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DETAILED ERROR ANALYSIS
FOR A FRACTIONAL ADAMS METHOD*

KAI DIETHELM', NEVILLE J. FORD}, AND ALAN D. FREED?

Abstract. We investigate a method for the numerical solution of the nonlinear fractional
differential equation D2y(t) = f(t,y(t)), equipped with initial conditions y®)(0) = y¥, & =
0,1,...,[a] — 1. Here a may be an arbitrary positive real number, and the differential operator
is the Caputo derivative. The numerical method can be seen as a generalization of the classical one-
step Adams-Bashforth-Moulton scheme for first-order equations. We give a detailed error analysis
for this algorithm. This includes, in particular, error bounds under various types of assumptions
on the equation. Asymptotic expansions for the error are also mentioned briefly. The latter may
be used in connection with Richardson’s extrapolation principle to obtain modified versions of the
algorithm that exhibit faster convergence behaviour.

Key words. Fractional differential equation, Caputo derivative, Adams-Bashforth-Moulton
method.

AMS subject classifications. Primary 651.06; secondary 26A33, 65B05, 651.05, 651.20, 65R20.

1. Introduction. We discuss a numerical method for the fractional initial value
problem

(1) Dy =fy®), MO =y, k=01, [a] -1,
where the yék) may be arbitrary real numbers and where a > 0. In (1.1), D denotes
the differential operator in the sense of Caputo [19], defined by

D22z(t) = JP~*DPz(t)

where 3 := [a] is the smallest integer > a. Here D? is the usual differential operator
of (integer) order 3, and for u > 0, J# is the Riemann-Liouville integral operator of
order p, defined by

W — L ' DAY e
Jhz(t) = M) /0 (t —u)*" z(u)du.
Equations of this type arise in a number of applications where models based on frac-
tional calculus are used. Some early examples for such models are given in the book
of Oldham and Spanier [33] (diffusion processes) and the classical papers of Caputo
[5], Caputo and Mainardi [6, 7] and Torvik and Bagley [41] (these papers dealing with
the modeling of materials) as well as in the publications of Marks and Hall [28] (signal
processing) and Olmstead and Handelsman [34] (also dealing with diffusion problems);
more recent results are described, e.g., in the work of Benson [2] (advection and dis-
persion of solutes in natural porous or fractured media), Chern [8] and Diethelm and
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2 K. DIETHELM, N. J. FORD, AND A. D. FREED

Freed [13, 14, 15] (modeling of the behaviour of viscoelastic and viscoplastic materials
under external influences), Gaul, Klein, and Kempfle [16] (description of mechanical
systems subject to damping), Gléckle and Nonnenmacher [17] (relaxation and reac-
tion kinetics of polymers), Gorenflo and Rutman [21] (so-called ultraslow processes),
Gorenflo, Mainardi et al. [18, 20, 27, 39] (connections to the theory of random walks,
the latter two papers especially with respect to applications to mathematical mod-
els in finance), Metzler et al. [30] (relaxation in filled polymer networks), Podlubny
[35] (control theory), Podlubny et al. [37] (heat propagation), and Shaw, Warby and
Whiteman [40] (modeling of viscoelastic materials). Surveys or collections of applica-
tions can also be found in Gorenflo and Mainardi [19], Mainardi [26], Matignon and
Montseny [29], Nonnenmacher and Metzler [32] and Podlubny [36]. Finally we refer
to the work of Woon [43] that essentially mentions mathematical applications that, in
turn, have important implications in other sciences like physics. Note that many of
those papers formally use Riemann-Liouville fractional derivatives instead of Caputo
derivatives. Typically those authors then require homogeneous initial conditions. It
is known [36] that under those homogeneous conditions the equations with Riemann-
Liouville operators are equivalent to those with Caputo operators. We chose the
Caputo version because it allows us to specify inhomogeneous initial conditions too if
this is desired. For the Riemann-Liouville approach, this generalization is connected
with major practical difficulties; cf., e.g., [12, 15].

It is well known that the initial value problem (1.1) is equivalent to the Volterra
integral equation

[a]-1 v t
(1.2) W)= 30 S+ e [ (=0 ()

70 )l " T(a)

in the sense that a continuous function is a solution of (1.1) if and only if it is a
solution of (1.2). For a brief derivation we refer to [11, Lemma 2.3].

In order to indicate the approach that we will use for the fractional equation and
to help highlight the distinctive features of our method, we shall first briefly recall
the idea behind the classical one-step Adams-Bashforth-Moulton algorithm for first-
order equations. So, for a start, we focus our attention on the well-known initial-value
problem for the first-order differential equation

(1.3a) Dy(t) = f(t,y(t)),
(1.3b) y(0) = yo.

