
LLNL-TR-440491

Detailed Modeling, Design, and
Evaluation of a Scalable Multi-level
Checkpointing System

A. T. Moody, G. Bronevetsky, K. M. Mohror, B. R.
de Supinski

July 8, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Detailed Modeling, Design, and Evaluation of a Scalable Multi-level

Checkpointing System

Adam Moody, Greg Bronevetsky, Kathryn Mohror and Bronis R. de Supinski
Lawrence Livermore National Laboratory

{moody20, bronevetsky, kathryn, bronis}@llnl.gov

July 20, 2010

Abstract

High-performance computing (HPC) systems are growing more powerful by utilizing more hardware com-
ponents. As the system mean-time-before-failure correspondingly drops, applications must checkpoint more
frequently to make progress. However, as the system memory sizes grow faster than the bandwidth to the
parallel file system, the cost of checkpointing begins to dominate application run times.

A potential solution to this problem is to use multi-level checkpointing, which employs multiple types of
checkpoints with different costs and different levels of resiliency in a single run. The goal is to design light-
weight checkpoints to handle the most common failure modes and rely on more expensive checkpoints for less
common, but more severe failures. While this approach is theoretically promising, it has not been fully evaluated
in a large-scale, production system context.

To this end we have designed a system, called the Scalable Checkpoint/Restart (SCR) library, that writes
checkpoints to storage on the compute nodes utilizing RAM, Flash, or disk, in addition to the parallel file
system. We present the performance and reliability properties of SCR as well as a probabilistic Markov model
that predicts its performance on current and future systems. We show that multi-level checkpointing improves
efficiency on existing large-scale systems and that this benefit increases as the system size grows. In particular,
we developed low-cost checkpoint schemes that are 100x-1000x faster than the parallel file system and effective
against 85% of our system failures. This leads to a gain in machine efficiency of up to 35%, and it reduces the
the load on the parallel file system by a factor of two on current and future systems.

1 Introduction

Although supercomputing systems use high-quality components, the systems become less reliable at larger scales be-
cause increased component counts increase overall fault rates. Applications running on HPC systems can encounter
mean times between failures on the order of hours or days due to hardware breakdowns [1] and soft errors [2]. For
example, the 100,000 node BlueGene/L system at Lawrence Livermore National Laboratory (LLNL) experiences
an L1 cache bit error every 8 hours [3] and a hard failure every 7-10 days. Exascale systems are projected to fail
every 3-26 minutes [4, 5]. Commonly, applications tolerate failures by periodically saving their state to checkpoint
files. They write these checkpoints to reliable storage, typically a parallel file system. Upon failure, an application
can restart from a prior state by reading in a checkpoint file.

Checkpointing to a parallel file system is expensive at large scale, where a single checkpoint can take on the order
of tens of minutes [6, 7]. Further, computational capabilities of large-scale facilities have increased more quickly
than I/O bandwidths. For example, the rule of thumb for a well-balanced system is 1 GB/s of I/O bandwidth
per 1 TeraFLOP of computational capability [8], but BlueGene/L at LLNL and BlueGene/P at Argonne National
Laboratory (ANL) achieve less than a tenth of that rate [6, 7]. Typically, the limited bandwidth to parallel file
systems is due to system design choices that optimize for system maintainability and availability as well as the need
to share storage across multiple machines.

As computing systems increase in scale, increasing failure rates require more frequent checkpoints, but increased
system imbalance makes them more expensive. Checkpointing will become both more critical and less practical.

1

Thus, PetaFLOP-scale applications will either spend most of their time writing checkpoints or use alternative fault
tolerance mechanisms such as process-replication approaches that have overheads of over 100% [9].

Multi-level checkpointing [10, 11] is a promising approach for addressing this problem, which uses multiple types
of checkpoints that have different levels of resiliency and cost in a single application run. The slowest but most
resilient level writes to the parallel file system, which can withstand a failure of an entire machine. Faster but less
resilient checkpoint levels utilize node-local storage, such as RAM, Flash or disk, and apply cross-node redundancy
schemes. In our experience, as documented in Section 4, most failures only disable one or two nodes at a time, and
multi-node failures often disable nodes in a predictable pattern. Thus, an application can usually recover from a less
resilient checkpoint level, given carefully chosen redundancy schemes. Multi-level checkpointing allows applications
to take frequent inexpensive checkpoints and less frequent, more resilient checkpoints, resulting in better efficiency
and reduced load on the parallel file system.

