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Abstract

We investigate the four-body Coulomb process of low-energy elastic positronium-hydrogen (Ps-

H) scattering below the Ps(n=2) excitation threshold using scattering wavefunctions that include

Hylleraas-type correlation terms. Using the complex Kohn variational method, we compute phase

shifts through the 1,3H-wave and obtain highly accurate 1,3S- and 1,3P -wave phase shifts. The

complex Kohn variational results compare well to a number of other calculations for this system.

We present elastic differential, elastic integrated, and momentum transfer cross sections, and for

the singlet, resonances through the 1F -wave. The differential cross section exhibits interesting

features, including a change from slightly backward peaked to forward peaked scattering as the

energy of the incident positronium increases and rich structure due to multiple resonances near the

Ps(n=2) threshold. We also give a detailed analysis of the scattering lengths and effective ranges

using multiple effective range theories.

PACS numbers: 31.15.xt Variational techniques; 34.50.-s Scattering of atoms and molecules; 36.10.Dr

Positronium; 34.80.Bm Elastic scattering
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I. INTRODUCTION

Positronium (Ps) scattering from atoms and molecules is an area of current experimen-

tal and theoretical interest. The development of energy-tunable ortho-Ps beams [1–5] has

enabled measurements to be made of Ps scattering from the inert gases He, Ne, Ar, Kr,

and Xe [4–11] and the molecules H2, N2, O2, CO2, H2O, and SF6 [4, 6, 8, 9, 11–13]. Cross

sections for Ps scattering from H have not been measured due to the difficulty of creating

an atomic H beam, although the binding energy of positronium hydride (PsH) has been

measured in the reaction of a positron with methane, e+ + CH4 → CH+
3 + PsH [14]. The

low-energy region is of particular interest, because in this energy range, positron and elec-

tron correlations are important. We present our work of the application of the S-matrix

complex Kohn variational method to elastic Ps(1s)-H(1s) scattering for the energy range up

to the excitation threshold of Ps(n=2) at 3
16

a.u. (5.102 eV) [15–20].

Ps-H scattering is a fundamental four-body Coulomb process. The Kohn and inverse

Kohn variational methods have previously been applied to Ps-H collisions by Van Reeth

and Humberston [21, 22], who computed 1,3S and 1,3P phase shifts. We extend their 1,3S

and 1,3P variational calculations in multiple ways. In addition to the Kohn and inverse Kohn

variational methods, we implement the generalized Kohn method, and the complex Kohn

methods for the S and T matrices. The complex Kohn methods for the S and T matrices

are known to suffer from far fewer anomalous singularities than the Kohn, inverse Kohn and

generalized Kohn variational methods [23–25]. Another extension that we consider is to use

the procedure by Todd [26] to systematically remove short-range terms that cause linear

dependence. This enables us to compute the phase shifts with more short-range Hylleraas

terms than the earlier Kohn and inverse Kohn variational calculations [21, 22]. We add the

asymptotic expansion of Drake and Yan [27, 28] to improve the accuracy of matrix elements

containing only short-range terms. We significantly increase the number of integration points

for matrix elements that involve the long-range terms, along with implementing a procedure

to accelerate the convergence of these integrals (introduction and subsequent removal of

exponential terms to the Gauss-Laguerre quadratures). We also extend the calculations to

the next four partial waves through to the H-wave, which enables us to calculate the elastic

differential, elastic integrated, and momentum transfer cross sections.

We present in this paper results we generally obtain using the S-matrix complex Kohn
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variational method for Ps-H scattering. We confirm the previously calculated resonances

for the first four partial waves and compare the resonance parameters to those of the earlier

Kohn [22], close coupling (CC) [29] and complex rotation calculations [30–33]. In addition,

we compute the scattering lengths and effective ranges using multiple effective range theories.

We use the short-range part of the full scattering wavefunction to compute the binding

energy of PsH. The binding energy of PsH, Eb, has been calculated using various methods.

Ho [34] performed a variational calculation with a Hylleraas-type basis set, and Yan and Ho

[30] later did a more extensive calculation. Mitroy [35] used the stochastic variational method

(SVM) with 1800 explicitly correlated Gaussians (ECGs), and Bubin and Adamowicz [36]

found the most accurate value to date using 5000 ECGs in a variational calculation.

There have been a number of other calculations for Ps-H scattering. A much earlier

Kohn variational calculation was performed by Page [37] for the Ps-H scattering lengths.

Drachman and Houston [38, 39] used a stabilization method with an effective range theory

(ERT) expansion. At low energies, diffusion Monte Carlo (DMC) [40], the SVM [41, 42],

CC [29, 43–48], static exchange [49, 50], Kohn variational [21, 22, 37], and inverse Kohn

variational [21, 22] methods have been applied. The SVM with stabilization techniques was

used to compute low-energy phase shifts and scattering lengths for Ps-H collisions [41, 42].

Massey and Mohr [51] considered Ps-H inelastic scattering using the first Born approx-

imation and computed the elastic cross section by making use of the Born-Oppenheimer

(BO) approximation [51–56]. More recently, McAlinden et al. [57] applied the first Born

approximation to compute the total cross section for Ps(1s)-H(1s) scattering. Blackwood

et al. [47] performed an elaborate CC calculation for Ps scattering from H, which took into

account excitation and ionization of both the projectile and target. They considered two

different coupling schemes. The first one, which they refer to as 9Ps9H, included 9 eigen-

and pseudo-states of Ps and also of H. The second scheme, which they refer to as 14Ps14H,

was used for S-wave scattering only and included 14 eigen- and pseudo-states of Ps and also

of H. Good agreement was obtained between the CC [47] and the SVM [42] for the 1,3S-wave

scattering lengths and phase shifts. In another paper, Blackwood et al. [48] considered the

importance of including the H− channel in a 22Ps1H coupling scheme, comparing with the

previous 22Ps1H calculations of Campbell et al. [44]. Walters et al. [29] extended the earlier

CC calculations [47] to include the e+-H− channel [48] and compared their results for the

S-wave with the Kohn variational results [21]. A recent calculation of Ps-H scattering by
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Zhang and Yan [58] used the confined variational method (CVM) to calculate phase shifts

for two momenta for both 1S and 3S. This method provides accurate results but has the

drawback of being very computationally expensive.

The Kohn variational method gives rigorous upper bounds on the scattering lengths and,

except for Schwartz singularities, empirical lower bounds on the phase shifts. This means

that the wavefunction can be systematically improved to the converged results. The Kohn

and inverse Kohn variational methods are known to yield accurate results and have provided

benchmark results [21, 22] with which results from other calculations can be compared.

We express phase shifts in radians and use atomic units throughout unless we state

otherwise. For conversions to electron-volts (eV), we use the conversion factor 1 a.u. =

27.21138505(60) eV [59].

II. THEORY

A. The Positronium-Hydrogen System and Trial Scattering Wavefunctions
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FIG. 1: Positronium-hydrogen coordinate system

We investigate low-energy elastic scattering of ground-state Ps with ground-state H,

Ps(1s)+H(1s), for incident energies up to the excitation threshold of Ps(n=2). Previous

work on Ps-H scattering used the Kohn and inverse Kohn variational methods [21, 22]. Van

Reeth and Humberston [60] used the complex Kohn variational method for e+-He scattering.

While we generally present results in Sec. IV that we obtain using the S-matrix complex

Kohn variational method, in this section we present a general wavefunction that can be used
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in the Kohn variational method and a number of its variants, as we describe in Sec. II B.

For S-wave Ps(1s)-H(1s) elastic scattering, the flexible scattering wavefunction is given

by

Ψ±,t
0 = S̃0 + L±,t

0 C̃0 +

N(ω)∑

i=1

c±i0φ̄i01, (1)

where the superscript t indicates that this is a trial wavefunction. The plus sign indicates the

spatially symmetric singlet case, and the minus sign indicates the spatially antisymmetric

triplet case. The total orbital angular momentum of the system is equal to the orbital

angular momentum ℓ of the incoming Ps(1s). We choose for the z-component of the total

orbital angular momentum to be zero because of axial symmetry of the scattering system

[61]. For a trial wavefunction of total orbital momentum equal to ℓ, there are ℓ + 1 types

of short-range terms of different symmetries [62–68]. However, for partial waves ℓ > 0, we

consider a trial wavefunction of the form

Ψ±,t
ℓ = S̃ℓ + L±,t

ℓ C̃ℓ +

N(ω)∑

i=1

c±iℓφ̄iℓ1 +

2N(ω)∑

i=N(ω)+1

d±iℓφ̄iℓ2, (2)

where we neglect mixed symmetry terms for ℓ ≥ 2 as we discuss later in this section. The

scattering wavefunctions contain both the long-range terms S̃ℓ and C̃ℓ and the short-range

terms φ̄iℓk. The long-range terms of Eqs. (1) and (2) are given by


S̃ℓ

C̃ℓ


 = u


S̄ℓ

C̄ℓ


 =


u00 u01

u10 u11




S̄ℓ

C̄ℓ


 , (3)

where

S̄ℓ =
1± P23√

2
Yℓ0(θρ, ϕρ)ΦPs(1s)(r12) ΦH(1s)(r3)

√
2κ jℓ (κρ) (4)

and

C̄ℓ = −1± P23√
2

Yℓ0(θρ, ϕρ)ΦPs(1s)(r12) ΦH(1s)(r3)
√
2κnℓ (κρ) fℓ(ρ). (5)

