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DETAILED ERROR ANALYSISFOR A FRACTIONAL ADAMS METHOD�KAI DIETHELMy, NEVILLE J. FORDz, AND ALAN D. FREEDxAbstrat. We investigate a method for the numerial solution of the nonlinear frationaldi�erential equation D�� y(t) = f(t; y(t)), equipped with initial onditions y(k)(0) = y(k)0 , k =0; 1; : : : ; d�e � 1. Here � may be an arbitrary positive real number, and the di�erential operatoris the Caputo derivative. The numerial method an be seen as a generalization of the lassial one-step Adams-Bashforth-Moulton sheme for �rst-order equations. We give a detailed error analysisfor this algorithm. This inludes, in partiular, error bounds under various types of assumptionson the equation. Asymptoti expansions for the error are also mentioned briey. The latter maybe used in onnetion with Rihardson's extrapolation priniple to obtain modi�ed versions of thealgorithm that exhibit faster onvergene behaviour.Key words. Frational di�erential equation, Caputo derivative, Adams-Bashforth-Moultonmethod.AMS subjet lassi�ations. Primary 65L06; seondary 26A33, 65B05, 65L05, 65L20, 65R20.1. Introdution. We disuss a numerial method for the frational initial valueproblem D�� y(t) = f(t; y(t)); y(k)(0) = y(k)0 ; k = 0; 1; : : : ; d�e � 1;(1.1)where the y(k)0 may be arbitrary real numbers and where � > 0. In (1.1), D�� denotesthe di�erential operator in the sense of Caputo [19℄, de�ned byD�� z(t) = J���D�z(t)where � := d�e is the smallest integer � �. Here D� is the usual di�erential operatorof (integer) order �, and for � > 0, J� is the Riemann-Liouville integral operator oforder �, de�ned by J�z(t) = 1�(�) Z t0 (t� u)��1z(u)du:Equations of this type arise in a number of appliations where models based on fra-tional alulus are used. Some early examples for suh models are given in the bookof Oldham and Spanier [33℄ (di�usion proesses) and the lassial papers of Caputo[5℄, Caputo and Mainardi [6, 7℄ and Torvik and Bagley [41℄ (these papers dealing withthe modeling of materials) as well as in the publiations of Marks and Hall [28℄ (signalproessing) and Olmstead and Handelsman [34℄ (also dealing with di�usion problems);more reent results are desribed, e.g., in the work of Benson [2℄ (advetion and dis-persion of solutes in natural porous or fratured media), Chern [8℄ and Diethelm and�Partially supported by the U.S. Army Medial Researh and Materiel Command Grant No.DAMD17-01-1-0673 to The Cleveland Clini to whih two of the authors (K. D. and A. D. F.) wereo-investigators.yInstitut f�ur Angewandte Mathematik, Tehnishe Universit�at Braunshweig, Pokelsstra�e 14,38106 Braunshweig, Germany (K.Diethelm�tu-bs.de). Corresponding author.zDepartment of Mathematis, Chester College, Parkgate Road, Chester CH1 4BJ, UK (njford�hester.a.uk). Member of the Manhester Centre for Computational Mathematis.xPolymers Branh, MS 49-3, NASA's John H. Glenn Researh Center at Lewis Field, 21000Brookpark Road, Cleveland, OH 44135, USA (Alan.D.Freed�gr.nasa.gov).1



2 K. DIETHELM, N. J. FORD, AND A. D. FREEDFreed [13, 14, 15℄ (modeling of the behaviour of visoelasti and visoplasti materialsunder external inuenes), Gaul, Klein, and Kempe [16℄ (desription of mehanialsystems subjet to damping), Gl�okle and Nonnenmaher [17℄ (relaxation and rea-tion kinetis of polymers), Goreno and Rutman [21℄ (so-alled ultraslow proesses),Goreno, Mainardi et al. [18, 20, 27, 39℄ (onnetions to the theory of random walks,the latter two papers espeially with respet to appliations to mathematial mod-els in �nane), Metzler et al. [30℄ (relaxation in �lled polymer networks), Podlubny[35℄ (ontrol theory), Podlubny et al. [37℄ (heat propagation), and Shaw, Warby andWhiteman [40℄ (modeling of visoelasti materials). Surveys or olletions of applia-tions an also be found in Goreno and Mainardi [19℄, Mainardi [26℄, Matignon andMontseny [29℄, Nonnenmaher and Metzler [32℄ and Podlubny [36℄. Finally we referto the work of Woon [43℄ that essentially mentions mathematial appliations that, inturn, have important impliations in other sienes like physis. Note that many ofthose papers formally use Riemann-Liouville frational derivatives instead of Caputoderivatives. Typially those authors then require homogeneous initial onditions. Itis known [36℄ that under those homogeneous onditions the equations with Riemann-Liouville operators are equivalent to those with Caputo operators. We hose theCaputo version beause it allows us to speify inhomogeneous initial onditions too ifthis is desired. For the Riemann-Liouville approah, this generalization is onnetedwith major pratial diÆulties; f., e.g., [12, 15℄.It is well known that the initial value problem (1.1) is equivalent to the Volterraintegral equationy(t) = d�e�1X�=0 y(�)0 t��! + 1�(�) Z t0 (t� u)��1f(u; y(u))du(1.2)in the sense that a ontinuous funtion is a solution of (1.1) if and only if it is asolution of (1.2). For a brief derivation we refer to [11, Lemma 2.3℄.In order to indiate the approah that we will use for the frational equation andto help highlight the distintive features of our method, we shall �rst briey reallthe idea behind the lassial one-step Adams-Bashforth-Moulton algorithm for �rst-order equations. So, for a start, we fous our attention on the well-known initial-valueproblem for the �rst-order di�erential equationDy(t) = f(t; y(t));(1.3a) y(0) = y0:(1.3b)We assume the funtion f to be suh that a unique solution exists on some interval[0; T ℄, say. Following [22, xIII.1℄, we suggest to use the preditor-orretor tehnique ofAdams where, for the sake of simpliity, we assume that we are working on a uniformgrid ftj = jh : j = 0; 1; : : : ; Ng with some integer N and h = T=N . The basi idea is,assuming that we have already alulated approximations yj � y(tj) (j = 1; 2; : : : ; k),that we try to obtain the approximation yk+1 by means of the equationy(tk+1) = y(tk) + Z tk+1tk f(z; y(z))dz:(1.4)This equation follows upon integration of (1.3a) on the interval [tk; tk+1℄. Of ourse,we know neither of the expressions on the right-hand side of eq. (1.4) exatly, but we