In this paper we evaluate the effectiveness of multi-level checkpointing in large-scale high-performance systems
by designing and implementing a multi-level checkpointing system and developing a probabilistic Markov model
that quantifies its benefits. The major contributions of this paper are:

• the design and implementation of SCR, our multi-level checkpointing system [12];

• a detailed failure analysis for several large systems;

• a Markov model of multi-level checkpointing;

• an exploration of modeled multi-level checkpointing performance on today’s and future systems;

• and an empirical evaluation of multi-level checkpointing with a real application.

Overall, our results demonstrate that multi-level checkpointing is a critical augmentation to current fault tolerance
methods. We show that SCR can increase system efficiency significantly, with gains of as much as 35% while
reducing the load on the parallel file system by a factor of two on current and future systems.

The rest of this paper is organized as follows. Section 2 presents related work. In Section 3, we describe and
evaluate SCR. Section 4 describes the types of failures we encounter on several large systems. We detail our model
of multi-level checkpointing in Section 5, and in Section 6, we apply it to explore the use of multi-level checkpointing
in the context of current and future systems. In Section 7, we apply our model to study the trade-offs associated
with multi-level checkpointing on disk-less systems, and we conclude with Section 8.

2 Related Work

Many models exist to describe checkpointing systems [13, 14, 15, 16]. However, few have modeled multi-level
checkpointing systems. Vaidya developed a Markov model for a two-level checkpoint system that combines global
checkpointing with sender-based message logging [17]. He used this model to predict average checkpointing overhead
and concluded that there are conditions where it is beneficial to use multi-level checkpointing. We extend Vaidya’s
model to account for an arbitrary number of levels, each with its own checkpoint cost, recovery cost, and failure
rate, and our model also allows for sequential failures within a given computation interval.

Panda and Das extended Vaidya’s two-level model to predict the probability of task completion assuming that
the system has a fixed number of spare resources and no repair [18]. In our model, we assume the system has an
infinite pool of spare resources. This assumption is valid so long as a job does not use all system resources, and so
long as the rate of failure does not outpace the rate of repair.

Gelenbe presented a Markov model for multi-level checkpointing in a transactional computing system [10]. He
used the Markov model steady state equations to arrive at a formula providing the efficiency of the system. However,
he noted that an analytical solution to find the optimum efficiency was too difficult. Without an analytical solution,
one must explore the parameter space numerically. With this in mind, we derive expressions for efficiency using a
recursive method. This approach nicely lends itself to dynamic programming, which reduces the time required to
explore the parameter space.

Several researchers have worked to lower the overheads of writing checkpoints. Oliner et al. present cooperative
checkpointing, which reduces overheads by only writing checkpoints that are predicted to be useful, e.g., when a

2

failure in the near future is likely [19]. Plank et al. eliminate the overhead of writing checkpoints to disk with diskless
checkpointing [20]. They keep checkpoint data in memory using mirroring and parity methods for redundancy. Chen
et al. present an experimental evaluation of an implementation of diskless checkpointing targeted towards floating
point applications on high performance computing systems [21]. Nowoczynski et al. lower the overheads of writing
checkpoints by increasing the write bandwidth of the file system [22]. Plank and Li write compressed checkpoints
asynchronously to lower overheads [23]. Incremental checkpointing reduces the number of full checkpoints taken
by periodically saving changes in the application data between full checkpoints [24, 25, 26]. These approaches are
orthogonal to multi-level checkpointing and can be used in combination with our work.

Researchers have combined two checkpointing methods in an effort to lower overheads while maintaining re-
siliency. Silva and Silva combined disk checkpointing with mirror and parity checkpointing [27]. They concluded
that using two levels of checkpoints was advantageous. Plank and Li combine incremental and parity checkpointing
in a diskless checkpointing approach [28].

To the best of our knowledge, we provide the first implementation and evaluation of multi-level checkpointing
on large-scale, production systems. We also provide real failure data from three production systems that indicate
that multi-level checkpointing on these systems has potential. Finally, our new performance model enables one to
analyze and optimize a multi-level checkpointing system to improve utilization of current and future systems.