Fig. 1 gives the coordinate system for Ps-H. The vector ρ = 1
2
(r1 + r2) is the position

vector of the center of mass of the Ps atom with respect to the proton, jℓ (κρ) and nℓ (κρ)

are the spherical Bessel and Neumann functions respectively, and Yℓm(θρ, ϕρ) is the spherical

harmonic, for which we usem = 0. P23 is the exchange operator for the two indistinguishable

electrons, κ is the momentum of the incoming Ps(1s) atom, and ΦPs(1s)(r12) and ΦH(1s)(r3)

are the ground-state wavefunctions of Ps and H, respectively. The shielding factor, fℓ(ρ),
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removes the singularity of the spherical Neumann function at the origin. We choose it to

have the form

fℓ(ρ) =
[
1− e−µρ

(
1 +

µ

2
ρ
)]mℓ

. (6)

Table I shows the values of the nonlinear parameter µ and the integer power mℓ that we

use for each partial wave. The value of mℓ is greater than or equal to (2ℓ + 1), and if

mℓ = (2ℓ + 1), then the leading term of nℓ (κρ) fℓ(ρ) corresponds to the leading term of

jℓ (κρ) as ρ → 0.

We consider the Kohn variational method and a number of its variants, and u and L±
ℓ

take different forms depending on which one:

generalized Kohn, L±,t
ℓ = tan(δ±,t

ℓ − τ),u = [ cos τ sin τ
− sin τ cos τ ] , (7a)

generalized T -matrix complex Kohn, L±,t
ℓ = T±

ℓ ,u = [ cos τ sin τ
− sin τ+i cos τ cos τ+i sin τ ] (7b)

generalized S-matrix complex Kohn, L±,t
ℓ = −S±

ℓ ,u =
[
−i cos τ−sin τ −i sin τ+cos τ
i cos τ−sin τ i sin τ+cos τ

]
. (7c)

For the case of τ = 0, these give the Kohn, the T -matrix and S-matrix complex Kohn

variational methods, respectively. τ = π
2
in Eq. (7a) gives the inverse Kohn. For comparison

with Cooper et al. [25], the generalized Kohn u matrix is identical to their corresponding

matrix, while the u matrix for the generalized T -matrix complex Kohn is similar to their

corresponding matrix. We use the definition of the T and S matrices given by Bransden

[56]. The u matrix for the Kohn in Eq. (7) is identical to that of Lucchese [23], but the u

matrices for the inverse Kohn, T -matrix complex Kohn, and S-matrix complex Kohn are

slightly different.

The short-range terms are highly correlated Hylleraas-type functions, including all inter-

particle distances, given by

φ̄iℓk =(1± P23)Yℓ0(θk, φk)e
−(αr1+βr2+γr3)

× rℓkr
ki
1 r

li
2 r

mi

12 r
ni

3 rpi13r
qi
23. (8)

The variable ω is a non-negative integer that determines the maximum number of terms in

the basis set. For a chosen value of ω, the integer powers of ri and rij are constructed in

such a way that

ki + li +mi + ni + pi + qi ≤ ω, (9)

with all ki, li,mi, ni, qi and pi ≥ 0 [22]. The first set of short-range terms in Eq. (2), which

we refer to as the first symmetry, has k = 1 for i = 1 to N(ω). The second symmetry set
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of terms exists for ℓ > 0, with k = 2 and i = N(ω) + 1 to 2N(ω). These short-range terms

represent the orbital angular momentum as being placed mainly on either the positron (r1)

or on the electron in the Ps atom (r2, and r3 with exchange). Van Reeth and Humberston

[22] discussed the slow convergence of their 3P phase shifts and suggested having a trial

wavefunction in which the orbital angular momentum is placed mainly on the electron of

the H atom (r3, and r2 with exchange) and on the Ps atom (ρ, and ρ
′ with exchange). We

implement their suggestion for the singlet and triplet P -waves [20]. For ω = 6, we find that

the phase shifts we obtain with the alternative form of the trial wavefunction are comparable

to the phase shifts we obtain, and present in this paper, using the trial wavefunction Eq. (2)

with ℓ = 1 [20]. In Sec. III, we discuss numerical techniques that enable us to achieve well

converged 1,3P -wave phase shifts.

For the D-wave and higher partial waves, we do not include short-range terms of mixed

symmetry [62]. These, however, have been included for the three-body system of e+-H for

theD-wave in earlier work given in Refs. [63–67]. Van Reeth and Humberston [67] found that

these mixed symmetry terms contributed less than 1.5% to the K-matrix elements for e+-H

scattering, but this result now appears to be in error. A preliminary investigation for e+-H

[69] with a corrected code has shown that these mixed symmetry terms can be important

for that system. This investigation found that including the mixed symmetry terms changes

the phase shifts by less than 1% at κ = 0.1, and near the Ps formation threshold, by about

10%. Fortunately, in the earlier D-wave e+-H scattering calculation [66], the inclusion of

the virtual Ps terms represented sufficiently well the required spatial configuration so that

it compensated for the lack of convergence due to the error in the previous inclusion of

the mixed symmetry terms. The final numerical results used in Ref. [67] are within 1 to

2% of the phase shifts of the preliminary calculation [69] that correctly includes the mixed

symmetry terms and for which the virtual Ps terms have been found to make no significant

contribution. The investigation of Ref. [69] has been extended to e−-H scattering, and it has

revealed that for the 1D-wave, the inclusion of the mixed symmetry terms has little effect

on the phase shifts at very low energies but has a more appreciable effect at higher energy.

Interestingly, the investigation found that the mixed symmetry terms change the 3D-wave

e−-H phase shifts less than 1% over the energy range considered. As discussed in Sec. IV for

Ps-H scattering, the D-wave contributes only a small amount to the elastic integrated cross

sections away from the 1D resonance. Therefore, due to the complexity of including the

7



mixed symmetry terms for the four-body system, we do not explicitly include these terms

for Ps-H scattering for the D-wave or for any partial wave ℓ ≥ 2. For ℓ ≥ 1, we use the trial

wave function we give in Eq. (2).

The Hamiltonian for the Ps-H system is

H = −1

2
∇2

r1
− 1

2
∇2

r2
− 1

2
∇2

r3

+
1

r1
− 1

r2
− 1

r3
− 1

r12
− 1

r13
+

1

r23
, (10)

which, using Jacobi coordinates for the kinetic energy operator, can be expressed as

H = −1

4
∇2

ρ
− 1

2
∇2

r3
−∇2

r12

+
1

r1
− 1

r2
− 1

r3
− 1

r12
− 1

r13
+

1

r23
. (11)

B. Derivation of the Kohn Variational Method and Variants of the Method

The derivation we present here for the Kohn variational method and its variants follows

a similar procedure given in Refs. [23, 25, 61, 68]. The functional for the full scattering

wavefunction in Eqs. (1) and (2) is (dropping the ℓ subscript and the ± superscript for

brevity),

I[Ψt] =
(
Ψt,LΨt

)
=

∫
ΨtLΨt dτ, (12)

with

L = 2(H − E). (13)

The total energy of the system, E, is given by

E = EH + EPs +
1

4
κ2 = EH + EPs + Eκ, (14)

where EH and EPs are the ground-state energies of H and Ps, respectively, and Eκ is the

kinetic energy of the incoming Ps atom. The complex conjugate of Ψt that premultiplies LΨt

is not taken for a consistent derivation of the complex Kohn variational methods [23, 25].

We assume the trial wavefunction Ψt is a small variation of the exact wavefunction Ψ, or

Ψt = Ψ+ δΨ. (15)
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It can be shown that the variation in the functional I, δI = I[Ψt]− I[Ψ] = I[Ψt], is given by

δI = (Lt − L) detu+ I[δΨ]. (16)

Here Lt represents the scattering parameters given by Eq. (7) for the trial wavefunctions

given by Eqs. (1) and (2), and L represents the corresponding parameters (given by Eq. (7)

without the ‘t’) for the exact wavefunction. Neglecting the second-order term in δΨ, I[δΨ],

and realizing that I[Ψ] = 0, we obtain a functional for the variational Lv of

Lv = Lt − I[Ψt]/ detu. (17)

Using the stationary property of the functional, we take the derivative of Lv with respect

to the linear parameters and set the derivatives to zero, i.e. for the S-wave

∂Lv

∂Lt
= 0 and

∂Lv

∂ci
= 0 where i = 1, . . . , N(ω). (18)

Eq. (18) yields the matrix equation for the S-wave of




(C̃,LC̃) (C̃,Lφ̄101) · · · (C̃,Lφ̄N01)

(φ̄101,LC̃) (φ̄101,Lφ̄101) · · · (φ̄101,Lφ̄N01)
...

...
. . .

...

(φ̄N01,LC̃) (φ̄N01,Lφ̄101) · · · (φ̄N01,Lφ̄N01)







Lt

c1
...

cN



= −




(C̃,LS̃)
(φ̄101,LS̃)

...