FRACTIONAL ADAMS METHOD 3do have an approximation for y(tk), namely yk, that we an use instead. The integralis then replaed by the two-point trapezoidal quadrature formulaZ ba g(z)dz � b� a2 (g(a) + g(b)) ;(1.5)thus giving an equation for the unknown approximation yk+1, it beingyk+1 = yk + h2 [f(tk; y(tk)) + f(tk+1; y(tk+1))℄ ;(1.6)where again we have to replae y(tk) and y(tk+1) by their approximations yk andyk+1, respetively. This yields the equation for the impliit one-step Adams-Moultonmethod, whih is yk+1 = yk + h2 [f(tk; yk) + f(tk+1; yk+1)℄ :(1.7)The problem with this equation is that the unknown quantity yk+1 appears on bothsides, and due to the nonlinear nature of the funtion f , we annot solve for yk+1diretly in general. Therefore, we may use eq. (1.7) in an iterative proess, insertinga preliminary approximation for yk+1 in the right-hand side in order to determine abetter approximation that we an then use.The preliminary approximation yPk+1, the so-alled preditor, is obtained in a verysimilar way, only replaing the trapezoidal quadrature formula by the retangle ruleZ ba g(z) dz � (b� a)g(a);(1.8)giving the expliit (forward Euler or one-step Adams-Bashforth) methodyPk+1 = yk + hf(tk; yk):(1.9)It is well known [22, p. 372℄ that the proess de�ned by eq. (1.9) andyk+1 = yk + h2 �f(tk; yk) + f(tk+1; yPk+1)� ;(1.10)alled the one-step Adams-Bashforth-Moulton method, is onvergent of order 2, i.e.maxj=0;1;:::;N jy(tj)� yj j = O(h2):(1.11)Moreover, this method behaves satisfatorily from the point of view of its numerialstability [23, Chap. IV℄. It is said to be of the PECE (Predit, Evaluate, Corret,Evaluate) type beause, in a onrete implementation, we would start by alulatingthe preditor in eq. (1.9), then we evaluate f(tk+1; yPk+1), use this to alulate theorretor in eq. (1.10), and �nally evaluate f(tk+1; yk+1). This result is stored forfuture use in the next integration step.Having introdued this onept, we now try to arry over the essential ideas to thefrational-order problem with some unavoidable modi�ations. The key is to derive anequation similar to (1.4). Fortunately, suh an equation is available, namely eq. (1.2).This equation looks somewhat di�erent from eq. (1.4), beause the range of integrationnow starts at 0 instead of tk. This is a onsequene of the non-loal struture of the



4 K. DIETHELM, N. J. FORD, AND A. D. FREEDfrational-order di�erential operators. It is straightforward in priniple to onstruta formula that generalizes the Adams method to frational equations. However nowthe disrete equations we derive have unbounded memory and are therefore of a lassthat is more hallenging to analyze than in the lassial ase. One annot expetinsights from the lassial ase to arry over to the frational Adams method, as weshall see in the sequel.To onstrut the required formula, we use the produt trapezoidal quadratureformula with respet to the weight funtion (tk+1 � �)��1 to replae the integral,where nodes tj (j = 0; 1; : : : ; k + 1) are used as before. In other words, we apply theapproximationZ tk+10 (tk+1 � z)��1g(z)dz � Z tk+10 (tk+1 � z)��1~gk+1(z)dz;(1.12)where ~gk+1 is the pieewise linear interpolant for g with nodes and knots hosen atthe tj , j = 0; 1; 2; : : : ; k+ 1. As stated in [25℄ (see also [1, 4℄) the produt integrationidea is a rather natural approah in this situation. Using standard tehniques fromquadrature theory (f. [13℄), we write the integral on the right-hand side of (1.12) asZ tk+10 (tk+1 � z)��1~gk+1(z)dz = k+1Xj=0 aj;k+1g(tj)(1.13)whereaj;k+1 = h��(� + 1) �8>>><>>>:�k�+1 � (k � �)(k + 1)�� if j = 0,�(k � j + 2)�+1 + (k � j)�+1�2(k � j + 1)�+1� if 1 � j � k,1 if j = k + 1.(1.14)This then gives us our orretor formula (i.e. the frational variant of the one-stepAdams-Moulton method), whih isyk+1 = d�e�1Xj=0 tjk+1j! y(j)0 + 1�(�) 0� kXj=0 aj;k+1f(tj ; yj) + ak+1;k+1f(tk+1; yPk+1)1A :(1.15)The remaining problem is the determination of the preditor formula required toalulate yPk+1. The idea we use to generalize the one-step Adams-Bashforth methodis the same as the one desribed above for the Adams-Moulton tehnique: We replaethe integral on the right-hand side of eq. (1.2) by the produt retangle ruleZ tk+10 (tk+1 � z)��1g(z)dz � kXj=0 bj;k+1g(tj);(1.16)where now bj;k+1 = h�� ((k + 1� j)� � (k � j)�)(1.17)(see also [13℄). Thus, the preditor yPk+1 is determined by the frational Adams-Bashforth methodyPk+1 = d�e�1Xj=0 tjk+1j! y(j)0 + 1�(�) kXj=0 bj;k+1f(tj ; yj):(1.18)