We assume the function f to be such that a unique solution exists on some interval
[0,T1], say. Following [22, §IIL.1], we suggest to use the predictor-corrector technique of
Adams where, for the sake of simplicity, we assume that we are working on a uniform
grid {t; = jh:j =0,1,..., N} with some integer N and h = T/N. The basic idea is,
assuming that we have already calculated approximations y; ~ y(t;) (j = 1,2,...,k),
that we try to obtain the approximation yj4; by means of the equation

(1.4) ) =yt + [ FG)ds

This equation follows upon integration of (1.3a) on the interval [tj,tr41]. Of course,
we know neither of the expressions on the right-hand side of eq. (1.4) exactly, but we
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do have an approximation for y(t;), namely yi, that we can use instead. The integral
is then replaced by the two-point trapezoidal quadrature formula

b—a

b
(15) [ 9@z~ 2% (gla) + 90,

thus giving an equation for the unknown approximation yiy1, it being

(1.6 Yot = vk + 5 L7t y(8)) + F(tisn,ylta )],

where again we have to replace y(¢;) and y(tx4+1) by their approximations y; and
Yr+1, respectively. This yields the equation for the implicit one-step Adams-Moulton
method, which is

(L.7) Yet1 = Yi + g Lf (ko yr) + f ka1, Yra1)] -
The problem with this equation is that the unknown quantity y41 appears on both
sides, and due to the nonlinear nature of the function f, we cannot solve for yj41
directly in general. Therefore, we may use eq. (1.7) in an iterative process, inserting
a preliminary approximation for g1 in the right-hand side in order to determine a
better approximation that we can then use.

The preliminary approximation yf 41, the so-called predictor, is obtained in a very
similar way, only replacing the trapezoidal quadrature formula by the rectangle rule

b
(19 [ s@rdz = b - ajgta),
a
giving the explicit (forward Euler or one-step Adams-Bashforth) method

(1.9) yhi1 = uk + hf(tr, yp).

It is well known [22, p. 372] that the process defined by eq. (1.9) and

(1.10) Ye+1 = Yr + g (f(trsyn) + Ftrr1sYisr)) s

called the one-step Adams-Bashforth-Moulton method, is convergent of order 2, i.e.

(1.11) j_max [y(t;) - yi = O(h*).

Moreover, this method behaves satisfactorily from the point of view of its numerical
stability [23, Chap. IV]. It is said to be of the PECE (Predict, Evaluate, Correct,
Evaluate) type because, in a concrete implementation, we would start by calculating
the predictor in eq. (1.9), then we evaluate f(tj41,y},,), use this to calculate the
corrector in eq. (1.10), and finally evaluate f(tg+1,¥yk+1). This result is stored for
future use in the next integration step.

Having introduced this concept, we now try to carry over the essential ideas to the
fractional-order problem with some unavoidable modifications. The key is to derive an
equation similar to (1.4). Fortunately, such an equation is available, namely eq. (1.2).
This equation looks somewhat different from eq. (1.4), because the range of integration
now starts at 0 instead of t;. This is a consequence of the non-local structure of the
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fractional-order differential operators. It is straightforward in principle to construct
a formula that generalizes the Adams method to fractional equations. However now
the discrete equations we derive have unbounded memory and are therefore of a class
that is more challenging to analyze than in the classical case. One cannot expect
insights from the classical case to carry over to the fractional Adams method, as we
shall see in the sequel.

To construct the required formula, we use the product trapezoidal quadrature
formula with respect to the weight function (fx1; — -)® ! to replace the integral,
where nodes t; (j = 0,1,...,k + 1) are used as before. In other words, we apply the
approximation

tht1 ! trt1 1
(1.12) / (k1 — 2)* g(2)dz =~ / (tkr1 — 2)%  gr+1(2)dz,
0 0

where §r41 is the piecewise linear interpolant for g with nodes and knots chosen at
the tj, j =0,1,2,...,k+ 1. As stated in [25] (see also [1, 4]) the product integration
idea is a rather natural approach in this situation. Using standard techniques from
quadrature theory (cf. [13]), we write the integral on the right-hand side of (1.12) as

trt1 k+1
(1.13) / (tkg1 — 2)* " Grga (2)dz = Zaj,k+1g(tj)
0 =
where
(ko1 = (k= a)(k + 1)°) ifj =0,
(L1d)a; ey = — o § (B +2)7 0 (k=)
3, ala+1) —2(k—j+ 1)a+1) if1<j<k,
1 ifj=Fk+1.

This then gives us our corrector formula (i.e. the fractional variant of the one-step
Adams-Moulton method), which is

[al-1 j k
; 1
(115) gryr = Y %yéj) T > @ik F(,05) + ansr g f (b Uit
=0 7 J=0

The remaining problem is the determination of the predictor formula required to
calculate yj, ;. The idea we use to generalize the one-step Adams-Bashforth method
is the same as the one described above for the Adams-Moulton technique: We replace
the integral on the right-hand side of eq. (1.2) by the product rectangle rule

trt1 k
(1.16) |t =2 g & 3 bt
0

Jj=0

where now

¢

h . .
(1.17) biken = o (k41— )% = (k= )"
(see also [13]). Thus, the predictor y£+1 is determined by the fractional Adams-
Bashforth method

[a]—-1 ,j k
oo 1
(1.18) v =Y —’“]jlyé”+—r(a)§ bjki1f(t,y)).
. par

i=0
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Our basic algorithm, the fractional Adams-Bashforth-Moulton method, is completely
described now by eqgs. (1.18) and (1.15) with the weights a; 41 and bj x+1 being
defined according to (1.14) and (1.17), respectively.