(φ̄N01,LS̃)



. (19)

This matrix equation can be rewritten as AX = -B , as can the corresponding matrix

equations for ℓ > 0. For higher partial waves, the matrix equation looks the same but

includes the second symmetry short-range terms and corresponding coefficients. Finally, for

arbitrary ℓ, we solve for Lv,

Lv = − 1

detu

(
B

tr
X + (S̃,LS̃)

)
, (20)

to obtain the phase shifts by using the relation [23]

Kℓ = tan δℓ = (u01 + u11Lℓ)(u00 + u10Lℓ)
−1, (21)

reintroducing the subscript ℓ.
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C. PsH Bound State

As done earlier by Van Reeth and Humberston [21, 22], we use the short-range correlation

part of the 1S-wave scattering wavefunction to compute the binding energy, Eb, of the
1S

PsH system. This gives us some confidence of the reliability of using these short-range terms

for the Ps-H scattering problem. The wavefunction we use for the bound state is

Ψ+
B.S. =

N(ω)∑

i=1

c+i0φ̄
+
i01, (22)

where φ̄+
i01 is given in Eq. (8) with ℓ = 0.

D. Born-Oppenheimer Approximation

Using the first term, S̃ℓ, in the wavefunction, Eqs. (1) and (2), for the Kohn variational

method, S̄ℓ, gives the Born-Oppenheimer (BO) approximation to tan δℓ, namely

tan δBO
ℓ = −(S̄ℓ,LS̄ℓ) . (23)

E. Effective Range Theories

The scattering length [55] is defined as

a±ℓ = − lim
κ→0

tan δ±ℓ
κ2ℓ+1

. (24)

We consider the approximation with very small κ of

a±ℓ ≈ −tan δ±ℓ
κ2ℓ+1

. (25)

To avoid confusion with the Bohr radius, a0, we denote the S-wave scattering length aℓ=0

as a.

For short-range interactions, the 1,3S-wave effective range theory (ERT) expansion is

given by [70, 71]

κ cot δ±0 = − 1

a±
+

1

2
r±0 κ

2, (26)

where r±0 is the effective range. This ERT expansion has been used in the literature [21, 29,

42, 47] to compute the scattering length and effective range for Ps-H scattering. For the van
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der Waals (vdW) interaction, which is the dominant long-range interaction between Ps and

H [21, 72, 73], the scattering length is only defined for the S- and P -waves, and the effective

range is defined for only the S-wave [74]. An S-wave ERT expansion for the van der Waals

interaction is given in Ref. [75], which for Ps-H scattering where the mass of Ps is two, has

the form

κ cot δ±0 = − 1

a±
+

1

2
r±0 κ

2 − 4πC6

15(a±)2
κ3 − 16C6

15a±
κ4 ln (κ) . (27)

We use the van der Waals coefficient of C6 = 34.78473 a.u., as given by Martin and Fraser

[76].

Gao [77] has developed a quantum defect theory (QDT) for an attractive r−6 potential,

obtaining an equation relating the tangent of the phase shifts to elements of a Z matrix (see

Ref. [77]) and an analytic function of energy K0
ℓ [78]

tan δℓ = [Zff −K0
ℓZgf ]

−1[K0
ℓZgg − Zfg]. (28)

K0
ℓ can be expanded in powers of the energy [78] of the incoming Ps atom as

K0
ℓ (Eκ) = K0

ℓ (0) +K0
ℓ

′
(0)Eκ + . . . . (29)

We retain the first two terms in the expansion and determine the coefficients K0
ℓ (0) and

K0
ℓ

′
(0) by fitting the phase shifts to Eq. (29). We compute the 1,3S- and 1,3P scattering

lengths and 1,3S-wave effective ranges using the expressions given by Gao [78], which relates

these quantities to the coefficients.

We also obtain an estimate of r+0 by using the following equation from Ref. [47]

r+0 =
a+

√
4Eb − 1

2a+Eb

. (30)

In this equation, we use our result of Eb and of a+ that we obtain using Eq. (26) for the

range κ = 0.001− 0.009.

III. NUMERICS

We present briefly the numerical techniques below. Details can be found in Ref. [20].
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A. Short-Short Integrations

For the 1S PsH bound state and 1,3S Ps(1s)-H(1s) elastic scattering calculations, we

use the efficient asymptotic expansion method presented by Drake and Yan [27] for the

evaluation of correlated integrals of the form

I(j1, j2, j3, j12, j23, j31; ᾱ, β̄, γ̄) =∫
dr1dr2dr3r

j1
1 r

j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e

−(ᾱr1+β̄r2+γ̄r3) . (31)

These integrals arise from evaluation of the matrix elements (φ̄iℓk,Lφ̄jℓk), (φ̄iℓk, Hφ̄jℓk), and

(φ̄iℓk, φ̄jℓk), where H is the full Hamiltonian given in Eqs. (10) and (11). The relationship

between ᾱ and α can be seen by considering these matrix elements, as can that of β̄, β, γ̄,

γ, and the ri and rij exponents. We also use the recursion relations of Pachucki et al. [79]

to confirm the calculations of the short-range integrals for the S-wave and P -wave.

For ℓ > 0, the short-range integrals have the form of

I(ℓ′1m
′
1, ℓ

′
2m

′
2,ℓ

′
3m

′
3; j1, j2, j3, j12, j23, j31; ᾱ, β̄, γ̄) =

∫
dr1dr2dr3r

j1
1 r

j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31

× e−(ᾱr1+β̄r2+γ̄r3)Y ∗
ℓ′
1
m′

1
(r1)Y

∗
ℓ′
2
m′

2
(r2)Y

∗
ℓ′
3
m′

3
(r3)Yℓ1m1

(r1)Yℓ2m2
(r2)Yℓ3m3

(r3) .

(32)

We solve these integrals using two different procedures. We use the procedure given by

Van Reeth [61] for ℓ ≤ 2. In this procedure, we rotate and then integrate over external

angles, reducing these integrals down to the form of Eq. (31), which we solve using the

asymptotic expansion method [27]. This procedure requires separate derivations and codes

for each partial wave. The other procedure we use is from Yan and Drake [28] and works

for arbitrary ℓ, requiring only a single codebase. We present results using this procedure for

only ℓ > 2 due to its increased computational cost.

B. Long-Range Integrations

We evaluate the long-range–long-range and short-range–long-range matrix elements in

the matrix equation AX = -B using the standard Gauss-Laguerre and Gauss-Legendre

quadratures. Due to cusps at r1 = r2 and r2 = r3 in the integrands, we split the r2 and
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r3 integrations into Gauss-Legendre quadratures before each cusp and Gauss-Laguerre after

each cusp. Ref. [68] discusses a similar type of cusp. Previous calculations [21, 22] treated

these cusps as unimportant by 25 a.u., while we have extended it to 100 a.u. before we

consider them unimportant. We find that this improves the convergence of the matrix

elements.

To further improve the convergence of the short-range–long-range matrix elements, we

note that the biggest source of difficulty comes from the Gauss-Laguerre quadratures in the

r1, r2 and r3 integrations – especially r1. We increase the number of integration points to

more than seven times as many as in previous work [21, 22] to better represent the integrands.

We use a visual representation of the matrix elements to determine convergence using the

Developer’s Image Library [80]. The brute force approach of increasing the integration points

can increase the computational time greatly, so we take another approach to further increase

the accuracy. Specifically, the tails of the integrands are negligible, and the integrand closer

to the origin is not represented adequately. To resolve this, for each of the Gauss-Laguerre

quadratures, we introduce an extra e−λri , where i = 1, 2, 3, and remove it with eλri after

the quadrature, bringing the abscissae closer to the origin without increasing the number of

integration points. We choose λ = 1.

C. Selection of Short-Range Terms

We use a method from Todd [26] to help remove short-range terms that contribute to

linear dependence. This is a variation of the procedure from Lüchow and Kleindienst [81].

They use multiple blocks, while we optimize with a single block. They also use a criteria

of ∆E to determine when to discard terms. Instead, we compare the lowest eigenvalues

from the separate calculations using the upper and lower triangular matrices in LAPACK’s

dsygv routine [82], discarding terms when they cause the difference to be greater than a

predetermined threshold.

We observe that using the terms selected by Todd’s procedure allows us to use more short-

range terms from the complete set before linear dependence occurs. The phase shifts are

calculated using this set of short-range terms for the generalized Kohn variational method

for multiple τ values in Eq. (7a). We further truncate this basis set where the phase shifts for

the generalized Kohn variational method for different τ values begin to noticeably diverge, as

13



seen in Fig. 2, or when there is a significant jump in the phase shifts at high ω. This method

with an appropriate choice of nonlinear parameters normally gives a reliable set of short-

range terms, which we use to obtain the S-matrix complex Kohn results given in Sec. IV.