FRACTIONAL ADAMS METHOD 5Our basi algorithm, the frational Adams-Bashforth-Moulton method, is ompletelydesribed now by eqs. (1.18) and (1.15) with the weights aj;k+1 and bj;k+1 beingde�ned aording to (1.14) and (1.17), respetively.We have thus ompleted the desription of our numerial algorithm. The re-mainder of this paper will be devoted to the error analysis for this sheme. For thispurpose, we shall �rst (in x2) present some auxiliary results, and then (in x3) we willuse these results to give a thorough investigation of the error. Finally, in x4 we willpresent some numerial examples illustrating the theoretial results.2. Auxiliary Results. Throughout the rest of the paper we assume that theAdams method (with the preditor given by (1.18) and the orretor as in (1.15)) isused to solve the initial value problem (1.1). As usual we demand that the funtionf is ontinuous and ful�ls a Lipshitz ondition with respet to its seond argumentwith Lipshitz onstant L on a suitable set G. Then, by [11, Thms. 2.1 and 2.2℄, auniquely determined solution y of the problem exists on some interval [0; T ℄, say. Itis this solution that we aim to approximate.For the error analysis it is useful to know additional properties of the solution.Spei�ally, we require information about the smoothness. From [24, x2℄ we take thefollowing result (note that � in that paper orresponds to �� 1 in our work).Theorem 2.1.(a) Assume that f 2 C2(G). De�ne �̂ := d1=�e � 1. Then there exist a funtion 2 C1[0; T ℄ and some 1; : : : ; �̂ 2 R suh that the solution y of (1.1) an be expressedin the form y(t) =  (t) + �̂X�=1 �t��:(b) Assume that f 2 C3(G). De�ne �̂ := d2=�e � 1 and ~� := d1=�e � 1. Thenthere exist a funtion  2 C2[0; T ℄ and some 1; : : : ; �̂ 2 R and d1; : : : ; d~� 2 R suhthat the solution y of (1.1) an be expressed in the formy(t) =  (t) + �̂X�=1 �t�� + ~�X�=1 d� t1+��:Moreover it is useful to relate the smoothness properties of a given funtion tothe smoothness properties of its Caputo derivatives. In this ontext we state a quitesimple theorem.Theorem 2.2. If y 2 Cm[0; T ℄ for some m 2 N and 0 < � < m thenD�� y(t) = m�d�e�1X̀=0 y(`+d�e)(0)�(d�e � �+ `+ 1) td�e��+` + g(t)with some funtion g 2 Cm�d�e[0; T ℄. Moreover, the (m � d�e)th derivative of gsatis�es a Lipshitz ondition of order d�e � �.Proof. This is a diret onsequene of the de�nition of the Caputo di�erentialoperator and [38, Thm. 3.2℄.Note that this immediately yields a very elementary but useful orollary thatgeneralizes the lassial result for derivatives of integer order.Corollary 2.3. Let y 2 Cm[0; T ℄ for some m 2 N and assume that 0 < � < m.Then D�� y 2 C[0; T ℄.



6 K. DIETHELM, N. J. FORD, AND A. D. FREEDVery simple ounterexamples show that suh a result annot hold for the Riemann-Liouville derivatives. We therefore interpret this orollary as an indiation for thepratial usefulness of the Caputo derivatives. However, we expliitly point out thatwe an only prove the ontinuity of D�� y but not the di�erentiability. The representa-tion from Theorem 2.2 reveals that di�erentiability will in general only hold if ertain(integer-order) derivatives of y vanish at the origin. Sine the deeper investigation ofthis topi is outside the sope of this paper, we shall not pursue it any further here.What we do need for our purposes is some information on the errors of the quadra-ture formulas that we have used in the derivation of the preditor and the orretor,respetively. We �rst give a statement on the produt retangle rule that we haveused for the preditor.Theorem 2.4.(a) Let z 2 C1[0; T ℄. Then,������Z tk+10 (tk+1 � t)��1z(t)dt� kXj=0 bj;k+1z(tj)������ � 1�kz0k1t�k+1h:(b) Let z(t) = tp for some p 2 (0; 1). Then,������Z tk+10 (tk+1 � t)��1z(t)dt� kXj=0 bj;k+1z(tj)������ � CRe�;pt�+p�1k+1 hwhere CRe�;p is a onstant that depends only on � and p.Proof. By onstrution of the produt retangle formula, we �nd in both asesthat the quadrature error has the representationZ tk+10 (tk+1 � t)��1z(t)dt� kXj=0 bj;k+1z(tj)= kXj=0 Z (j+1)hjh (tk+1 � t)��1(z(t)� z(tj))dx:(2.1)To prove statement (a), we apply the Mean Value Theorem of Di�erential Calulusto the seond fator of the integrand on the right-hand side of (2.1) and derive������Z tk+10 (tk+1 � t)��1z(t)dt� kXj=0 bj;k+1z(tj)������� kz0k1 kXj=0 Z (j+1)hjh (tk+1 � t)��1(t� jh)dt= kz0k1h1+�� kXj=0� 11 + � [(k + 1� j)1+� � (k � j)1+�℄� (k � j)��= kz0k1h1+�� 0� (k + 1)1+�1 + � � kXj=0 j�1A= kz0k1h1+�� 0�Z k+10 t�dt� kXj=0 j�1A :