3 The Scalable Checkpoint/Restart (SCR) Library

3.1 SCR Description

The Scalable Checkpoint/Restart (SCR) library enables MPI applications to use storage distributed on a system’s
compute nodes to attain high checkpoint and restart I/O bandwidth. LLNL has used our multi-level checkpoint
system since late 2007 with RAM disk on Linux/x86-64/Infiniband clusters. Production runs currently also use
solid-state drives (SSDs) on the same cluster architecture. SCR is available under a BSD license [12].

We derive SCR’s approach from two key observations. First, a job only needs its most recent checkpoint. As
soon as it writes the next checkpoint, we can discard the previous checkpoint. Second, a typical failure disables a
small portion of the system, but it otherwise leaves most of the system intact. As we discuss in Section 4, 85% of
failures disable at most one compute node on the clusters on which we currently use SCR.

Our SCR design leverages these two properties by caching checkpoint files in storage local to the compute nodes
instead of the parallel file system. SCR caches only the most recent checkpoints, discarding an older checkpoint with
each newly saved checkpoint. SCR can also apply a redundancy scheme to the cache, so it can recover checkpoints
after a failure disables a small portion of the system. SCR periodically copies (flushes) a cached checkpoint to the
parallel file system in order to withstand failures that disable larger portions of the system. However, a well-chosen
redundancy scheme allows checkpoints to be flushed infrequently.

SCR relies on an external service (e.g., the resource manager or MPI library) to cancel a job that experiences a
failure. It also requires the resource manager to allow subsequent jobs to be run within the allocation despite the
failure. After a failure, SCR attempts to recover the most recent checkpoint from cache. Assuming it does, SCR
can either copy the checkpoint to the parallel file system and stop the job, or it can restart the job directly from
the cached checkpoint. In this paper, we focus on the latter option, which assumes a job’s resource allocation has
sufficient nodes to continue. If SCR fails to recover a checkpoint from cache, it restarts the job after it fetches the
most recent checkpoint from the parallel file system.

When requesting an allocation from the resource manager, jobs can request extra nodes to serve as spares in
case any nodes fail. In practice, we find that failures occur infrequently enough that one or two spare nodes per
thousand active nodes is sufficient to cover a job duration between 12 and 24 hours. Longer runs provide sufficient
time to repair nodes and return them to the allocation. Thus, we assume an infinite pool of spare nodes.

SCR is designed for globally-coordinated checkpoints that are written primarily as a file per MPI process. Before
an application initiates a new checkpoint, it queries the library to determine the directory path it should use to
write each checkpoint file. At the end of the checkpoint, the application notifies the library that it has completed
writing its files, and then SCR applies a redundancy scheme to those files.

The path that SCR specifies and the redundancy scheme that SCR applies can be different with each checkpoint.

3

100

1000

10000

G
B
/s

Local RAM disk
Partner RAM disk
XOR RAM disk
Local SSD
XOR SSD
Partner SSD
Lustre (10GB/s peak)

0.1

1

10

4 8 16 32 64 128 256 512 992

G

N dNodes

Figure 1: Aggregate write bandwidth to RAM disk, SSD, and Lustre

The path could point to any node-local storage device available on a compute node. For example, it could specify
a directory on a RAM disk, a magnetic hard-drive, or an SSD depending on what is available. Additionally, SCR
supports three redundancy schemes: LOCAL, PARTNER, and XOR. With LOCAL, SCR writes each file to storage local
to the node; it does not store redundancy data. With PARTNER, it writes each file to local storage and to storage on
another partner node. SCR can recover a copy of the file, provided a node and its partner do not simultaneously
fail. With XOR, SCR writes each file to local storage and small sets of nodes collectively compute and store parity
redundancy data, similar to RAID-5 [29, 30]. This scheme withstands node failures so long as two or more nodes
from the same set do not fail at the same time.

3.2 SCR Performance

To illustrate the performance of SCR, we ran a benchmark to measure the checkpointing bandwidth on the Coastal
cluster at LLNL. Coastal consists of 1,152 nodes of which 1,104 are compute nodes. Each compute node has
two quad-core 2.4GHz Intel Xeon E5530 processors, 24GB of main memory, and a 32GB Intel X-25E SSD. DDR
Infiniband connects the nodes.