For 1S only, we also determine the truncation of the basis set by performing variations of

µ (Eq. 6) [20]. For ℓ = 3 at low κ, we use a restricted set of short-range terms where we

eliminate terms with powers of r3 ≥ 2 if ω ≥ 3, improving the convergence ratios defined in

Eq. (36) and giving more stable results [20, 21].
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FIG. 2: (Color online) Breakdown in convergence of the 1S phase shifts with respect to

number of short-range terms for different τ values for the generalized Kohn variational

method

We denote the number of short-range terms of a particular symmetry after we perform

the possible truncations by N ′(ω), where N ′(ω) ≤ N(ω). The N(ω) of the wavefunctions

given by Eqs. (1), (2), and (22) are replaced by N ′(ω). When we perform convergence

checks via extrapolations, we arrange the set of N ′(ω) terms in the original ordering.

D. Fittings

As with the previous Kohn and inverse Kohn calculations [22], we fit our computed phase

shifts near the resonances for 1S and 1P to the resonance formula

δ(Eκ) = A+BEκ + CE2
κ
+ arctan

[
1Γ

2(1ER − Eκ)

]

+ arctan

[
2Γ

2(2ER − Eκ)

]
(33)
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to extract out the positions (1ER and 2ER) and widths (1Γ and 2Γ) of the two resonances.

This formula comprises the Breit-Wigner resonance terms [22, 83–85] for the two resonances

and allows for a slowly varying polynomial background. We evaluate the resonance parame-

ters for one resonance each for 1D and 1F , so we perform these fits without the second arctan

term. We fit the data from the Kohn variational method and its variants (inverse Kohn,

generalized Kohn, complex Kohn for the T matrix and complex Kohn for the S matrix)

to determine the resonance parameters using the MATLAB [86] nonlinear fitting routine

nlinfit with all eight possible weightings.

The Kohn variational method and variants of the method do not give rigorous lower

bounds to the phase shifts, but they are found to give empirical bounds away from Schwartz

singularities. We extrapolate the S-matrix complex Kohn phase shifts in Tables III, IV, V,

and VI according to the empirical formula [21, 68]

tan δ±ℓ (ω) = tan δ±ℓ (ω → ∞) +
c

ωp
, (34)

where c and p depend on each extrapolation. For the 1,3S, 1,3P and 1D phase shifts, we use

these extrapolated values to estimate the convergence of the phase shifts and the error in

the final results, which we report in Sec. IVB. We use a similar procedure to extrapolate

the 1,3S- and 1,3P -wave scattering lengths by fitting to the empirical formula [21]

a±ℓ (ω) = a±ℓ (ω → ∞) +
d

ωq
, (35)

where d and q depend on each extrapolation. The percent difference between the scattering

length at ω = 7 and the extrapolated scattering length is considered the error in Tables XI

and XII. We see no convergence pattern for the effective range.

For ℓ ≥ 2, we experience difficulty in extrapolating phase shifts using Eq. (34). To deter-

mine whether the phase shifts are converging with respect to ω, we compute a convergence

ratio defined as

R′(ω) =
δ±ℓ (ω)− δ±ℓ (ω − 1)

δ±ℓ (ω − 1)− δ±ℓ (ω − 2)
, (36)

where R′(ω) depends on ℓ and whether we are considering the singlet or triplet. This is

similar to the inverse of the ratio for the energy eigenvalues given in Ref. [30]. We find

that if R′(ω) . 0.5, we can typically obtain extrapolated phase shifts with some degree of

reliability. In contrast, if R′(ω) ≥ 1, there is no convergence pattern and thus we would not

be confident with extrapolated phase shifts.
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E. Nonlinear Parameters and Terms in the Scattering Wavefunctions

Partial wave ω N ′(ω) α β γ µ mℓ

1S 7 1505 0.568 0.580 1.093 0.9 1

3S 7 1633 0.323 0.334 0.975 0.9 1

1P 7 1000 0.397 0.376 0.962 0.9 3

3P 7 1000 0.310 0.311 0.995 0.9 3

1D (κ < 0.3) 6 916 0.359 0.368 0.976 0.7 7

1D (κ ≥ 0.3) 6 913 0.600 0.368 0.976 0.7 7

3D (κ < 0.3) 6 919 0.356 0.365 0.976 0.7 7

3D (κ ≥ 0.3) 6 913 0.600 0.365 0.976 0.7 7

1F (κ < 0.4) 5 385⋆ 0.359 0.368 0.976 0.7 7

1F (κ ≥ 0.4) 5 462 0.500 0.600 1.100 0.7 7

3F (κ < 0.4) 5 385⋆ 0.356 0.365 0.976 0.7 7

3F (κ ≥ 0.4) 5 462 0.600 0.365 0.976 0.7 7

1G (κ < 0.45) 5 462 0.359 0.368 0.976 0.7 9

1G (κ ≥ 0.45) 5 462 0.500 0.600 1.100 0.7 9

3G (κ < 0.45) 5 462 0.356 0.365 0.976 0.7 9

3G (κ ≥ 0.45) 5 462 0.600 0.365 0.976 0.7 9

1H (κ < 0.5) 5 462 0.359 0.368 0.976 0.7 11

1H (κ ≥ 0.5) 5 462 0.500 0.600 1.100 0.7 11

3H (κ < 0.45) 5 462 0.356 0.365 0.976 0.7 11

3H (κ ≥ 0.45) 5 462 0.600 0.365 0.976 0.7 11

TABLE I: Nonlinear parameters α, β, γ, µ, integer power mℓ in the shielding function, ω,

and the number of terms N ′(ω) of each symmetry in the wavefunction for each partial wave.

Numbers marked with a star indicate the restriction in the r3 power described in Sec. III C.

Table I shows the number of terms for each short-range symmetry, N ′(ω), used for each

partial wave. The wavefunction for the S-wave uses a total of N ′(ω) short-range terms,

and the wavefunction for the higher partial waves use a total of 2N ′(ω) short-range terms,

as given by Eqs. (1) and (2) with the N(ω) replaced by N ′(ω). For the first three partial
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waves, we use Todd’s procedure described in Sec. III C. This table also gives the value of

ω, the parameters α, β, and γ in Eq. (8), and the parameters µ and mℓ in Eq. (6) used for

each partial wave.

For ℓ ≥ 2, where we have neglected the mixed symmetry terms, we find that the phase

shifts are more sensitive to the choice of nonlinear parameters α, β, and γ than for the 1,3S-

and 1,3P -waves. We also find that for ℓ ≥ 2, the triplet is more sensitive than the singlet.

The optimum choice of these of nonlinear parameters appears to be κ-dependent. For ℓ ≥ 2,

we use two different sets of these nonlinear parameters.

IV. RESULTS

A. Bound State Results

We use the 1S PsH bound state results as a measure of the reliability of the short-range

part of the wavefunction to describe 1S Ps-H scattering at small distances. The Rayleigh-

Ritz variational method provides a true upper bound on the total energy, which converges

well with respect to ω. We report the results of the total and binding energies we obtain

with the same set of nonlinear parameters α, β, and γ and the same number of terms N ′(7)

that we use in the scattering calculation and which we give in Table I. Table II compares

the energies for the 1S PsH bound state that we obtain with ω = 7 (1505 terms) with the

results from other groups.

Our calculation yields a better value for the binding energy than the earlier variational

calculations of Refs. [21, 22] but not as good as the variational calculation of Ref. [30], which

also used Hylleraas-type functions. While we do not obtain the best value of the binding

energy, the result we obtain for this quantity compares favorably with the most elaborate

calculation in the literature, which used 5000 ECGs [36]. Our calculation of the binding

energy gives us some confidence in the reliability of the short-range part of the scattering

wavefunction to describe the 1S Ps-H scattering system.

B. Phase Shifts and Cross Sections

In Tables III and IV, we show the 1,3S phase shifts using the S-matrix complex Kohn

variational method. After removing any obvious Schwartz singularities, the results from the
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Method Terms E (a.u.) Eb (eV)

Current work (ω = 7) 1505 −0.789 189 725 1.066 406 705

Variational Hylleraas (ω = 6) [21] 721 −0.789 156 1.065 5⋆

Variational Hylleraas [34] 396 −0.788 945⋆ 1.059 75

Variational Hylleraas (ω → ∞) [30] — −0.789 196 714 7⋆ 1.066 596 896

CC 14Ps14H [47] — −0.786 5 0.994⋆

CC 14Ps14H + H− [29] — −0.787 9 1.03⋆

ECGs with SVM [35] 1800 −0.789 196 740⋆ 1.066 597 58

ECGs variational [36] 5000 −0.789 196 765 251⋆ 1.066 598 271 959

TABLE II: PsH total energy, E, and binding energy, Eb, comparisons. The values marked

with a star are the reported values, and the other values are obtained by using the

conversion factor given in Ref. [59].

Kohn variational method and its variants described in Sec. II B (Kohn, inverse Kohn, gener-

alized Kohn, T -matrix complex Kohn, and S-matrix complex Kohn) agree to the accuracy

given. We use Eq. (34) and the phase shifts for ω = 4 to 7 to compute extrapolated phase

shifts for ω → ∞. By computing the percentage difference between the extrapolated phase

shifts and the computed phase shifts at ω = 7, we estimate that the 1S phase shifts have

converged to better than about 0.22% for the range κ = 0.1 to 0.7 and that the 3S phase

shifts have converged to better than 0.27% for the same range of κ.