We have thus completed the description of our numerical algorithm. The re-
mainder of this paper will be devoted to the error analysis for this scheme. For this
purpose, we shall first (in §2) present some auxiliary results, and then (in §3) we will
use these results to give a thorough investigation of the error. Finally, in §4 we will
present some numerical examples illustrating the theoretical results.

2. Auxiliary Results. Throughout the rest of the paper we assume that the
Adams method (with the predictor given by (1.18) and the corrector as in (1.15)) is
used to solve the initial value problem (1.1). As usual we demand that the function
f is continuous and fulfils a Lipschitz condition with respect to its second argument
with Lipschitz constant L on a suitable set G. Then, by [11, Thms. 2.1 and 2.2], a
uniquely determined solution y of the problem exists on some interval [0, T], say. It
is this solution that we aim to approximate.

For the error analysis it is useful to know additional properties of the solution.
Specifically, we require information about the smoothness. From [24, §2] we take the
following result (note that a in that paper corresponds to a — 1 in our work).

THEOREM 2.1.

(a) Assume that f € C?(G). Define v := [1/a] — 1. Then there exist a function
Y € CY0,T] and some cy,...,c; € R such that the solutiony of (1.1) can be expressed
in the form

y(t) = () + > et

(b) Assume that f € C*(G). Define v := [2/a] — 1 and ¥ := [1/a] — 1. Then
there ezist a function ¢ € C*[0,T] and some c1,...,c; € R and dy,...,d; € R such
that the solution y of (1.1) can be expressed in the form

y(t) =)+ e’ + > dy 't
v=1 v=1

Moreover it is useful to relate the smoothness properties of a given function to
the smoothness properties of its Caputo derivatives. In this context we state a quite
simple theorem.

THEOREM 2.2. Ify € C™[0,T] for some m € N and 0 < a < m then

m-fal-t (¢+1al)
a Y (0) [a]—a+t
D = E
wy(t) ps Mfa] —a+ €+ l)t +9(t)

with some function g € C™=121[0,T]. Moreover, the (m — [a])th derivative of g
satisfies a Lipschitz condition of order [a] — a.

Proof. This is a direct consequence of the definition of the Caputo differential
operator and [38, Thm. 3.2]. O

Note that this immediately yields a very elementary but useful corollary that
generalizes the classical result for derivatives of integer order.

COROLLARY 2.3. Lety € C™[0,T] for some m € N and assume that 0 < a < m.
Then D¢y € C[0,TY.
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Very simple counterexamples show that such a result cannot hold for the Riemann-
Liouville derivatives. We therefore interpret this corollary as an indication for the
practical usefulness of the Caputo derivatives. However, we explicitly point out that
we can only prove the continuity of Dy but not the differentiability. The representa-
tion from Theorem 2.2 reveals that differentiability will in general only hold if certain
(integer-order) derivatives of y vanish at the origin. Since the deeper investigation of
this topic is outside the scope of this paper, we shall not pursue it any further here.

What we do need for our purposes is some information on the errors of the quadra-
ture formulas that we have used in the derivation of the predictor and the corrector,
respectively. We first give a statement on the product rectangle rule that we have
used for the predictor.

THEOREM 2.4.

(a) Let z € C'[0,T]. Then,

trg1 1 ,
t — ) t)dt — b — triqh.
R Z 1 2(8)] < 112 oty

(b) Let z(t) = tP for some p € (0,1). Then,
trt1 pe1
/0 (trp1 — ) 2(t)dt — Z bik+12(t;)| < CREEHP=1h

where CR‘; is a constant that depends only on a and p.

Proof. By construction of the product rectangle formula, we find in both cases
that the quadrature error has the representation

thyt
/ (thor — £)° L2(t)dt — Z bjrsr2(t
0

koo pG+DR
(21) =Y [ e = 077 (60 - 2t

To prove statement (a), we apply the Mean Value Theorem of Differential Calculus
to the second factor of the integrand on the right-hand side of (2.1) and derive

tryt
/ (thor — 1) L2(t)dt — Zbakﬂz
0

ko rG+DA
< 12" lloe E / (tpe1 — )1 (t — jh)dt
j=0"ih

h1+a

k
_ i
=l — >
J:

( L k1 gy - - g>l+a]—<k—j>“)

14+«

k
S iy SR S o2
*© 1+a
=0
14+ k+1 k
el ([ =Y
0 =
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Here the term in parentheses is simply the remainder of the standard rectangle quadra-
ture formula, applied to the function ¢®, and taken over the interval [0, k 4+ 1]. Since
the integrand is monotonic, we may apply some standard results from quadrature
theory [3, Thm. 97] to find that this term is bounded by the total variation of the
integrand, viz. the quantity (k¥ + 1)®. Thus,

trt1 , plto
| =0 tsar - Zbﬂmz] < 12/l (k4 1)°.