FRACTIONAL ADAMS METHOD 7Here the term in parentheses is simply the remainder of the standard retangle quadra-ture formula, applied to the funtion t�, and taken over the interval [0; k + 1℄. Sinethe integrand is monotoni, we may apply some standard results from quadraturetheory [3, Thm. 97℄ to �nd that this term is bounded by the total variation of theintegrand, viz. the quantity (k + 1)�. Thus,������Z tk+10 (tk+1 � t)��1z(t)dt� kXj=0 bj;k+1z(tj)������ � kz0k1h1+�� (k + 1)�:Similarly, to prove (b), we use the monotoniity of z in (2.1) and derive������Z tk+10 (tk+1 � t)��1z(t)dt� kXj=0 bj;k+1z(tj)������� kXj=0 jz(tj+1)� z(tj)j Z (j+1)hjh (tk+1 � t)��1dt= h�+p� kXj=0((j + 1)p � jp)((k + 1� j)� � (k � j)�)� h�+p� 0�2(k + 1)� � 2k� + p� k�1Xj=1 jp�1(k � j + q)��11A� h�+p� 0�2�(k + q)��1 + p� k�1Xj=1 jp�1(k � j + q)��11Aby additional appliations of the Mean Value Theorem. Here q = 0 if � � 1, andq = 1 otherwise. In either ase a brief asymptoti analysis using the Euler-MaLaurinformula [42, Thm. 3.7℄ yields that the term in parentheses is bounded from above byC�;p(k + 1)p+��1 where C�;p is a onstant depending on � and p but not on k.Next we ome to a orresponding result for the produt trapezoidal formula thatwe have used for the orretor. The proof of this theorem is very similar to the proofof Theorem 2.4; we therefore omit the details.Theorem 2.5.(a) If z 2 C2[0; T ℄ then there is a onstant CTr� depending only on � suh that������Z tk+10 (tk+1 � t)��1z(t)dt� k+1Xj=0 aj;k+1z(tj)������ � CTr� kz00k1t�k+1h2:(b) Let z 2 C1[0; T ℄ and assume that z0 ful�ls a Lipshitz ondition of order �for some � 2 (0; 1). Then, there exist positive onstants BTr�;� (depending only on �and �) and M(z; �) (depending only on z and �) suh that������Z tk+10 (tk+1 � t)��1z(t)dt� k+1Xj=0 aj;k+1z(tj)������ � BTr�;�M(z; �)t�k+1h1+�:



8 K. DIETHELM, N. J. FORD, AND A. D. FREED() Let z(t) = tp for some p 2 (0; 2) and % := min(2; p+ 1). Then,������Z tk+10 (tk+1 � t)��1z(t)dt� k+1Xj=0 aj;k+1z(tj)������ � CTr�;pt�+p�%k+1 h%where CTr�;p is a onstant that depends only on � and p.Remark 2.1. Notie that in part () of Theorem 2.5 it may happen that � < 1and p < 1. This implies % = p+1. Thus, the exponent of tk+1 on the right-hand side ofthe inequality is equal to ��1 whih is negative. At �rst sight this may seem ounter-intuitive beause it means that the overall integration error beomes larger if the sizeof the interval of integration beomes smaller. The explanation for this phenomenonis that by making tk+1 smaller we do not only shorten the length of the integrationinterval (whih should lead to a smaller error) but we also hange the weight funtionin a way that makes the integral more diÆult, and this seond feature leads to aninrease in the error.A similar observation an be made in Theorem 2.4 (b).3. Error Analysis for the Adams Method. In this setion we present themain results of this paper, namely the theorems onerning the error of our Adamssheme. It is useful to distinguish a number of ases. Spei�ally, we shall see thatthe preise behaviour of the error di�ers depending on whether � < 1 or � > 1.Moreover, the smoothness properties of the given funtion f and the unknown solutiony play an important role. In view of Theorem 2.1, we �nd that smoothness of one ofthese funtions will imply non-smoothness of the other unless some speial onditionsare ful�lled. Therefore we shall also investigate the error under those two di�erentsmoothness assumptions.3.1. A general result. Based on the error estimates of x2 we shall now presenta general onvergene result for the Adams-Bashforth-Moulton method. In the sub-setions below we shall speialize this result to partiularly important speial ases.Lemma 3.1. Assume that the solution y of the initial value problem is suh that������Z tk+10 (tk+1 � t)��1D�� y(t)dt� kXj=0 bj;k+1D�� y(tj)������ � C1t1k+1hÆ1and ������Z tk+10 (tk+1 � t)��1D�� y(t)dt� k+1Xj=0 aj;k+1D�� y(tj)������ � C2t2k+1hÆ2with some 1; 2 � 0 and Æ1; Æ2 > 0. Then, for some suitably hosen T > 0, we havemax0�j�N jy(tj)� yj j = O(hq)where q = minfÆ1 + �; Æ2g and N = bT=h.Proof. We will show that, for suÆiently small h,jy(tj)� yj j � Chq(3.1)for all j 2 f0; 1; : : : ; Ng, where C is a suitable onstant. The proof will be based onmathematial indution. In view of the given initial ondition, the indution basis



