℄ for some suitable T .Then, max0�j�N jy(tj)� yj j = O(h1+d�e��):Proof. By Theorem 2.2 we �nd that D�� y(x) = 
xd�e + g(x) where g 2 C1[0; T ℄and g0 ful�ls a Lips
hitz 
ondition of order d�e � �. Thus, a

ording to Theorems2.4 and 2.5 we 
an apply Lemma 3.1 with 
1 = 0, 
2 = � � 1 > 0, Æ1 = 1 andÆ2 = 1 + d�e � �. Be
ause of � > 1 we then �nd that Æ1 + � = 1 + � > 2 > Æ2, andhen
e minfÆ1 + �; Æ2g = Æ2. So the overall error bound is O(hÆ2).Noti
e that a reformulation of Theorem 3.3 yields that, if 1 < � = k1 + k2 withk1 2 N and 0 < k2 < 1, then the error is O(h2�k2 ). Thus the fra
tional part of � playsthe de
isive role for the order of the error. In parti
ular, we �nd slow 
onvergen
e ifthe fra
tional part of � is large. Consequently, under these assumptions we 
annotexpe
t the 
onvergen
e order to be a monotone fun
tion of � any more. Neverthelesswe 
an prove that the method 
onverges for all � > 0:Theorem 3.4. Let 0 < � < 1 and assume that y 2 C2[0; T ℄ for some suitable T .Then, for 1 � j � N we havejy(tj)� yj j � Ct��1j ��h1+� if 0 < � < 1=2,h2�� if 1=2 � � < 1,(3.3)where C is a 
onstant independent of j and h.



12 K. DIETHELM, N. J. FORD, AND A. D. FREEDWe obtain two immediate 
onsequen
es.Corollary 3.5. Under the assumptions of Theorem 3.4, we havemax0�j�N jy(tj)� yj j = �O(h2�) if 0 < � < 1=2,O(h) if 1=2 � � < 1.Moreover, for every � 2 (0; T ) we havemaxtj2[�;T ℄ jy(tj)� yj j = �O(h1+�) if 0 < � < 1=2,O(h2��) if 1=2 � � < 1.Proof of Theorem 3.4. The �rst steps of the proof are as in the proof of Theorem3.3. The key di�eren
e is that now 
2 < 0 (note that we still have 
2 = ��1, but now� < 1). Thus we 
annot apply Lemma 3.1. Instead we modify its proof so that it �tsto our requirements: We keep the indu
tive stru
ture and remember that our 
laim isnow (3.3) rather than (3.1). With this 
hange in the indu
tion hypothesis we pro
eedmu
h as in the proof of Lemma 3.1. However, be
ause of this new hypothesis, we nowhave to estimate terms of the formPk�1j=1 bj;k+1t
2j andPk�1j=1 aj;k+1t
2j . By the MeanValue Theorem we have 0 � bj;k+1 � h�(k � j)��1 and 0 � aj;k+1 � 
h�(k � j)��1for 1 � j � k � 1 (where the 
onstant 
 is indepedent of j and k), respe
tively, sothat the problem redu
es to �nding a bound for Sk := Pk�1j=1 j
2(k � j)��1. Underour assumptions, both the exponents 
2 and �� 1 are in the interval (0; 1), and thenit is easily seen that Sk = O(k
2+�). Using this relation we 
an 
omplete the proofof Theorem 3.4 by following along the lines of the rest of the proof of Lemma 3.1.3.3. Error bounds under smoothness assumptions on the given data.We 
on
lude the se
tion on error bounds with a result where we formulate the hy-potheses in terms of the given data and not in terms of the unknown solution. Wegive a result in the 
ases � > 1 and later dis
uss properties of the numeri
al s
hemewhen � < 1.Theorem 3.6. Let � > 1. Then, if f 2 C3(G),max0�j�N jy(tj)� yj j = O(h2):Proof. We begin by dis
ussing the 
ase � � 2. Then, a