Similarly, to prove (b), we use the monotonicity of z in (2.1) and derive

trt1
/ (thor — ) L 2(t)dt — ZkaHz
0

k (j+1)h )
< [altyen) - 2(07) / U e
j=0 J
ha+p k ) )
= Z G+ 1P =) ((k+1-5)* = (k= 4)*)
j=
hotp k-1
< 2(k +1)* — 2k° Pk —j a-l
<— | 20k+1) +pa]§J (k—3j+aq)
hotp k=1
< 20(k a—1 p—1 k—3 a—1
< —— | 20(k+q) +pa;J (k—j+aq)

by additional applications of the Mean Value Theorem. Here ¢ = 0 if o < 1, and
q = 1 otherwise. In either case a brief asymptotic analysis using the Euler-MacLaurin
formula [42, Thm. 3.7] yields that the term in parentheses is bounded from above by
Ca,p(k+ 1)PT~1 where C,,, is a constant depending on a and p but not on k. O

Next we come to a corresponding result for the product trapezoidal formula that
we have used for the corrector. The proof of this theorem is very similar to the proof
of Theorem 2.4; we therefore omit the details.

THEOREM 2.5.

(a) If z € C?[0,T) then there is a constant CX* depending only on a such that

trgt k41
/ (tro1 — ) 2(t)dt — Za] k12(t;)] < CX)2" || ooty B2
0

(b) Let z € C'[0,T] and assume that 2" fulfils a Lipschz’tz condition of order p
for some p € (0,1). Then, there exist positive constants B . (depending only on o
and p) and M(z, ) (depending only on z and u) such that

tht1 k+1
/0 (trg1 — 1) T 2(t)dt — Za] ka12(t;)| < BIY M (2, p)tg, b
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(¢) Let z(t) = t? for some p € (0,2) and ¢ := min(2,p + 1). Then,

trq1 k41
/0 (thar — 1)1 2(t)dt =D ajppr2(t))| < CRttP 2he
7j=0

where Cgfp is a constant that depends only on a and p.

REMARK 2.1. Notice that in part (¢) of Theorem 2.5 it may happen that a < 1
and p < 1. This implies o = p+1. Thus, the exponent of ty1 on the right-hand side of
the inequality is equal to o — 1 which is negative. At first sight this may seem counter-
intuitive because it means that the overall integration error becomes larger if the size
of the interval of integration becomes smaller. The explanation for this phenomenon
is that by making tyy1 smaller we do not only shorten the length of the integration
interval (which should lead to a smaller error) but we also change the weight function
in a way that makes the integral more difficult, and this second feature leads to an
increase in the error.

A similar observation can be made in Theorem 2.4 (b).

3. Error Analysis for the Adams Method. In this section we present the
main results of this paper, namely the theorems concerning the error of our Adams
scheme. It is useful to distinguish a number of cases. Specifically, we shall see that
the precise behaviour of the error differs depending on whether o < 1 or a > 1.
Moreover, the smoothness properties of the given function f and the unknown solution
y play an important role. In view of Theorem 2.1, we find that smoothness of one of
these functions will imply non-smoothness of the other unless some special conditions
are fulfilled. Therefore we shall also investigate the error under those two different
smoothness assumptions.

3.1. A general result. Based on the error estimates of §2 we shall now present
a general convergence result for the Adams-Bashforth-Moulton method. In the sub-
sections below we shall specialize this result to particularly important special cases.

LEMMA 3.1. Assume that the solution y of the initial value problem is such that

trgt k
/0 (tpr1 — 1) DYy (t)dt — ij’kHD‘:y(tj) <yt ™

j=0
and

k+1

thyt
/0 (ther — ) DIy(t)dt = D~ aj 1 D2y(ty)| < Cot}? b
=0

with some v1,v2 > 0 and 81,92 > 0. Then, for some suitably chosen T' > 0, we have

N — | — q
OrgnjaSXNw(t]) yil = O(h?)

where ¢ = min{d; + a,d2} and N = |T/h|.
Proof. We will show that, for sufficiently small h,

(3.1) ly(t;) = y| < Ch?

for all j € {0,1,..., N}, where C is a suitable constant. The proof will be based on
mathematical induction. In view of the given initial condition, the induction basis
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(j = 0) is presupposed. Now assume that (3.1) is true for j = 0,1,...,k for some
k < N — 1. We must then prove that the inequality also holds for j = k + 1. To do
this, we first look at the error of the predictor y,l:H. By construction of the predictor
we find that

trt1

k
1 B
|y (trs1) = Yps| = (o) /(tk+1—t)a Ly @)t = bk f(t5,5)
0 7=0
! e 'D d y b D
< _ pa— o _ ) o )
<wa|f - 3 bk D2yt
1 k
+ () ]go b1 f(t,y(t5)) — f(t5,95)]
Citly s 1 < ,_ OT" s  CLT”
. 1 [ < 1 a.
(3.2) < ) h r ; bjrs1 LChT < o) h +F(a+1)h

In this derivation, we have used the Lipschitz property of f, the assumption on the
error of the rectangle formula, and the facts that, by construction of the quadrature
formula underlying the predictor, b; z4+1 > 0 for all j and k and

b bt 1 1
> ik = / (tpr — 1) Hdt = —t, < =T
—~ 0 @ !