FRACTIONAL ADAMS METHOD 9(j = 0) is presupposed. Now assume that (3.1) is true for j = 0; 1; : : : ; k for somek � N � 1. We must then prove that the inequality also holds for j = k + 1. To dothis, we �rst look at the error of the preditor yPk+1. By onstrution of the preditorwe �nd thatjy(tk+1)� yPk+1j = 1�(�) ������ tk+1Z0 (tk+1 � t)��1f(t; y(t))dt� kXj=0 bj;k+1f(tj ; yj)������� 1�(�) ������Z tk+10 (tk+1 � t)��1D�� y(t)dt� kXj=0 bj;k+1D�� y(tj)������+ 1�(�) kXj=0 bj;k+1jf(tj ; y(tj))� f(tj ; yj)j� C1t1k+1�(�) hÆ1 + 1�(�) kXj=0 bj;k+1LChq � C1T 1�(�) hÆ1 + CLT��(� + 1)hq :(3.2)In this derivation, we have used the Lipshitz property of f , the assumption on theerror of the retangle formula, and the fats that, by onstrution of the quadratureformula underlying the preditor, bj;k+1 > 0 for all j and k andkXj=0 bj;k+1 = Z tk+10 (tk+1 � t)��1dt = 1�t�k+1 � 1�T�:On the basis of the bound (3.2) for the preditor error we begin the analysis of theorretor error. We reall the relation (1.14) whih we shall use in partiular forj = k + 1 and �nd, arguing in a similar way to above, thatjy(tk+1)� yk+1j= 1�(�) ������Z tk+10 (tk+1 � t)��1f(t; y(t))dt� kXj=0 aj;k+1f(tj ; yj)� ak+1;k+1f(tk+1; yPk+1)������� 1�(�) ������Z tk+10 (tk+1 � t)��1D�� y(t)dt� k+1Xj=0 aj;k+1D�� y(tj)������+ 1�(�) kXj=0 aj;k+1jf(tj ; y(tj)) � f(tj ; yj)j+ 1�(�)ak+1;k+1jf(tk+1; y(tk+1))� f(tk+1; yPk+1)j� C2t2k+1�(�) hÆ2 + CL�(�)hq kXj=0 aj;k+1 + ak+1;k+1 L�(�) �C1T 1�(�) hÆ1 + CLT��(�+ 1)hq�� �C2T 2�(�) + CLT��(�+ 1) + C1LT 1�(�)�(� + 2) + CL2T��(�+ 1)�(�+ 2)h��hqin view of the nonnegativity of 1 and 2 and the relations Æ2 � q and Æ1 + � � q.By hoosing T suÆiently small, we an make sure that the seond summand in the



10 K. DIETHELM, N. J. FORD, AND A. D. FREEDparentheses is bounded by C=2. Having �xed this value for T , we an then makethe sum of the remaining expressions in the parentheses smaller than C=2 too (forsuÆiently small h) simply by hoosing C suÆiently large. It is then obvious thatthe entire upper bound does not exeed Chq .3.2. Error bounds under smoothness assumptions on the solution. Firstwe assume that the given data is suh that the solution y itself is suÆiently di�er-entiable. As mentioned above, the result depends on whether � > 1 or � < 1.Theorem 3.2. Let 0 < � and assume D�� y 2 C2[0; T ℄ for some suitable T . Then,max0�j�N jy(tj)� yj j = �O(h2) if � � 1,O(h1+�) if � < 1.Before we ome to the proof, we note one partiular point: The order of onver-gene depends on �, and it is a non-dereasing funtion of �. This is due to the fatthat we disretize the integral operator in (1.2) whih behaves more smoothly (andhene an be approximated with a higher auray) as � inreases. In ontrast, themethod of [10℄ uses a di�erent approah; it is based on a diret disretization of thedi�erential operator in (1.1). The smoothness properties of this operator (and thusthe ease with whih it may be approximated) deteriorate as � inreases, and so we�nd that the onvergene order of the method from [10℄ is a non-inreasing funtionof �; in partiular no onvergene is ahieved there for � � 2. It is a distintiveadvantage of the Adams sheme presented here that it onverges for all � > 0.Proof of Theorem 3.2. In view of Theorems 2.4 and 2.5, we may apply Lemma3.1 with 1 = 2 = � > 0, Æ1 = 1 and Æ2 = 2. Thus we �nd an O(hq) error boundwhere q = minf1 + �; 2g = n 2 if � � 1,1 + � if � < 1.Note that in a ertain sense the theorem above deals with the \optimal" situation:The funtion that we approximate in our proess is f(�; y(�)) = D�� y. In order toobtain very good error bounds, we need to make sure that the quadrature errors forthis funtion are (asymptotially) as small as possible. A suÆient ondition for thisto hold is, as is well known from quadrature theory [3℄, that this funtion is in C2 onthe interval of integration. This is preisely the setting disussed in Theorem 3.2. Sothis theorem shows us what kind of performane the Adams method an give underoptimal irumstanes, and it also states suÆient onditions for suh results to hold.There is of ourse a disadvantage in the formulation of the hypotheses of thetheorem: They are stated in terms of the solution y (or, more preisely, its Caputoderivative of order �), whih is unknown in general. Even though it is sometimespossible to determine the smoothness properties of D�� y from the given data, therestill is some need for a orresponding error theory for the Adams method underassumptions formulated diretly in terms of the given data, i.e. in terms of the funtionf . Suh results will be the topi of the next subsetion.Before we ome to those results however, we want to give some more informationunder assumptions similar to those of the previous theorem. Spei�ally we want tostate the onjeture that the error of our sheme, taken at a �xed absissa, possessesan asymptoti expansion in powers of the step size h under additional smoothnessonditions on D�� y. If this were true, and most of the numerial results shown in x4indiate this, we ould onstrut a Rihardson extrapolation algorithm [42℄ based on