In these tables, we compare the S-matrix complex Kohn results with the earlier variational

results [21, 22] and with the elaborate CC results of Refs. [29, 47]. The current ω = 7 results

are in excellent agreement with the earlier Kohn and inverse Kohn ω = 6 variational results,

being either identical or slightly lower, indicating that the earlier S-wave results were well-

converged. The slight difference in phase shifts between the previous Kohn/inverse Kohn

and the present complex Kohn calculation can be attributed to at least the following factors.

Using Todd’s procedure (described in Sec. III C) allows us to use more terms (see Table I)

than the earlier Kohn and inverse Kohn calculations [21, 22], which used 721 terms. Using

the asymptotic expansion also allows us to use more short-range terms. The increase in

the number of short-range terms slightly increases the phase shifts, but we also use more

integration points in these calculations, which can also change the phase shifts.

The complex Kohn results are in good agreement with the CC results of the Walters’

group [29, 47]. For the singlet, the complex Kohn phase shifts are slightly larger than the
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CC results. In general, because of the empirical bounds on the complex Kohn results and,

in practice on the CC [47], the complex Kohn results could be slightly more accurate than

the CC. However, for the triplet, the Kohn results are slightly more negative than the CC

results.

The recent CVM S-wave results from Zhang and Yan [58] agree extremely well with

the complex Kohn results, even for the triplet. In Fig. 3, we compare the 1,3S phase

shifts we obtain from the complex Kohn variational method with results from various other

calculations. Figure 4(a) compares the complex Kohn phase shifts over the energy range up

to the Ps(n=2) threshold with the CC and CVM results. The inset in this figure shows the

small discrepancy with the CC phase shifts, but excellent agreement between the three sets

of results is evident.

Tables V and VI give the 1,3P and 1,3D phase shifts that we determine using the S-matrix

complex Kohn variational method. The small percentage differences with the extrapolated

values for the 1,3P -waves indicate that the complex Kohn phase shifts are well converged.

The complex Kohn 1P phase shifts are above the CC results, whereas the complex Kohn

3P phase shifts are generally slightly below. Figure 4(b) shows that the complex Kohn and

CC results agree relatively well. From Table VI, the 3D phase shifts are positive for lower

κ but become negative for higher κ. It is noted in Ref. [47] that this behavior shows that

the interaction is repulsive for low κ and attractive for higher κ.

We have difficulty performing extrapolations on the 1,3D phase shifts. For 1D, the κ = 0.1

extrapolation is not reliable, and the percentage difference is correspondingly large, even

though the convergence ratio R′(6) given by Eq. (36) is less than 1. As seen in Table VI, for

κ = 0.2, the percentage difference between the 1D extrapolated phase shift and the ω = 6

phase shift is about 6%, whereas in the range κ = 0.3 − 0.7, the percentage difference is

less than 2%. The percentage difference for 3D is larger than for 1D, and thus there is less

confidence in the 3D extrapolated phase shifts (which we do not include in Table VI). The

larger percentage difference for the triplet than the singlet could be a reflection that the

mixed symmetry terms are more important for the triplet than for the singlet. If this is the

case, this would be an interesting finding, since for e−-H scattering, the mixed symmetry

terms were found to be more important for the singlet than for the triplet [69]. Inclusion of

the mixed symmetry terms for Ps-H scattering for ℓ ≥ 2 should be investigated.

The ω = 5 and ω = 6 phase shifts differ by no more than 10% for 1D. For 3D, this
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difference is up to 24% for κ = 0.3 but much less for other κ values, down to about 4%

for κ = 0.7. The percentage difference between the 3D-wave ω = 6 and extrapolated phase

shifts for κ = 0.1 is very large, ≈ 140%, but this difference for the range 0.2 − 0.7 is less

than 25%, except for κ = 0.4, where the percentage difference is larger at 40%. We note

that between κ = 0.3 and 0.4, the complex Kohn 3D phase shifts change from positive to

negative.

The S-matrix complex Kohn 1,3D phase shifts are generally below the corresponding CC

phase shifts, as can be seen in Table VI and Fig. 4(c). However, the extrapolated 1D phase

shifts are slightly larger than the CC phase shifts at both κ = 0.6 and 0.7. Fig. 4(c) shows

that the overall shape of the complex Kohn phase shift curves is similar to the CC. However,

the percentage difference between the CC and complex Kohn 1D phase shifts is about 39%

at low κ and decreases to less than 1% for higher κ (not including the resonance region of

κ > 0.7 or Eκ > 3.3 eV). The larger discrepancy comes with the 3D phase shifts, which

have a percentage difference between the CC and the complex Kohn of over 30%, often

much larger, through the entire energy range. We note that the percentage differences with

the CC results for 3P are also large at lower κ values. For 3P with κ ≥ 0.01, where there

are no mixed symmetry terms to neglect, we do not face the convergence and extrapolation

difficulties we have for 3D.

The 3D phase shifts are small, and their contribution to the elastic integrated cross

section is correspondingly small. Before the resonance region (κ ≤ 0.7 or Eκ < 3.3 eV), the

1D and 3D partial waves contribute up to 6.6% and 0.53% to the elastic integrated cross

section, respectively. In the full energy range we consider, including the resonance region,

the 3D-wave contributes a maximum of 1.34%. We notice no appreciable difference to the

elastic integrated cross section when the complex Kohn 1,3D phase shifts are replaced by the

CC 1,3D phase shifts (less than 0.084%). The triplet D-, F -, G-, and H-wave phase shifts

are more sensitive to the nonlinear parameters α, β, and γ than the singlet, but in general,

the triplet contribution to the elastic differential and integrated cross sections are less than

the corresponding singlet contribution.
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κ (a.u.) δ+
0
(ω = 7) δ+

0
(ω → ∞) % Diff+ δ+

0
(Kohn) [21] δ+

0
(CC 14Ps14H+H−) [29] δ+

0
(CVM) [58]

0.1 −0.427 −0.426 0.223% −0.427 −0.428 −0.42629

0.2 −0.820 −0.819 0.010% −0.820 −0.825 −0.81973

0.3 −1.161 −1.161 0.040% −1.161 −1.167 —

0.4 −1.446 −1.446 0.022% −1.446 −1.453 —

0.5 −1.678 −1.677 0.031% −1.677 −1.685 —

0.6 −1.858 −1.857 0.040% −1.857 −1.867 —

0.7 −1.964 −1.963 0.045% −1.964 −1.992 —

TABLE III: 1S phase shifts for Ps-H scattering. δ+0 are the current S-matrix complex

Kohn phase shifts, and % Diff+ is the percent difference between the complex Kohn ω = 7

and ω → ∞ results.

κ (a.u.) δ−
0
(ω = 7) δ−

0
(ω → ∞) % Diff− δ−

0
(Kohn) [21] δ−

0
(CC 14Ps14H) [47] δ−

0
(CVM) [58]

0.1 −0.215 −0.214 0.120% −0.215 −0.206 −0.21461

0.2 −0.431 −0.431 0.063% −0.432 −0.414 −0.43145

0.3 −0.645 −0.645 0.094% −0.645 −0.624 —

0.4 −0.850 −0.849 0.130% −0.850 −0.838 —

0.5 −1.041 −1.040 0.166% −1.040 −1.037 —

0.6 −1.217 −1.214 0.273% −1.215 −1.213 —

0.7 −1.375 −1.372 0.250% −1.373 −1.367 —

TABLE IV: 3S phase shifts for Ps-H scattering. δ−0 are the current S-matrix complex

Kohn phase shifts, and % Diff− is the percent difference between the current complex

Kohn ω = 7 and ω → ∞ results.

κ (a.u.) δ+
1
(ω = 7) δ+

1
(ω → ∞) % Diff+ δ+

1
(CC 9Ps9H+H−) [29] δ−

1
(ω = 7) δ−

1
(ω → ∞) % Diff− δ−

1
(CC 9Ps9H) [47]

0.1 0.226−1 0.227−1 0.465% 0.221−1 −0.178−2 −0.172−2 3.176% −0.953−3

0.2 0.191 0.192 0.306% 0.183 −0.167−1 −0.165−1 0.993% −0.122−1

0.3 0.609 0.611 0.314% 0.580 −0.552−1 −0.540−1 0.749% −0.456−1

0.4 0.994 0.996 0.205% 0.956 −0.115 −0.114 0.698% −0.104

0.5 1.140 1.142 0.140% 1.106 −0.183 −0.182 0.749% −0.178

0.6 1.162 1.163 0.137% 1.134 −0.248 −0.246 0.896% −0.247

0.7 1.152 1.154 0.181% 1.133 −0.292 −0.288 1.230% −0.295

TABLE V: 1,3P phase shifts for Ps-H scattering. δ±1 are the current S-matrix complex

Kohn phase shifts, and % Diff± is the percent difference between the current complex

Kohn ω = 7 and ω → ∞ results. Powers of 10 are denoted by exponents.
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κ (a.u.) δ+
2
(ω = 6) δ+

2
(ω → ∞) % Diff+ δ+

2
(CC 9Ps9H+H−) [29] δ−

2
(ω = 6) δ−

2
(CC 9Ps9H) [47]