On the basis of the bound (3.2) for the predictor error we begin the analysis of the
corrector error. We recall the relation (1.14) which we shall use in particular for
j =k + 1 and find, arguing in a similar way to above, that

Y (tht1) = Yrsr]
1 bt ~1 : P
T /0 (tker — 1) " f(t,y(t))dt —j;o ajr+1f(t5:9;) — @k k1 f(tkt1, Ypor)

1 tryt k+1
< — (thyr — 6)* "Dy (t)dt — ) ajks1DIy(t;)
o . 2 j

K
+ ﬁ jzzoaj,kﬂ\f(tj:y(tj)) — ft,y5)l

1
+ —I‘(a) apyt k1 | f (e, y(trgr)) — f(tk+1,y11:+1)|

Cot)?y 5,  CL L (G s CLT®
< 1 q
< T T Z“] 1+ Gk Ry ( r@ " " Tar)" )
Cy T2 CLT® CiLT™M CL2T o
< + + + hd
I'a) T(a+1) T(@l(a+2) Ta+)I'(a+2)

in view of the nonnegativity of 7, and <» and the relations d» < ¢ and §; + a < q.
By choosing T sufficiently small, we can make sure that the second summand in the
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parentheses is bounded by C/2. Having fixed this value for T, we can then make
the sum of the remaining expressions in the parentheses smaller than C/2 too (for
sufficiently small h) simply by choosing C sufficiently large. It is then obvious that
the entire upper bound does not exceed C'h?. O

3.2. Error bounds under smoothness assumptions on the solution. First
we assume that the given data is such that the solution y itself is sufficiently differ-
entiable. As mentioned above, the result depends on whether @ > 1 or @ < 1.

THEOREM 3.2. Let 0 < a and assume D%y € C?[0,T) for some suitable T. Then,

{O(h2) ifa>1,

max |y(tj) - yj‘ = O(h1+a) ifa < 1.

0<j<N

Before we come to the proof, we note one particular point: The order of conver-
gence depends on «a, and it is a non-decreasing function of «. This is due to the fact
that we discretize the integral operator in (1.2) which behaves more smoothly (and
hence can be approximated with a higher accuracy) as « increases. In contrast, the
method of [10] uses a different approach; it is based on a direct discretization of the
differential operator in (1.1). The smoothness properties of this operator (and thus
the ease with which it may be approximated) deteriorate as « increases, and so we
find that the convergence order of the method from [10] is a non-increasing function
of a; in particular no convergence is achieved there for @ > 2. It is a distinctive
advantage of the Adams scheme presented here that it converges for all a > 0.

Proof of Theorem 3.2. In view of Theorems 2.4 and 2.5, we may apply Lemma
3.1 with vy = v =a >0, 6; = 1 and §, = 2. Thus we find an O(h?) error bound
where

2 if a > 1,

Note that in a certain sense the theorem above deals with the “optimal” situation:
The function that we approximate in our process is f(-,y(:)) = D%y. In order to
obtain very good error bounds, we need to make sure that the quadrature errors for
this function are (asymptotically) as small as possible. A sufficient condition for this
to hold is, as is well known from quadrature theory [3], that this function is in C? on
the interval of integration. This is precisely the setting discussed in Theorem 3.2. So
this theorem shows us what kind of performance the Adams method can give under
optimal circumstances, and it also states sufficient conditions for such results to hold.

There is of course a disadvantage in the formulation of the hypotheses of the
theorem: They are stated in terms of the solution y (or, more precisely, its Caputo
derivative of order «), which is unknown in general. Even though it is sometimes
possible to determine the smoothness properties of Dy from the given data, there
still is some need for a corresponding error theory for the Adams method under
assumptions formulated directly in terms of the given data, i.e. in terms of the function
f. Such results will be the topic of the next subsection.

Before we come to those results however, we want to give some more information
under assumptions similar to those of the previous theorem. Specifically we want to
state the conjecture that the error of our scheme, taken at a fixed abscissa, possesses
an asymptotic expansion in powers of the step size h under additional smoothness
conditions on D%y. If this were true, and most of the numerical results shown in §4
indicate this, we could construct a Richardson extrapolation algorithm [42] based on
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the Adams scheme. The use of this extrapolation procedure then would permit us to
obtain more accurate numerical approximations for the desired solution.

CONJECTURE 3.1. Let a > 0 and assume that D%y € C*[0,T] for some k > 3
and some suitable T. Then,

kl kz
y(T) = yrm = _c;h™ + > d;h ™+ + O(h*?)

j=2 j=1

where ki, ko and ks are certain constants depending only on k and satisfying ks >
max(2ki, k2 + ).

Notice that the asymptotic expansion begins with an h? term and continues with
hlte for 1 < a < 3, whereas it begins with h'*T®, followed by h2, for 0 < a < 1.

Our belief in the truth of this conjecture is not only supported by the numerical
results but also by the results of de Hoog and Weiss [9, §5] who show that asymp-
totic expansions of this form hold if we use the fractional Adams-Moulton method
(i.e. if we solve the corrector equation exactly) and that a similar expansion can be
derived for the fractional Adams-Bashforth method (using the predictor as the final
approximation rather than correcting once with the Adams-Moulton formula). For
the moment however, we leave the question of the influence of the corrector step (that
combines the two approaches) on this expansion open.