FRACTIONAL ADAMS METHOD 11the Adams sheme. The use of this extrapolation proedure then would permit us toobtain more aurate numerial approximations for the desired solution.Conjeture 3.1. Let � > 0 and assume that D�� y 2 Ck[0; T ℄ for some k � 3and some suitable T . Then,y(T )� yT=h = k1Xj=2 jh2j + k2Xj=1 djhj+� +O(hk3 )where k1, k2 and k3 are ertain onstants depending only on k and satisfying k3 >max(2k1; k2 + �).Notie that the asymptoti expansion begins with an h2 term and ontinues withh1+� for 1 < � < 3, whereas it begins with h1+�, followed by h2, for 0 < � < 1.Our belief in the truth of this onjeture is not only supported by the numerialresults but also by the results of de Hoog and Weiss [9, x5℄ who show that asymp-toti expansions of this form hold if we use the frational Adams-Moulton method(i.e. if we solve the orretor equation exatly) and that a similar expansion an bederived for the frational Adams-Bashforth method (using the preditor as the �nalapproximation rather than orreting one with the Adams-Moulton formula). Forthe moment however, we leave the question of the inuene of the orretor step (thatombines the two approahes) on this expansion open.Rather, we turn our attention to another related problem. In the previous the-orems we had formulated our hypotheses in the form of smothness assumptions onD�� y. Now we want to replae this by similar assumptions on y itself. In view ofTheorem 2.2 we must be aware of the fat that smoothness of y in general impliesnon-smoothness of D�� y (the funtion that we have to approximate), so some diÆul-ties are likely. Fortunately Theorem 2.2 also informs us about the preise nature ofthe singularities in the derivatives of D�� y. We an exploit this information to obtainthe following results.Theorem 3.3. Let � > 1 and assume that y 2 C1+d�e[0; T ℄ for some suitable T .Then, max0�j�N jy(tj)� yj j = O(h1+d�e��):Proof. By Theorem 2.2 we �nd that D�� y(x) = xd�e + g(x) where g 2 C1[0; T ℄and g0 ful�ls a Lipshitz ondition of order d�e � �. Thus, aording to Theorems2.4 and 2.5 we an apply Lemma 3.1 with 1 = 0, 2 = � � 1 > 0, Æ1 = 1 andÆ2 = 1 + d�e � �. Beause of � > 1 we then �nd that Æ1 + � = 1 + � > 2 > Æ2, andhene minfÆ1 + �; Æ2g = Æ2. So the overall error bound is O(hÆ2).Notie that a reformulation of Theorem 3.3 yields that, if 1 < � = k1 + k2 withk1 2 N and 0 < k2 < 1, then the error is O(h2�k2 ). Thus the frational part of � playsthe deisive role for the order of the error. In partiular, we �nd slow onvergene ifthe frational part of � is large. Consequently, under these assumptions we annotexpet the onvergene order to be a monotone funtion of � any more. Neverthelesswe an prove that the method onverges for all � > 0:Theorem 3.4. Let 0 < � < 1 and assume that y 2 C2[0; T ℄ for some suitable T .Then, for 1 � j � N we havejy(tj)� yj j � Ct��1j ��h1+� if 0 < � < 1=2,h2�� if 1=2 � � < 1,(3.3)where C is a onstant independent of j and h.



12 K. DIETHELM, N. J. FORD, AND A. D. FREEDWe obtain two immediate onsequenes.Corollary 3.5. Under the assumptions of Theorem 3.4, we havemax0�j�N jy(tj)� yj j = �O(h2�) if 0 < � < 1=2,O(h) if 1=2 � � < 1.Moreover, for every � 2 (0; T ) we havemaxtj2[�;T ℄ jy(tj)� yj j = �O(h1+�) if 0 < � < 1=2,O(h2��) if 1=2 � � < 1.Proof of Theorem 3.4. The �rst steps of the proof are as in the proof of Theorem3.3. The key di�erene is that now 2 < 0 (note that we still have 2 = ��1, but now� < 1). Thus we annot apply Lemma 3.1. Instead we modify its proof so that it �tsto our requirements: We keep the indutive struture and remember that our laim isnow (3.3) rather than (3.1). With this hange in the indution hypothesis we proeedmuh as in the proof of Lemma 3.1. However, beause of this new hypothesis, we nowhave to estimate terms of the formPk�1j=1 bj;k+1t2j andPk�1j=1 aj;k+1t2j . By the MeanValue Theorem we have 0 � bj;k+1 � h�(k � j)��1 and 0 � aj;k+1 � h�(k � j)��1for 1 � j � k � 1 (where the onstant  is indepedent of j and k), respetively, sothat the problem redues to �nding a bound for Sk := Pk�1j=1 j2(k � j)��1. Underour assumptions, both the exponents 2 and �� 1 are in the interval (0; 1), and thenit is easily seen that Sk = O(k2+�). Using this relation we an omplete the proofof Theorem 3.4 by following along the lines of the rest of the proof of Lemma 3.1.3.3. Error bounds under smoothness assumptions on the given data.We onlude the setion on error bounds with a result where we formulate the hy-potheses in terms of the given data and not in terms of the unknown solution. Wegive a result in the ases � > 1 and later disuss properties of the numerial shemewhen � < 1.Theorem 3.6. Let � > 1. Then, if f 2 C3(G),max0�j�N jy(tj)� yj j = O(h2):Proof. We begin by disussing the ase � � 2. Then, aording to the resultsof Miller and Feldstein [31, x4℄, we �nd that y 2 C2[0; T ℄. Thus, in view of thesmoothness assumption on f and the hain rule, D�� y := f(�; y(�)) 2 C2[0; T ℄ too, andthe laim follows by virtue of Theorem 3.2.For the ase 1 < � < 2, we want to apply Lemma 3.1 and hene we have todetermine the onstants 1; 2; Æ1 and Æ2 in its hypotheses. In order to do so we needmore preise information about the behaviour of y. This information an be foundin [31, x5℄ from whih we derive that y(t) = t� +  (t) with some  2 R and some 2 C2[0; T ℄. This implies, in partiular, that y 2 C1[0; T ℄. As in the ase � > 2 abovewe an then dedue D�� y 2 C1[0; T ℄ too, and by Theorem 2.4(a), we �nd that we mayhoose 1 = � and Æ1 = 1. Moreover, the strutural information on y ombined withthe identity D�� y = f(�; y(�)) and the hain rule, yields that D2[D�� y℄(t) = ̂t��2+ ̂(t)with some ̂ 2 R and some  ̂ 2 C[0; T ℄. Thus, y(t) = ~t� + ~ (t) with some ~ 2 Rand some ~ 2 C2[0; T ℄, and by Theorem 2.5(a) and () the orret values for theremaining quantities are 2 = minf�; 2� � 2g = 2� � 2 � 0 and Æ2 = 2. The laimthen follows from Lemma 3.1.