0.1 1.36−4 — — 2.02−4 5.81−5 8.48−5

0.2 2.99−3 3.18−3 6.27% 3.49−3 7.12−4 1.15−3

0.3 1.60−2 1.62−2 1.54% 1.73−2 1.10−3 2.84−3

0.4 4.98−2 5.04−2 1.33% 5.22−2 −1.80−3 2.37−3

0.5 1.13−1 1.14−1 1.52% 1.16−1 −1.07−2 −4.66−3

0.6 2.06−1 2.09−1 1.67% 2.08−1 −2.54−2 −1.85−2

0.7 3.28−1 3.33−1 1.67% 3.24−1 −4.28−2 −3.27−2

TABLE VI: 1,3D phase shifts for Ps-H scattering. δ±2 are the current S-matrix complex

Kohn phase shifts, and % Diff+ is the percent difference between the current complex

Kohn ω = 6 and ω → ∞ results. Powers of 10 are denoted by exponents.
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FIG. 3: (Color online) Comparison of 1S (a) and 3S (b) S-matrix complex Kohn phase

shifts with results from other groups. The insets show a magnified portion of the same

data for each. Results are ordered according to year of publication. References marked

with an asterisk have values extracted from figures in their work. Solid curves – this

work; × – CC [29];  – Kohn [21]; + – CC [47]; N – DMC∗ [40]; ▽ – SVM 2002∗ [42];

# – SVM 2001∗ [41]; ▽ – 2 channel / static exchange with model exchange [87];

△ – 6-state CC [46]; � – 5-state CC [45]; � – Coupled pseudostate [44];

△ – 3-state CC [43]; ⋆ – Static exchange [50]; ⊲ – Stabilization [39]; � – Stabilization [38];

♦ – Static exchange [49]; H – Static exchange [88].
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FIG. 4: (Color online) Phase shifts for Ps-H scattering: (a) S-wave; (b) P -wave; (c) D-

wave. Insets in (a) and (c) show a zoomed in view of the low-energy regions. Current singlet

and triplet S-matrix complex Kohn phase shifts are the solid blue (dark gray) and black,

respectively. The singlet CC phase shifts [29] are given by ×, and the triplet CC phase

shifts [47] are given by +. The CVM 1S- and 3S-wave phase shifts [58] are blue (dark gray)

and black circles, respectively. Vertical dashed lines denote the complex rotation resonance

positions [30–32].
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FIG. 5: (Color online) F -wave phase shifts for Ps-H scattering. Singlet phase shifts are given

in blue (dark gray), and triplet phase shifts are black. This figure compares the complex

Kohn phase shifts with the BO approximation phase shifts.

Figure 5 shows the F -wave complex Kohn phase shifts compared to the BO phase shifts

that we compute. As for the 3D, there is a sign change from positive to negative for the

3F phase shifts, but this change occurs at a higher energy of approximately 3.2 eV. The

1F -wave has a resonance above the Ps(n=2) threshold, but the beginning of the resonance

is evident in Fig. 5. The difference between the 1F phase shifts for ω = 4 and 5 is less than

10% for κ ≥ 0.5 (1.7 eV). The corresponding difference for the 3F phase shifts is greater

than 50%, however the triplet contributes much less to the elastic integrated cross section.

The BO approximation phase shifts do not agree well with the complex Kohn phase

shifts, being much lower. We also find little agreement between the BO phase shifts and

the complex Kohn phase shifts for the 1,3G-wave and 1,3H-wave. In computing the elastic

integrated cross sections, we would not be comfortable using the BO phase shifts for ℓ > 5.

We perform complex Kohn calculations on all first six partial waves, but we do more

elaborate calculations for the first three partial waves, as shown by the short-range terms

used in Sec. III E. The 3D, 1,3F , 1,3G, and 1,3H partial waves are not fully converged, but for

each of these, the phase shifts and elastic partial cross sections become very small, so they

do not contribute much to the elastic integrated cross section. For the G- and H-waves, we

obtain a convergence ratio R′(5) > 1 for κ ≤ 0.3 and κ ≤ 0.35, respectively, due to the very

small phase shifts (on the order of . 10−5) and probably the neglect of the mixed symmetry

terms. The convergence ratios are less than 1 at higher κ, where there is a more significant
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contribution to the elastic differential cross section. The maximum H-wave contribution to

the elastic integrated cross section is 0.009% and much less at energies before the Ps(n=2)

threshold.
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FIG. 6: (Color online) Elastic integrated cross sections. The singlet and triplet cross sections

are weighted by 1/4 and 3/4, respectively. CC data is from Ref. [29]. We extract the CC

data using the CurveSnap program [89].

Assuming that the initial spin state of the H(1s) target is unpolarized and that the

spin final states are not determined, the spin-weighted cross sections (elastic differential,

elastic integrated and momentum transfer) comprise of 1/4 of the singlet and 3/4 of the

triplet corresponding cross sections [47, 50, 90]. We include partial waves with ℓ ≤ 5 for

each of the cross sections. In Fig. 6, we show the complex Kohn spin-weighted singlet,

spin-weighted triplet and the spin-weighted integrated cross sections for elastic scattering

and which we compare with the corresponding spin-weighted CC results. There is good

agreement between the complex Kohn and CC spin-weighted integrated elastic cross section

for much of the energy range, but there is a clear shift in the positions of the resonances,

which can also be seen in Tables VII, VIII, and IX. There is also some noticeable discrepancy

at low Eκ, which is especially noticeable near the maximum and minimum.
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FIG. 7: (Color online) Singlet elastic partial wave cross sections and summed singlet elastic

integrated cross section

It is interesting to note in Fig. 6 that the triplet elastic integrated cross section is nearly

featureless, decreasing monotonically. The singlet cross section not only has resonance fea-

tures but also exhibits a minimum at 0.25 eV and a maximum at 0.74 eV. The source of

this minimum can be seen in Fig. 7 as a mixing of the 1S and 1P partial cross sections, and

the maximum is due primarily to the 1P .

The elastic differential cross section, calculated using the expression in Ref. [55], is shown

in Figs. 8, 9, and 10. The percent difference by including the H-wave in the differential cross

section compared to including through the G-wave is a maximum of 3.8% at higher Eκ but

only an average of 0.26% throughout the full Eκ and θ ranges, indicating that the differential

cross section is relatively well converged. Fig. 8 shows that the differential cross section is

essentially isotropic at very low incident energy and becomes slightly more backward peaked

as the energy is increased up to about 0.46 eV (κ = 0.26). However, around this energy, there

is an abrupt change in the differential cross section. Backward scattering is reduced, and

there is a rapid rise in the forward direction, reaching a maximum around 1 eV (κ = 0.38).

There is little change in the behavior of the differential cross section going from κ = 0.6 (2.4

eV) to κ = 0.7 (3.3 eV). Also of interest is the angular dependence of the resonances shown

in Figs. 9 and 10, for which we find that the main contribution is also forward peaked with

some presence at large angles and little contribution at π/2. Interestingly, the structures

discussed above are seen to arise principally from the singlet contribution.
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FIG. 8: (Color online) The elastic differential cross section for Ps-H scattering vs. scattering
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FIG. 9: (Color online) The elastic differential cross section for Ps-H scattering vs. energy

of the incident Ps at selected angles
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FIG. 10: (Color online) The elastic differential cross section for Ps-H scattering for two

different rotations
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FIG. 11: (Color online) Comparison of cross sections. The complex Kohn integrated elastic

cross section, σel, is given by the black curve. The complex Kohn momentum transfer cross

section, σm, is given by the light blue (light gray) curve.

The momentum transfer cross section, σm, can be useful in plasma applications [91,

92]. These cross sections have been measured for Ps scattering with multiple atomic and

molecular targets [93–95] and calculated for Ps scattering by inert gases [96]. Equations for

σm are given in Refs. [55, 97]. In Fig. 11, we compare σm with σel, both of which we compute

using the S-matrix complex Kohn phase shifts. For energies close to zero, σm ≈ σel ≈ 32.45

πa20. The elastic differential cross section is isotropic at zero energy and almost isotropic
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at very low energy (see Ref. [96] and Figs. 8 and 10). After zero energy, the momentum

transfer cross section differs from the elastic integrated cross section. For the energy range

0 < Eκ . 0.46 eV, σm > σel, which indicates that the scattering is larger in the backward

direction, as seen in Fig. 9. Above approximately 0.46 eV, the scattering becomes forward

peaked, and σm < σel.

C. Resonances

The 1S and 1P partial waves each have two resonances below the Ps(n=2) threshold, and

the 1D has one resonance before. There is a resonance just above the threshold for 1F , with

the onset of the resonance obvious below the threshold. Drachman [98] concluded that these

Rydberg resonances correspond to the quasibound state of e+ with the H− ion. Figure 4(a)

shows the two 1S Rydberg resonances below the Ps(n=2) threshold. The first resonance was

first calculated by Hazi and Taylor using a stabilization method [99]. Their properties have

been computed accurately by Yan and Ho using the complex rotation method [30] and by

Walters’ group using the CC approach [29].

We fit the phase shifts in the resonance region to Eq. (33) for 1S and 1P . We perform

the 1D and 1F resonance fits without the second arctan term, since we consider only one

resonance for each of these partial waves. In Tables VII, VIII, IX, and X, we compare

the S-matrix complex Kohn resonance parameters with results from other calculations.