ording to the resultsof Miller and Feldstein [31, x4℄, we �nd that y 2 C2[0; T ℄. Thus, in view of thesmoothness assumption on f and the 
hain rule, D�� y := f(�; y(�)) 2 C2[0; T ℄ too, andthe 
laim follows by virtue of Theorem 3.2.For the 
ase 1 < � < 2, we want to apply Lemma 3.1 and hen
e we have todetermine the 
onstants 
1; 
2; Æ1 and Æ2 in its hypotheses. In order to do so we needmore pre
ise information about the behaviour of y. This information 
an be foundin [31, x5℄ from whi
h we derive that y(t) = 
t� +  (t) with some 
 2 R and some 2 C2[0; T ℄. This implies, in parti
ular, that y 2 C1[0; T ℄. As in the 
ase � > 2 abovewe 
an then dedu
e D�� y 2 C1[0; T ℄ too, and by Theorem 2.4(a), we �nd that we may
hoose 
1 = � and Æ1 = 1. Moreover, the stru
tural information on y 
ombined withthe identity D�� y = f(�; y(�)) and the 
hain rule, yields that D2[D�� y℄(t) = 
̂t��2+ ̂(t)with some 
̂ 2 R and some  ̂ 2 C[0; T ℄. Thus, y(t) = ~
t� + ~ (t) with some ~
 2 Rand some ~ 2 C2[0; T ℄, and by Theorem 2.5(a) and (
) the 
orre
t values for theremaining quantities are 
2 = minf�; 2� � 2g = 2� � 2 � 0 and Æ2 = 2. The 
laimthen follows from Lemma 3.1.
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ase � < 1 the situation seems to be less 
lear. A

ording to Theorem 2.1smoothness 
onditions on f imply that the exa
t solution is of the formy(t) =  (t) + �̂X�=1 
�t�� + ~�X�=1 d�t1+��where  is twi
e di�erentiable. The �rst sum 
onsists of terms whi
h are not di�eren-tiable, and the se
ond sum is of terms that are di�erentiable on
e but not twi
e. Asremarked by Lubi
h [24℄ it seems unlikely that numeri
al s
hemes will be rapidly 
on-vergent over any interval that 
ontains the origin. Indeed we 
an prove that the errory(t1) � y1 of the approximation after just one step behaves as O(h2�) if f 2 C2(G).Simple numeri
al experiments indi
ate that this result 
annot be improved. Howeverthis error introdu
ed in the initial phase is transient and from what we see in theexperiment reported in Table 4.5 and other 
omputations that we have performed,we believe the following 
onje
ture to be true.Conje
ture 3.2. Let 0 < � < 1. Then, if f 2 C2(G), for every � > 0 we havemaxtj2[�;T ℄ jy(tj)� yj j = O(h1+�):4. Numeri
al Examples. In this se
tion we present some numeri
al examplesto illustrate the error bounds derived above. We shall distinguish various 
ases a
-
ording to the smoothness properties of the fun
tions involved. We only 
onsideredexamples where 0 < � < 2 sin
e the 
ase � � 2 does not seem to be of major pra
ti
alinterest.All 
omputations were done in double pre
ision arithmeti
 on a Pentium PC.4.1. Equations where D�� y is smooth. Our �rst example deals with the 
asethat the unknown solution y has a smooth derivative of order �. This is the 
asedes
ribed in Theorem 3.2. Spe
i�
ally we shall look at the equationD�� y(t) = 40320�(9� �) t8�� � 3�(5 + �=2)�(5� �=2) t4��=2 + 94�(�+ 1)+�32 t�=2 � t4�3 � [y(t)℄3=2:(4.1)The initial 
onditions were 
hosen to be homogeneous (y(0) = 0, y0(0) = 0; the latteronly in the 
ase � > 1). The exa
t solution of this initial value problem isy(t) = t8 � 3t4+�=2 + 94 t�;and hen
e D�� y(t) = 40320�(9� �) t8�� � 3�(5 + �=2)�(5� �=2) t4��=2 + 94�(�+ 1);i.e. D�� y 2 C2[0; T ℄ for arbitrary T > 0 if � � 4, and thus the 
onditions of Theorem3.2 are ful�lled. Moreover, assuming that Conje
ture 3.1 holds, the appli
ation ofRi
hardson extrapolation is also justi�ed. We display some of the results in Tables4.1 and 4.2. In ea
h 
ase, the leftmost 
olumn shows the step size used; the following
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olumn gives the error of our s
heme at t = 1, and the 
olumns after that give theextrapolated values. The bottom line (marked \EOC") states the experimentallydetermined order of 
onvergen
e for ea
h of the 
olumns on the right of the table.A