FRACTIONAL ADAMS METHOD 13In the ase � < 1 the situation seems to be less lear. Aording to Theorem 2.1smoothness onditions on f imply that the exat solution is of the formy(t) =  (t) + �̂X�=1 �t�� + ~�X�=1 d�t1+��where  is twie di�erentiable. The �rst sum onsists of terms whih are not di�eren-tiable, and the seond sum is of terms that are di�erentiable one but not twie. Asremarked by Lubih [24℄ it seems unlikely that numerial shemes will be rapidly on-vergent over any interval that ontains the origin. Indeed we an prove that the errory(t1) � y1 of the approximation after just one step behaves as O(h2�) if f 2 C2(G).Simple numerial experiments indiate that this result annot be improved. Howeverthis error introdued in the initial phase is transient and from what we see in theexperiment reported in Table 4.5 and other omputations that we have performed,we believe the following onjeture to be true.Conjeture 3.2. Let 0 < � < 1. Then, if f 2 C2(G), for every � > 0 we havemaxtj2[�;T ℄ jy(tj)� yj j = O(h1+�):4. Numerial Examples. In this setion we present some numerial examplesto illustrate the error bounds derived above. We shall distinguish various ases a-ording to the smoothness properties of the funtions involved. We only onsideredexamples where 0 < � < 2 sine the ase � � 2 does not seem to be of major pratialinterest.All omputations were done in double preision arithmeti on a Pentium PC.4.1. Equations where D�� y is smooth. Our �rst example deals with the asethat the unknown solution y has a smooth derivative of order �. This is the asedesribed in Theorem 3.2. Spei�ally we shall look at the equationD�� y(t) = 40320�(9� �) t8�� � 3�(5 + �=2)�(5� �=2) t4��=2 + 94�(�+ 1)+�32 t�=2 � t4�3 � [y(t)℄3=2:(4.1)The initial onditions were hosen to be homogeneous (y(0) = 0, y0(0) = 0; the latteronly in the ase � > 1). The exat solution of this initial value problem isy(t) = t8 � 3t4+�=2 + 94 t�;and hene D�� y(t) = 40320�(9� �) t8�� � 3�(5 + �=2)�(5� �=2) t4��=2 + 94�(�+ 1);i.e. D�� y 2 C2[0; T ℄ for arbitrary T > 0 if � � 4, and thus the onditions of Theorem3.2 are ful�lled. Moreover, assuming that Conjeture 3.1 holds, the appliation ofRihardson extrapolation is also justi�ed. We display some of the results in Tables4.1 and 4.2. In eah ase, the leftmost olumn shows the step size used; the following



14 K. DIETHELM, N. J. FORD, AND A. D. FREEDolumn gives the error of our sheme at t = 1, and the olumns after that give theextrapolated values. The bottom line (marked \EOC") states the experimentallydetermined order of onvergene for eah of the olumns on the right of the table.Aording to our theoretial onsiderations, these values should be 1 + �, 2, 2 + �,3 + �, 4, 4 + �, . . . in the ase 0 < � < 1 and 2, 1 + �, 2 + �, 4, 3 + �, 4 + �, . . .for 1 < � < 2. The numerial data in the following tables show that these values arereprodued approximately at least for � > 1 (see Table 4.1). In the ase 0 < � < 1,displayed in Table 4.2, the situation seems to be less obvious. Apparently, we needto use muh smaller values for h than in the ase � > 1 before we an see that theasymptoti behaviour really sets in. This would normally orrespond to the situationthat the oeÆients of the leading terms are small in magnitude ompared to theoeÆients of the higher-order terms.As usual, the notation �5:53(�3) stands for �5:53 � 10�3, et.Table 4.1Errors for eq. (4.1) with � = 1:25, taken at t = 1.error ofstep size Adams sheme extrapolated values1=10 �5:53(�3)1=20 �1:59(�3) �2:80(�4)1=40 �4:33(�4) �4:60(�5) 1:63(�5)1=80 �1:14(�4) �8:17(�6) 1:90(�6) 2:13(�7)1=160 �2:97(�5) �1:54(�6) 2:24(�7) 2:71(�8) 1:47(�8)1=320 �7:66(�6) �3:04(�7) 2:56(�8) 2:28(�9) 6:24(�10)1=640 �1:96(�6) �6:16(�8) 2:85(�9) 1:73(�10) 3:25(�11)EOC 1:97 2:30 3:17 3:72 4:26Table 4.2Errors for eq. (4.1) with � = 0:25, taken at t = 1.error ofstep size Adams sheme extrapolated values1=10 2:50(�1)1=20 1:81(�2) �1:50(�1)1=40 3:61(�3) �6:91(�3) 4:09(�2)1=80 1:45(�3) �1:10(�4) 2:16(�3) �8:15(�3)1=160 6:58(�4) 8:19(�5) 1:46(�4) �3:89(�4) 1:28(�4)1=320 2:97(�4) 3:49(�5) 1:92(�5) �1:45(�5) 1:05(�5)1=640 1:31(�4) 1:12(�5) 3:37(�6) �8:50(�7) 6:01(�8)EOC 1:18 1:63 2:51 4:09 7:444.2. Equations where y is smooth. Next we ome to the ase that the un-known solution y itself is a smooth funtion. This is the ase desribed in Theorems3.3 and 3.4 and in Corollary 3.5. Spei�ally we shall look at the very simple linearequationD�� y(t) = 8><>: 2�(3� �) t2�� � y(t) + t2 � t for � > 1,2�(3� �) t2�� � 1�(2� �) t1�� � y(t) + t2 � t for � � 1.(4.2)