We also give in these tables the average positions and widths we obtain using the Kohn

variational method and its variants (inverse Kohn, generalized Kohn, complex Kohn for the

T matrix and complex Kohn for the S matrix) after we remove the Schwartz singularities.

We determine the standard deviation and use that for the errors.

The resonance parameters of the present S-matrix complex Kohn calculations agree well

with those of the earlier Kohn/inverse Kohn calculations [22]. Also, the resonance parame-

ters we obtain using the S-matrix complex Kohn phase shifts generally agree well with those

obtained in the complex rotation calculations [30–33]. We see that there is more discrep-

ancy between the complex Kohn and complex rotation calculations [30, 31] of the second

1S- and 1P -wave resonances than of the first. The resonance parameters we obtain using

the S-matrix complex Kohn variational method are generally comparable to the CC results

[29]. The 1F resonance lies above the Ps(n=2) threshold, but we are able to fit the onset
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of the resonance shortly before the threshold. The resonance parameters for 1D and 1F are

particularly sensitive to the choice of nonlinear parameters α, β, and γ, and the estimation

of the errors of these resonance parameters does not include this sensitivity.

We observe no triplet resonances for any of these partial waves, which is consistent with

the discussion by Campbell et al. [44], who explained this result. However, we note that

Ray [100] obtained a triplet resonance in a 3-state CC approximation.

Van Reeth and Humberston [22] found that for this system, a stabilization plot for 1S

predicted the first resonance position relatively well, but they could not obtain a resonance

position as accurately as when they performed a scattering calculation. We use the same

stabilization technique for the 1S, 1P , and 1D partial waves and see a similar result to this

previous work for 1S. For 1P and 1D, if only the first symmetry is used, the eigenvalue posi-

tions do not line up well with the resonance positions determined from the full calculations

in Tables VIII and IX. If both the first and second symmetries are used pairwise, the eigen-

values agree with the resonance positions from these tables. This seems to indicate that the

mixed symmetry terms with shared angular momentum will probably not contribute much

for 1D. This analysis cannot be done with the triplet states, as they have no resonances.

Method 1ER (eV) 1Γ (eV) 2ER (eV) 2Γ (eV)

Current work: Average ± standard deviation 4.0065± 0.0001 0.0955± 0.0001 5.0272± 0.0029 0.0608± 0.0007

Current work: S-matrix complex Kohn 4.0065 0.0955 5.0278 0.0608

Complex rotation (Yan and Ho 1999) [30] 4.0058± 0.0005 0.0952± 0.0011 4.9479± 0.0014 0.0585± 0.0027

Stabilization (Yan and Ho 2003) [101] 4.007 0.0969 4.953 0.0574

Kohn variational (Van Reeth and Humberston 2004) [22] 4.0072± 0.0020 0.0956± 0.010 5.0267± 0.0020 0.0597± 0.0010

CC (Walters et al. 2004) [29] 4.149 0.103 4.877 0.0164

TABLE VII: 1S resonance parameters for Ps-H scattering

Method 1ER (eV) 1Γ (eV) 2ER (eV) 2Γ (eV)

Current work: Average ± standard deviation 4.2856± 0.0001 0.0445± 0.0001 5.0577± 0.0004 0.0459± 0.0005

Current work: S-matrix complex Kohn 4.2856 0.0445 5.0579 0.0459

Complex rotation (Yan and Ho 1998) [31] 4.2850± 0.0014 0.0435± 0.0027 5.0540± 0.0027 0.0585± 0.0054

Stabilization (Yan and Ho 2003) [101] 4.287 0.0446 5.062 0.0563

Kohn (Van Reeth and Humberston 2004) [22] 4.29± 0.01 0.042± 0.005 — —

CC (Walters et al. 2004) [29] 4.475 0.0827 4.905 0.0043

TABLE VIII: 1P resonance parameters for Ps-H scattering
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Method 1ER (eV) 1Γ (eV)

Current work: Average ± standard deviation 4.720± 0.001 0.0908± 0.0010

Current work: S-matrix complex Kohn 4.720 0.0909

Complex rotation (Ho and Yan 1998) [32] 4.710± 0.0027 0.0925± 0.0054

Stabilization (Yan and Ho 2003) [101] 4.714 0.0969

CC (Walters et al. 2004 [29]) 4.899 0.0872

TABLE IX: 1D resonance parameters for Ps-H scattering

Method 1ER (eV) 1Γ (eV)

Current work: Average ± standard deviation 5.1867± 0.0021 0.0125± 0.0003

Current work: S-matrix complex Kohn 5.1863 0.0125

Complex rotation (Ho and Yan 2000) [33] 5.1661± 0.0014 0.0174± 0.0027

CC (Walters et al. 2004 [29]) 5.200 0.0095

TABLE X: 1F resonance parameters for Ps-H scattering

D. Effective Range Theories

Prior work in the literature for 1S Ps-H scattering [21, 42, 47] uses the ERT expansion for

short-range interactions as given in Eq. (26) as well as the approximation to the scattering

length given in Eq. (25). Table XI shows the 1,3S-wave scattering lengths and effective

ranges given by Refs. [21, 29, 42, 47]. Some other calculations of the 1,3S scattering lengths

and effective ranges can be found in Refs. [40–42, 46]. These all agree reasonably well with

each other. Additional calculations of 1,3S-wave scattering lengths and effective ranges can

also be found in Refs. [37–39, 44, 45, 49, 102].

We also use Eq. (25) to determine the 1,3S scattering lengths from the phase shifts of

very small κ, given in Table XI. Van Reeth and Humberston [21] fitted their phase shifts to

the ERT for short-range interactions, Eq. (26), for a range in κ up to 0.5. They gave in their

paper a plot of κ cot δ±0 versus κ2. We perform a similar plot, which is given in Fig. 12, but

use the complex Kohn phase shifts that we compute. As obtained in Ref. [21], the singlet

result κ cot δ+0 lies on a relatively straight line, but the triplet result κ cot δ−0 curves down at

low values of κ2.

We investigate the low-energy region in more detail. We fit the complex Kohn phase

shifts to the ERT for short-range interactions, Eq. (26), for the range κ = 0.1− 0.5, but in
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addition, we fit the phase shifts to this ERT for a range of κ = 0.001− 0.009. We compare

the results of the scattering lengths and effective ranges for the two fits in Table XI. We

find that there is little difference in the 1S results and the 3S scattering length, but there is

significant difference in the 3S effective range.

For the Eq. (30) result of r+0 in Table XI, we use our result of Eb that we give in Table

II and and our result of a+ that we obtain using Eq. (26) for the range κ = 0.001 − 0.009.

This value of r+0 is smaller than the other values of r+0 that we give in Table XI.

Van Reeth and Humberston [21] added a κ3 term to the ERT for short-range interactions

because of the van der Waals interaction. They found that for the 1S, adding this term

made no significant change in the quality of the fit. However, for the 3S, they found that

the addition of the κ3 term improved the fit but that the effective range was very sensitive

to the energy range over which the fit was made.

In addition to the fits we perform using the ERT for short-range interactions, Eq. (26), we

use the ERT of Eq. (27) that includes terms due to the van der Waals interaction. We find

that for the range κ = 0.001− 0.009, the inclusion of these extra terms makes no difference

to the 1,3S scattering lengths and only a small difference to the effective ranges.

We also apply the QDT for the van der Waals interaction of Gao [77], Eq. (28), using the

equations given by Gao [78] of the expansion of K0
ℓ , Eq. (29), and the expressions for the

scattering lengths and effective range. We use κ = 0.002 and 0.003 for the fit of Eq. (29)

and give the results in Table XI. The 1,3S scattering lengths we obtain using this QDT

are identical to the results we obtain from the approximation to the definition and of that

we obtain using the ERT for short-range interactions and the ERT for the van der Waals

interaction, both for the range κ = 0.001− 0.009. The 1,3S effective ranges we obtain using

the QDT agrees well with the results of the two ERT fits, Eq. (26) and Eq. (27), for this

smaller range in κ.
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Model κ a+ r+
0

a− r−
0

Approx. to def. - Eq. (25) 0.001 4.331± 0.012 — 2.137± 0.008 —

ERT Short - Eq. (26) 0.1− 0.5 4.308± 0.003 2.275 2.162± 0.003 1.343

ERT Short - Eq. (26) 0.001− 0.009 4.331± 0.012 2.197 2.137± 0.008 2.035

ERT vdW - Eq. (27) 0.001− 0.009 4.331± 0.012 2.221 2.137± 0.008 2.139

QDT - Eqs. (28), (29) 0.002, 0.003 4.331± 0.012 2.210 2.136± 0.008 2.151

Eq. (30) — — 2.106 — —

Kohn (721 terms) Eq. (25) [21] — 4.334 — 2.143 —

Kohn extrapolated [21] — 4.311 2.27 2.126 1.39

Kohn Eq. (26) [21] up to 0.5 4.30 2.27 2.147 —

CC 14Ps14H [47] — 4.41 2.19 2.06 1.47

CC 14Ps14H+H− [29] — 4.327 — — —

SVM [42] — 4.34 2.39 2.22 1.29

TABLE XI: 1,3S scattering lengths and effective ranges
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FIG. 12: (Color online) 1S (upper lines) and 3S (lower lines) phase shifts, plotted as κ cot δ±0

versus κ2. The inset shows a magnified portion of the same data for low κ2 as denoted by

the gray box in the lower left.