ording to our theoreti
al 
onsiderations, these values should be 1 + �, 2, 2 + �,3 + �, 4, 4 + �, . . . in the 
ase 0 < � < 1 and 2, 1 + �, 2 + �, 4, 3 + �, 4 + �, . . .for 1 < � < 2. The numeri
al data in the following tables show that these values arereprodu
ed approximately at least for � > 1 (see Table 4.1). In the 
ase 0 < � < 1,displayed in Table 4.2, the situation seems to be less obvious. Apparently, we needto use mu
h smaller values for h than in the 
ase � > 1 before we 
an see that theasymptoti
 behaviour really sets in. This would normally 
orrespond to the situationthat the 
oeÆ
ients of the leading terms are small in magnitude 
ompared to the
oeÆ
ients of the higher-order terms.As usual, the notation �5:53(�3) stands for �5:53 � 10�3, et
.Table 4.1Errors for eq. (4.1) with � = 1:25, taken at t = 1.error ofstep size Adams s
heme extrapolated values1=10 �5:53(�3)1=20 �1:59(�3) �2:80(�4)1=40 �4:33(�4) �4:60(�5) 1:63(�5)1=80 �1:14(�4) �8:17(�6) 1:90(�6) 2:13(�7)1=160 �2:97(�5) �1:54(�6) 2:24(�7) 2:71(�8) 1:47(�8)1=320 �7:66(�6) �3:04(�7) 2:56(�8) 2:28(�9) 6:24(�10)1=640 �1:96(�6) �6:16(�8) 2:85(�9) 1:73(�10) 3:25(�11)EOC 1:97 2:30 3:17 3:72 4:26Table 4.2Errors for eq. (4.1) with � = 0:25, taken at t = 1.error ofstep size Adams s
heme extrapolated values1=10 2:50(�1)1=20 1:81(�2) �1:50(�1)1=40 3:61(�3) �6:91(�3) 4:09(�2)1=80 1:45(�3) �1:10(�4) 2:16(�3) �8:15(�3)1=160 6:58(�4) 8:19(�5) 1:46(�4) �3:89(�4) 1:28(�4)1=320 2:97(�4) 3:49(�5) 1:92(�5) �1:45(�5) 1:05(�5)1=640 1:31(�4) 1:12(�5) 3:37(�6) �8:50(�7) 6:01(�8)EOC 1:18 1:63 2:51 4:09 7:444.2. Equations where y is smooth. Next we 
ome to the 
ase that the un-known solution y itself is a smooth fun
tion. This is the 
ase des
ribed in Theorems3.3 and 3.4 and in Corollary 3.5. Spe
i�
ally we shall look at the very simple linearequationD�� y(t) = 8><>: 2�(3� �) t2�� � y(t) + t2 � t for � > 1,2�(3� �) t2�� � 1�(2� �) t1�� � y(t) + t2 � t for � � 1.(4.2)