Rather, we turn our attention to another related problem. In the previous the-
orems we had formulated our hypotheses in the form of smothness assumptions on
D2y. Now we want to replace this by similar assumptions on y itself. In view of
Theorem 2.2 we must be aware of the fact that smoothness of y in general implies
non-smoothness of D2y (the function that we have to approximate), so some difficul-
ties are likely. Fortunately Theorem 2.2 also informs us about the precise nature of
the singularities in the derivatives of D%y. We can exploit this information to obtain
the following results.

THEOREM 3.3. Let a > 1 and assume that y € C*+121[0, T| for some suitable T.
Then,

N o] = +[a]—a
OISHjaSXN‘y(tJ) yil = O(h )-

Proof. By Theorem 2.2 we find that D%y(z) = cz[®! + g(z) where g € C'[0,T]
and ¢' fulfils a Lipschitz condition of order [a] — . Thus, according to Theorems
2.4 and 2.5 we can apply Lemma 3.1 with 74 = 0, 72 = a—1 > 0, §; = 1 and
ds = 1+ [a] — a. Because of @ > 1 we then find that §; + a = 1+ a > 2 > 4§y, and
hence min{8; + a,d2} = d,. So the overall error bound is O(h°2). O

Notice that a reformulation of Theorem 3.3 yields that, if 1 < a = k; + ko with
ky € Nand 0 < ko < 1, then the error is O(h?>~*2). Thus the fractional part of a plays
the decisive role for the order of the error. In particular, we find slow convergence if
the fractional part of a is large. Consequently, under these assumptions we cannot
expect the convergence order to be a monotone function of a any more. Nevertheless
we can prove that the method converges for all a > 0:

THEOREM 3.4. Let 0 < a < 1 and assume that y € C*[0,T] for some suitable T.
Then, for 1 < j < N we have

_ RFe if0<a<1/2
A a=1 ’
(3.3) ly(t;) — y;] < C15 X{h‘za if1/2<a<1,

where C is a constant independent of j and h.
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We obtain two immediate consequences.
COROLLARY 3.5. Under the assumptions of Theorem 3.4, we have

t:) — sl =
omax_ [y(t;) =yl

O(h*™) if0<a<1/2,
O(h)  if1)2<a<l.

Moreover, for every e € (0,T) we have

N _fOomte) ifo<a<1/2,
max, ly(t;) — vl = {0(h2“) if1/2<a<1.

Proof of Theorem 3.4. The first steps of the proof are as in the proof of Theorem
3.3. The key difference is that now 72 < 0 (note that we still have v = a—1, but now
a < 1). Thus we cannot apply Lemma 3.1. Instead we modify its proof so that it fits
to our requirements: We keep the inductive structure and remember that our claim is
now (3.3) rather than (3.1). With this change in the induction hypothesis we proceed
much as in the proof of Lemma 3.1. However, because of this new hypothesis, we now
have to estimate terms of the form Zf;ll bjk+1t;” and Zf;ll ajk+1t;°. By the Mean
Value Theorem we have 0 < bj ;41 < h*(k — ) ! and 0 < aj g1 < ch®(k —j)*!
for 1 < j < k — 1 (where the constant ¢ is indepedent of j and k), respectively, so
that the problem reduces to finding a bound for Sy := 25;11 j72(k — )~ 1. Under
our assumptions, both the exponents 42 and o — 1 are in the interval (0, 1), and then
it is easily seen that Sy = O(k72%%). Using this relation we can complete the proof
of Theorem 3.4 by following along the lines of the rest of the proof of Lemma 3.1. O

3.3. Error bounds under smoothness assumptions on the given data.
We conclude the section on error bounds with a result where we formulate the hy-
potheses in terms of the given data and not in terms of the unknown solution. We
give a result in the cases a > 1 and later discuss properties of the numerical scheme
when a < 1.

THEOREM 3.6. Let a > 1. Then, if f € C3(Q),

P o= 2
max [y(t;) = ;| = O(h).

Proof. We begin by discussing the case @ > 2. Then, according to the results
of Miller and Feldstein [31, §4], we find that y € C?[0,7]. Thus, in view of the
smoothness assumption on f and the chain rule, D2y := f(-,y(-)) € C?[0,T] too, and
the claim follows by virtue of Theorem 3.2.

For the case 1 < a < 2, we want to apply Lemma 3.1 and hence we have to
determine the constants ~y1,72,d; and & in its hypotheses. In order to do so we need
more precise information about the behaviour of y. This information can be found
in [31, §5] from which we derive that y(t) = ct* + ¢ (¢) with some ¢ € R and some
¢ € C%[0,T]. This implies, in particular, that y € C*[0,T]. Asin the case a > 2 above
we can then deduce D%y € C'[0, T] too, and by Theorem 2.4(a), we find that we may
choose 71 = a and é; = 1. Moreover, the structural information on y combined vgith
the identity D2y = f(-,y(-)) and the chain rule, yields that D?[D2y](t) = &t 2 +4)(t)
with some ¢ € R and some ¢ € C[0,T]. Thus, y(t) = & + (t) with some ¢ € R
and some 1) € C?[0,T], and by Theorem 2.5(a) and (c) the correct values for the
remaining quantities are v2 = min{a,2a — 2} = 2a — 2 > 0 and d» = 2. The claim
then follows from Lemma 3.1. O
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In the case a < 1 the situation seems to be less clear. According to Theorem 2.1
smoothness conditions on f imply that the exact solution is of the form