Due to the van der Waals interaction, the 1P - and 3P -waves do not have effective ranges

but do have scattering lengths [74]. Table XII gives the scattering lengths using the approxi-

mation to the definition of Eq. (25) and the QDT expressions we evaluate using the complex

Kohn phase shifts at κ = 0.01. The scattering lengths obtained in these two different ways

agree well for both the 1P - and 3P -waves. The 1,3P scattering lengths have previously been

computed by Ivanov et al. using their SVM phase shifts [42]. The results we obtain for the

1P scattering length using the S-matrix complex Kohn phase shifts are comparable to the
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1P scattering length obtained with the SVM phase shifts. In contrast, the 3P scattering

lengths we determine differ significantly from the prior SVM results [42]. It seems that this

difference can partly be attributed to the S-matrix complex Kohn phase shifts being larger

than the SVM phase shifts.

Model κ a+
1

a−
1

Approx. to def. - Eq. (25) 0.01 −22.130± 0.173 1.4530± 0.1104

QDT - Eq. (28), (29) 0.01, 0.02 −22.200± 0.173 1.4158± 0.1107

SVM [42] — −20.7 6.80

TABLE XII: 1,3P scattering lengths

V. CONCLUSION

We have extended the earlier Kohn and inverse Kohn variational calculations [21, 22] and

have presented S-matrix complex Kohn variational results for Ps(1s) scattering from H(1s)

below the Ps(n=2) threshold. We have determined highly accurate 1,3S and 1,3P phase

shifts. The discrepancy in the D-wave phase shifts, especially the 3D, between the complex

Kohn variational and CC methods needs further investigation, such as explicitly including

mixed symmetry terms into the trial wavefunction. Fortunately, the 3D contribution to the

elastic integrated cross section is small, and the 1D resonance we compute with the complex

Kohn phase shifts is reasonably good, providing some confidence in the reliability of the

short-range part of the trial wavefunction describing the 1D Ps-H scattering system at short

distances. The 1,3F , 1,3G, and 1,3H partial waves have very small phase shifts and do not

contribute greatly to the elastic integrated or momentum transfer cross sections.

We have presented the elastic differential, elastic integrated, and momentum transfer cross

sections using the S-matrix complex Kohn variational phase shifts for the first six partial

waves. The elastic differential cross section is slightly backward peaked at low energy but

quickly becomes strongly forward peaked as Eκ increases.

We have calculated resonance positions and widths for the 1S, 1P , 1D, and 1F partial

waves using the Kohn variational method and its variants, which compare favorably with

the complex rotation results of Refs. [30–33]. We have also provided a detailed investigation

of the effective ranges and scattering lengths for 1,3S, along with the 1,3P scattering lengths.
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We have presented results using multiple effective range theories. The 1,3S scattering lengths

agree well with previous work [21, 29, 42, 47]. When we use a κ range of 0.1 to 0.5, we obtain

a 3S effective range close to those previously reported [21, 42, 47], but when we use smaller

κ values, we obtain a noticeably larger result. While the complex Kohn 1P scattering length

agrees with the SVM [42], the complex Kohn 3P scattering length is much smaller.
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plication of the confined variational method,” EPL 99, 43001 (2012).

[59] P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA recommended values of the funda-

mental physical constants: 2010,” Rev. Mod. Phys. 84, 1527 (2012); “NIST Conversions,”

http://physics.nist.gov/cuu/Constants/energy.html (2014), accessed: 2014-08-27.

[60] P. Van Reeth and J. W. Humberston, “Elastic scattering and positronium formation in low-

energy positron-helium collisions,” J. Phys. B 32, 3651 (1999).

[61] P. Van Reeth, Theoretical Studies of Positronium Formation in Low Energy Positron-Helium

Collisions, Ph.D. thesis, University College London (1996).

[62] C. Schwartz, “Lamb Shift in the Helium Atom,” Phys. Rev. 123, 1700 (1961).

[63] C. J. Brown and J. W. Humberston, “Positronium formation in positron-hydrogen scatter-

40

http://dx.doi.org/ 10.1103/PhysRevA.65.030502
http://dx.doi.org/ 10.1088/0022-3700/8/18/002
http://dx.doi.org/ 10.1088/0022-3700/8/18/002
http://dx.doi.org/10.1088/0953-4075/30/16/014
http://dx.doi.org/10.1088/0953-4075/29/22/024
http://dx.doi.org/ 10.1088/0370-1298/67/8/306
http://dx.doi.org/ 10.1088/0370-1298/67/8/306
http://dx.doi.org/ 10.1103/PhysRev.32.361
http://dx.doi.org/ 10.1103/PhysRev.32.361
http://dx.doi.org/10.1139/p96-062
http://dx.doi.org/10.1209/0295-5075/99/43001
http://dx.doi.org/ 10.1103/RevModPhys.84.1527
http://physics.nist.gov/cuu/Constants/energy.html
http://dx.doi.org/10.1088/0953-4075/32/15/303
http://dx.doi.org/10.1103/PhysRev.123.1700


ing,” J. Phys. B 18, L401–L406 (1985).

[64] C. J. Brown, The Interactions of Low Energy Positrons with Atomic Hydrogen, Ph.D. thesis,

University College London (1986).

[65] M. S. T. Watts, Theoretical Studies of Positronium Formation in Positron Collisions with

Lithium and Hydrogen Atoms, Ph.D. thesis, University College London (1994).

[66] J. W. Humberston, P. Van Reeth, M. S. T. Watts, and W. E. Meyerhof, “Positron-hydrogen

scattering in the vicinity of the positronium formation threshold,” J. Phys. B 30, 2477 (1997).

[67] P. Van Reeth and J. W. Humberston, “A partial-wave analysis of positronium formation in

positron-helium scattering,” J. Phys. B 30, L95 (1997).

[68] E. A. G. Armour and J. W. Humberston, “Methods and programs in collisions of positrons

with atoms and molecules,” Phys. Rep. 204, 165 (1991).

[69] P. Van Reeth and J. W. Humberston, unpublished (2015).

[70] H. A. Bethe, “Theory of the Effective Range in Nuclear Scattering,” Phys. Rev. 76, 38 (1949).

[71] J. M. Blatt and J. D. Jackson, “On the Interpretation of Neutron-Proton Scattering Data

by the Schwinger Variational Method,” Phys. Rev. 76, 18 (1949).

[72] I. I. Fabrikant and G. F. Gribakin, “Similarity between Positronium-Atom and Electron-

Atom Scattering,” Phys. Rev. Lett. 112, 243201 (2014).

[73] C. K. Au and R. J. Drachman, “van der Waals Force Between Positronium and Hydrogenic

Atoms: Finite-Mass Corrections,” Phys. Rev. Lett. 56, 324 (1986).

[74] B. R. Levy and J. B. Keller, “Low-Energy Expansion of Scattering Phase Shifts for Long-

Range Potentials,” J. Math. Phys. 4, 54 (1963).

[75] M. R. Flannery, Springer Handbook of Atomic, Molecular, and Optical Physics , 2nd ed.,

edited by G. W. F. Drake (Springer, New York, NY, 2006) p. 668.

[76] D. W. Martin and P. A. Fraser, “The van der Waals force between positronium and light

atoms,” J. Phys. B 13, 3383 (1980).

[77] B. Gao, “Solutions of the Schrödinger equation for an attractive 1/r6 potential,” Phys. Rev.

A 58, 1728 (1998).

[78] B. Gao, “Quantum-defect theory of atomic collisions and molecular vibration spectra,” Phys.

Rev. A 58, 4222 (1998).

[79] K. Pachucki, M. Puchalski, and E. Remiddi, “Recursion relations for the generic Hylleraas

three-electron integral,” Phys. Rev. A 70, 032502 (2004).

41

http://dx.doi.org/ 10.1088/0022-3700/18/12/010
http://dx.doi.org/10.1088/0953-4075/30/10/020
http://dx.doi.org/10.1088/0953-4075/30/3/001
http://dx.doi.org/10.1016/0370-1573(91)90110-8
http://dx.doi.org/ 10.1103/PhysRev.76.38
http://dx.doi.org/10.1103/PhysRev.76.18
http://dx.doi.org/ 10.1103/PhysRevLett.112.243201
http://dx.doi.org/10.1103/PhysRevLett.56.324
http://dx.doi.org/10.1063/1.1703889
http://dx.doi.org/10.1007/978-0-387-26308-3_45
http://dx.doi.org/ 10.1088/0022-3700/13/17/017
http://dx.doi.org/10.1103/PhysRevA.58.1728
http://dx.doi.org/10.1103/PhysRevA.58.1728
http://dx.doi.org/10.1103/PhysRevA.58.4222
http://dx.doi.org/10.1103/PhysRevA.58.4222
http://dx.doi.org/ 10.1103/PhysRevA.70.032502
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