FRACTIONAL ADAMS METHOD 15The initial values were hosen as y(0) = 0 and (for � > 1) as y0(0) = �1. The truesolution is y(t) = t2 � t:In Tables 4.3 and 4.4 we show the errors of the Adams method at the point t = 1for various step sizes and various values of �. In eah ase, the last row again statesthe experimental order of onvergene. No extrapolation has been attempted. Thetheoretial �ndings of Theorems 3.4 (more preisely stated in the seond part ofCorollary 3.5) and 3.3 are reprodued approximately: In Table 4.3 we �nd an EOClose to 1 + � in the �rst three olumns (orresponding to the ase � � 1=2) and anEOC near 2� � in the other olumns where 1=2 < � < 1. Similarly, in Table 4.4 wesee that the EOC is always lose to 2� k2 where k2 = � � b� is the frational partof �. Table 4.3Errors for eq. (4.2) with � < 1, taken at t = 1.h � = 0:1 � = 0:3 � = 0:5 � = 0:7 � = 0:91=10 �1:03(�1) �3:14(�2) �1:44(�2) �1:05(�2) �1:49(�2)1=20 �4:95(�2) �1:10(�2) �4:52(�3) �3:38(�3) �6:08(�3)1=40 �2:09(�2) �3:91(�3) �1:46(�3) �1:14(�3) �2:62(�3)1=80 �8:65(�3) �1:42(�3) �4:81(�4) �3:99(�4) �1:16(�3)1=160 �3:59(�3) �5:26(�4) �1:62(�4) �1:44(�4) �5:28(�4)1=320 �1:51(�3) �1:98(�4) �5:52(�5) �5:31(�5) �2:42(�4)EOC 1:25 1:41 1:55 1:44 1:12Table 4.4Errors for eq. (4.2) with � > 1, taken at t = 1.h � = 1:25 � = 1:5 � = 1:851=10 6:74(�4) 9:14(�3) 4:69(�2)1=20 3:63(�4) 3:42(�3) 2:15(�2)1=40 1:43(�4) 1:25(�3) 9:75(�3)1=80 5:00(�5) 4:49(�4) 4:41(�3)1=160 1:65(�5) 1:61(�4) 1:99(�3)1=320 5:28(�6) 5:71(�5) 8:98(�4)EOC 1:65 1:49 1:154.3. Equations where f is smooth. Finally we present an example where thegiven funtion f (the right-hand side of the di�erential equation) is smooth. Thisallows us to illustrate the theorems of Subsetion 3.3. One again our example is alinear equation. This time it is homogeneous and has the formD�� y(t) = �y(t); y(0) = 1; y0(0) = 0(4.3)(the seond of the initial onditions only for � > 1 of ourse). It is well known thatthe exat solution is y(t) = E�(�t�)



16 K. DIETHELM, N. J. FORD, AND A. D. FREEDwhere E�(z) = 1Xk=0 zk�(�k + 1)is the Mittag-Le�er funtion of order �. Obviously, neither y nor D�� y is smooth,and hene we annot apply the results of Subsetion 3.2.In Table 4.5 we state some numerial results for this problem in the ase � < 1.As in the previous subsetion, the data given in the tables is the error of the Adamssheme at the point t = 1. We an see from the last line that the order of onvergeneis always lose to 1+� as indiated by Conjeture 3.2. In ontrast, Table 4.6 displaysthe ase � > 1; here the results on�rm the O(h2) behaviour stated in Theorem 3.6.Table 4.5Errors for eq. (4.3) with � < 1, taken at t = 1.h � = 0:1 � = 0:3 � = 0:5 � = 0:7 � = 0:91/10 �5:42(�3) �1:86(�3) �1:30(�3) �9:91(�4) �7:51(�4)1/20 �1:22(�3) �5:85(�4) �3:93(�4) �2:81(�4) �1:91(�4)1/40 �4:40(�4) �1:97(�4) �1:26(�4) �8:28(�5) �4:99(�5)1/80 �1:68(�4) �6:90(�5) �4:18(�5) �2:50(�5) �1:32(�5)1/160 �6:65(�5) �2:49(�5) �1:42(�5) �7:63(�6) �3:54(�6)1/320 �2:68(�5) �9:18(�6) �4:86(�6) �2:35(�6) �9:48(�7)EOC 1.31 1.44 1.54 1.70 1.90Table 4.6Errors for eq. (4.3) with � > 1, taken at t = 1.h � = 1:25 � = 1:5 � = 1:851/10 �5:61(�4) �5:46(�4) �4:40(�4)1/20 �1:27(�4) �1:28(�4) �1:07(�4)1/40 �2:90(�5) �3:04(�5) �2:65(�5)1/80 �6:68(�6) �7:33(�6) �6:57(�6)1/160 �1:55(�6) �1:78(�6) �1:63(�6)1/320 �3:63(�7) �4:37(�7) �4:07(�7)EOC 2.09 2.03 2.00REFERENCES[1℄ C. T. H. Baker, The Numerial Treatment of Integral Equations, Clarendon Press, Oxford,1977.[2℄ D. A. Benson, The Frational Advetion-Dispersion Equation: Development and Appliation,PhD thesis, University of Nevada Reno, 1998.[3℄ H. Bra�, Quadraturverfahren, Vandenhoek & Rupreht, G�ottingen, 1977.[4℄ H. Brunner, A survey of reent advanes in the numerial treatment of Volterra integral andintegro-di�erential equations, J. Comput. Appl. Math., 8 (1982), pp. 213{229.[5℄ M. Caputo, Linear models of dissipation whose Q is almost frequeny independent{II, Geo-phys. J. Royal Astronom. So., 13 (1967), pp. 529{539.[6℄ M. Caputo and F. Mainardi, Linear models of dissipation in anelasti solids, Rivista delNuovo Cimento, 1 (1971), pp. 161{198.[7℄ , A new dissipation model based on memory mehanism, Pure and Appl. Geophys., 91(1971), pp. 134{147.
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