FRACTIONAL ADAMS METHOD 15The initial values were 
hosen as y(0) = 0 and (for � > 1) as y0(0) = �1. The truesolution is y(t) = t2 � t:In Tables 4.3 and 4.4 we show the errors of the Adams method at the point t = 1for various step sizes and various values of �. In ea
h 
ase, the last row again statesthe experimental order of 
onvergen
e. No extrapolation has been attempted. Thetheoreti
al �ndings of Theorems 3.4 (more pre
isely stated in the se
ond part ofCorollary 3.5) and 3.3 are reprodu
ed approximately: In Table 4.3 we �nd an EOC
lose to 1 + � in the �rst three 
olumns (
orresponding to the 
ase � � 1=2) and anEOC near 2� � in the other 
olumns where 1=2 < � < 1. Similarly, in Table 4.4 wesee that the EOC is always 
lose to 2� k2 where k2 = � � b�
 is the fra
tional partof �. Table 4.3Errors for eq. (4.2) with � < 1, taken at t = 1.h � = 0:1 � = 0:3 � = 0:5 � = 0:7 � = 0:91=10 �1:03(�1) �3:14(�2) �1:44(�2) �1:05(�2) �1:49(�2)1=20 �4:95(�2) �1:10(�2) �4:52(�3) �3:38(�3) �6:08(�3)1=40 �2:09(�2) �3:91(�3) �1:46(�3) �1:14(�3) �2:62(�3)1=80 �8:65(�3) �1:42(�3) �4:81(�4) �3:99(�4) �1:16(�3)1=160 �3:59(�3) �5:26(�4) �1:62(�4) �1:44(�4) �5:28(�4)1=320 �1:51(�3) �1:98(�4) �5:52(�5) �5:31(�5) �2:42(�4)EOC 1:25 1:41 1:55 1:44 1:12Table 4.4Errors for eq. (4.2) with � > 1, taken at t = 1.h � = 1:25 � = 1:5 � = 1:851=10 6:74(�4) 9:14(�3) 4:69(�2)1=20 3:63(�4) 3:42(�3) 2:15(�2)1=40 1:43(�4) 1:25(�3) 9:75(�3)1=80 5:00(�5) 4:49(�4) 4:41(�3)1=160 1:65(�5) 1:61(�4) 1:99(�3)1=320 5:28(�6) 5:71(�5) 8:98(�4)EOC 1:65 1:49 1:154.3. Equations where f is smooth. Finally we present an example where thegiven fun
tion f (the right-hand side of the di�erential equation) is smooth. Thisallows us to illustrate the theorems of Subse
tion 3.3. On
e again our example is alinear equation. This time it is homogeneous and has the formD�� y(t) = �y(t); y(0) = 1; y0(0) = 0(4.3)(the se
ond of the initial 
onditions only for � > 1 of 
ourse). It is well known thatthe exa
t solution is y(t) = E�(�t�)



16 K. DIETHELM, N. J. FORD, AND A. D. FREEDwhere E�(z) = 1Xk=0 zk�(�k + 1)is the Mittag-Le�er fun
tion of order �. Obviously, neither y nor D�� y is smooth,and hen
e we 
annot apply the results of Subse
tion 3.2.In Table 4.5 we state some numeri
al results for this problem in the 
ase � < 1.As in the previous subse
tion, the data given in the tables is the error of the Adamss
heme at the point t = 1. We 
an see from the last line that the order of 
onvergen
eis always 
lose to 1+� as indi
ated by Conje
ture 3.2. In 
ontrast, Table 4.6 displaysthe 
ase � > 1; here the results 
on�rm the O(h2) behaviour stated in Theorem 3.6.Table 4.5Errors for eq. (4.3) with � < 1, taken at t = 1.h � = 0:1 � = 0:3 � = 0:5 � = 0:7 � = 0:91/10 �5:42(�3) �1:86(�3) �1:30(�3) �9:91(�4) �7:51(�4)1/20 �1:22(�3) �5:85(�4) �3:93(�4) �2:81(�4) �1:91(�4)1/40 �4:40(�4) �1:97(�4) �1:26(�4) �8:28(�5) �4:99(�5)1/80 �1:68(�4) �6:90(�5) �4:18(�5) �2:50(�5) �1:32(�5)1/160 �6:65(�5) �2:49(�5) �1:42(�5) �7:63(�6) �3:54(�6)1/320 �2:68(�5) �9:18(�6) �4:86(�6) �2:35(�6) �9:48(�7)EOC 1.31 1.44 1.54 1.70 1.90Table 4.6Errors for eq. (4.3) with � > 1, taken at t = 1.h � = 1:25 � = 1:5 � = 1:851/10 �5:61(�4) �5:46(�4) �4:40(�4)1/20 �1:27(�4) �1:28(�4) �1:07(�4)1/40 �2:90(�5) �3:04(�5) �2:65(�5)1/80 �6:68(�6) �7:33(�6) �6:57(�6)1/160 �1:55(�6) �1:78(�6) �1:63(�6)1/320 �3:63(�7) �4:37(�7) �4:07(�7)EOC 2.09 2.03 2.00REFERENCES[1℄ C. T. H. Baker, The Numeri
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