y(t) =) + > et + > d e
v=1 v=1

where 1) is twice differentiable. The first sum consists of terms which are not differen-
tiable, and the second sum is of terms that are differentiable once but not twice. As
remarked by Lubich [24] it seems unlikely that numerical schemes will be rapidly con-
vergent over any interval that contains the origin. Indeed we can prove that the error
y(t1) — y1 of the approximation after just one step behaves as O(h?®) if f € C*(Q).
Simple numerical experiments indicate that this result cannot be improved. However
this error introduced in the initial phase is transient and from what we see in the
experiment reported in Table 4.5 and other computations that we have performed,
we believe the following conjecture to be true.

CONJECTURE 3.2. Let 0 < a < 1. Then, if f € C*(G), for every e > 0 we have

t;) —yi| = O(h'+?).
tjrgﬁf;}\y(g) yil = O( )

4. Numerical Examples. In this section we present some numerical examples
to illustrate the error bounds derived above. We shall distinguish various cases ac-
cording to the smoothness properties of the functions involved. We only considered
examples where 0 < a < 2 since the case a > 2 does not seem to be of major practical
interest.

All computations were done in double precision arithmetic on a Pentium PC.

4.1. Equations where D%y is smooth. Our first example deals with the case
that the unknown solution y has a smooth derivative of order . This is the case
described in Theorem 3.2. Specifically we shall look at the equation

D2y(t) = 7F?§?’_2Z) e — 373; f Zggt“’/? + g[‘(a +1)
3
(4.1) + (%ta/Q —t4> — [y

The initial conditions were chosen to be homogeneous (y(0) = 0, y'(0) = 0; the latter
only in the case a > 1). The exact solution of this initial value problem is

y(t) = 5 — 3t*te/2 4 %t“,

and hence

40320 5 5+ a/2) 4 9
Doy(t) = ——— 8@ — 3= T y4=e/2 L T 1

O =T o TG - a/2) Falle+l),
i.e. D&y € C?[0,T] for arbitrary T > 0 if a < 4, and thus the conditions of Theorem
3.2 are fulfilled. Moreover, assuming that Conjecture 3.1 holds, the application of
Richardson extrapolation is also justified. We display some of the results in Tables
4.1 and 4.2. In each case, the leftmost column shows the step size used; the following
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column gives the error of our scheme at ¢ = 1, and the columns after that give the
extrapolated values. The bottom line (marked “EOC”) states the experimentally
determined order of convergence for each of the columns on the right of the table.
According to our theoretical considerations, these values should be 1+ «, 2, 2 + a,
3+a,4,44+a, ... inthecase0<a<land 2, 14+a,2+a,4,3+a,4+q, ...
for 1 < a < 2. The numerical data in the following tables show that these values are
reproduced approximately at least for o > 1 (see Table 4.1). In the case 0 < a < 1,
displayed in Table 4.2, the situation seems to be less obvious. Apparently, we need
to use much smaller values for h than in the case a > 1 before we can see that the
asymptotic behaviour really sets in. This would normally correspond to the situation
that the coefficients of the leading terms are small in magnitude compared to the
coefficients of the higher-order terms.
As usual, the notation —5.53(—3) stands for —5.53 - 1073, etc

TABLE 4.1
Errors for eq. (4.1) with o = 1.25, taken at t = 1.

error of
step size | Adams scheme extrapolated values
1/10 —5.53(—3)
1/20 —1.59(-3) —2.80(—4)
1/40 —4.33(—4) —4.60(=5) 1.63(—5)
1/80 —1.14(—-4) —8.17(—6) 1.90(—6) 2.13(—7)
1/160 —2.97(-5) —1.54(—6) 2.24(-7) 2.71(-8) 1.47(-8)
1/320 —7.66(—6) —3.04(=7) 2.56(—8) 2.28(—9) 6.24(—10)
1/640 —1.96(—6) —6.16(—8) 2.85(—9) 1.73(—10) 3.25(—11)
EOC 1.97 2.30 3.17 3.72 4.26
TABLE 4.2
Errors for eq. (4.1) with a = 0.25, taken at t = 1.
error of
step size | Adams scheme extrapolated values
1/10 2.50(—1)
1/20 1.81(—2) —1.50(—1)
1/40 3.61(—3) —6.91(—3) 4.09(—2)
1/80 1.45(-3) —1.10(—4) 2.16(-3) —8.15(-3)
1/160 6.58(—4) 8.19(—5) 1.46(—4) —3.89(—4) 1.28(—4)
1/320 2.97(—4) 3.49(—-5) 1.92(-5) —-1.45(-5) 1.05(-5)
1/640 1.31(—4) 1.12(=5) 3.37(—6) —8.50(—=7) 6.01(—8)
EOC 1.18 1.63 2.51 4.09 7.44

4.2. Equations where y is smooth. Next we come to the case that the un-
known solution y itself is a smooth function. This is the case described in Theorems
3.3 and 3.4 and in Corollary 3.5. Specifically we shall look at the very simple linear
equation

2 —y(t) + 12—t for a > 1,
1

— = pPre_ = glma_ g 2 —t f <1.
T3 —a) T2—a) y(t) + or s

(42) Doy(t) =
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The initial values were chosen as y(0) = 0 and (for a > 1) as y'(0) = —1. The true
solution is

y(t) =t* —t.

In Tables 4.3 and 4.4 we show the errors of the Adams method at the point ¢ = 1
for various step sizes and various values of a. In each case, the last row again states
the experimental order of convergence. No extrapolation has been attempted. The
theoretical findings of Theorems 3.4 (more precisely stated in the second part of
Corollary 3.5) and 3.3 are reproduced approximately: In Table 4.3 we find an EOC
close to 1+ « in the first three columns (corresponding to the case a < 1/2) and an
EOC near 2 — « in the other columns where 1/2 < a < 1. Similarly, in Table 4.4 we
see that the EOC is always close to 2 — ky where ky = a — | ] is the fractional part
of a.

TABLE 4.3
Errors for eq. (4.2) with a < 1, taken at t = 1.

h a=0.1 a=0.3 a=0.5 a=0.7 a=209
1/10 | —1.03(=1) —3.14(-2) —1.44(-2) -1.05(-2) —1.49(-2)
1/20 | —4.95(-2) —1.10(=2) —4.52(-3) -3.38(—3) —6.08(—3)
1/40 | —2.09(-2) —3.91(-3) —1.46(—3) —1.14(-3) —2.62(-3)
1/80 | —8.65(—3) —1.42(—3) —4.81(—4) -3.99(—4) —1.16(—3)
1/160 | —3.59(—3) —5.26(—4) —1.62(—4) —1.44(—4) —5.28(—4)
1/320 | —1.51(=3) —1.98(—4) —5.52(=5) —5.31(=5) —2.42(—4)
EOC 1.25 1.41 1.55 1.44 1.12
TABLE 4.4

Errors for eq. (4.2) with a > 1, taken at t = 1.

h a=125 a=15 a=185
1/10 | 6.74(—4) 9.14(—3) 4.69(—2)
1/20 | 3.63(—4) 3.42(-3) 2.15(-2)
1/40 | 1.43(—4) 1.25(—=3) 9.75(—3)
1/80 | 5.00(—5) 4.49(—4) 4.41(-3)
1/160 | 1.65(—=5) 1.61(—4) 1.99(—3)
1/320 | 5.28(—=6) 5.71(—=5) 8.98(—4)
EOC 1.65 1.49 1.15

4.3. Equations where f is smooth. Finally we present an example where the
given function f (the right-hand side of the differential equation) is smooth. This
allows us to illustrate the theorems of Subsection 3.3. Once again our example is a
linear equation. This time it is homogeneous and has the form

(4.3) Dyy(t) = —y(t),  y(0)=1, y'(0)=0

(the second of the initial conditions only for @ > 1 of course). It is well known that
the exact solution is

y(t) = Ba(~1%)
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where

Eo(2) = kgo Tlak+ 1)

is the Mittag-Leffler function of order a. Obviously, neither y nor D%y is smooth,
and hence we cannot apply the results of Subsection 3.2.

In Table 4.5 we state some numerical results for this problem in the case a < 1.
As in the previous subsection, the data given in the tables is the error of the Adams
scheme at the point ¢ = 1. We can see from the last line that the order of convergence
is always close to 1+ a as indicated by Conjecture 3.2. In contrast, Table 4.6 displays
the case a > 1; here the results confirm the O(h?) behaviour stated in Theorem 3.6.

TABLE 4.5
Errors for eq. (4.3) with o < 1, taken at t = 1.

h a=0.1 a=0.3 a=0.5 a=0.7 a=0.9
1/10 —5.42(-3) -1.86(—3) —1.30(-3) -—9.91(—-4) -7.51(—4)
1/20 —-1.22(-3) —5.85(—4) -3.93(—4) -2.81(—4) -1.91(—4)
1/40 —4.40(—4) -1.97(—4) -1.26(—4) -8.28(—5) —4.99(-5)
1/80 —1.68(—4) —6.90(—5) —4.18(-5) —2.50(—-5) —1.32(—5)
1/160 | —6.65(—5) —2.49(-5) —1.42(-5) —-7.63(—6) —3.54(—6)
1/320 —2.68(—5) —9.18(—6) —4.86(—6) —2.35(—6) —9.48(—7)
EOC 1.31 1.44 1.54 1.70 1.90
TABLE 4.6

Errors for eq. (4.3) with o > 1, taken at t = 1.

h a=125 a=15 a=185
1/10 | —5.61(—4) —5.46(—4) —4.40(—4)
1/20 | —1.27(—4) —1.28(—4) —1.07(—4)
1/40 | —2.90(=5) —3.04(—5) —2.65(—5)
1/80 | —6.68(—6) —7.33(—6) —6.57(—6)
1/160 | —1.55(—6) —1.78(—6) —1.63(—6)
1/320 | —3.63(=7) —4.37(—=7) —4.07(=7)
EOC 2.09 2.03 2.00
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