Our benchmark calls the SCR library and writes one file per process per checkpoint. It takes several checkpoints,
computes the average cost, and reports the aggregate bandwidth. We measured LOCAL, PARTNER, and XOR using
both RAM disk and SSDs. We ran the benchmark with 8 MPI ranks per node and scaled up to 992 nodes. We
ran a similar bandwidth test using the parallel file system, which is a Lustre system designed to deliver a peak
bandwidth of 10GB/s. Figure 1 shows the results.

SCR is clearly scalable, with its mechanisms all following a linear trend. Lustre also scales linearly up to 64
nodes, at which point it levels off near its peak performance of 10GB/s. We observe three general groupings of SCR
curves. Including the parallel file system as a fourth, SCR provides up to four checkpoint cost levels on Coastal.

The SCR node-local mechanisms substantially outperform the parallel file system as more nodes are used. SCR’s
slowest node-local mechanisms use the SSDs, which reach 100GB/s at 992 nodes. This is still 10 times faster than
the parallel file system. When using PARTNER or XOR with RAM disk, SCR reaches 1,000GB/s, which is 100 times
faster. And finally, LOCAL with RAM disk achieves 10,000GB/s – 1,000 times faster than Lustre.

PARTNER performs as well as or better than XOR when using RAM disk, however, it is slower with SSDs. When
using SSDs, the bottleneck is the SSD write speed. In this case, XOR is faster because it writes one full copy plus a
small fraction of each file, whereas PARTNER writes two full copies of each file. When using RAM disk, the bottleneck
is the speed of the network connection. In this case, PARTNER and XOR are similar, because they both require the
same amount of data to be transferred between nodes. XOR with RAM disk scales linearly until 256 nodes, where
network contention reduces its performance by a constant rate. PARTNER uses a different communication pattern
that happens to avoid this contention. Network topology could be considered when assigning nodes to XOR sets in

4

Table 1: pF3D checkpoint performance

Cluster PFS name Cache type
Nodes time time
Data BW BW Speedup

Hera lscratchc XOR on RAM disk
256 nodes 300 s 15.4 s

2.07 TB 7.1 GB/s 138 GB/s 19x
Atlas lscratcha XOR on RAM disk

512 nodes 439 s 9.1 s
2.06 TB 4.8 GB/s 233 GB/s 48x
Coastal lscratchb XOR on RAM disk

1024 nodes 1051 s 4.5 s
2.14 TB 2.1 GB/s 483 GB/s 234x
Coastal lscratch4 XOR on RAM disk

1024 nodes 2500 s 180.0 s
10.27 TB 4.2 GB/s 603 GB/s 14x

Table 2: pF3D failures on three different clusters

Clusters Coastal Hera Atlas Total
Time span Oct 09 - Mar 10 Nov 08 - Nov 09 May 08 - Oct 09
Number of jobs 135 455 281 871
Node hours 2,830,803 1,428,547 1,370,583 5,629,933
Total failures 24 87 80 191
LOCAL required 2 (08%) 36 (41%) 21 (26%) 59 (31%)
PARTNER/XOR required 18 (75%) 32 (37%) 54 (68%) 104 (54%)
Lustre required 4 (17%) 19 (22%) 5 (06%) 28 (15%)

order to avoid contention, but we leave this to future work.
The general performance trends observed with our benchmark also extend to production applications that use

SCR. One particular application, the pF3D laser-plasma interaction code [31], has used SCR since late 2007 on the
Hera, Atlas and Coastal systems at LLNL. Hera and Atlas are architecturally similar to Coastal, except that they
have somewhat different node configurations and lack SSDs. Table 1 shows the checkpoint costs and bandwidths
achieved by pF3D during four different large-scale runs each configured to use two checkpoint levels: one type of
node-local cache and the parallel file system. Note that the cached checkpoints increase pF3D checkpoint bandwidths
by factors ranging from 14 to 234 when compared to the parallel file system.

4 System Reliability

We analyzed the job logs of 871 runs of pF3D that aggregate to over 5 million node-hours on three different clusters
to obtain its failure rates on these platforms. Table 2 categorizes each failure according to the checkpoint level that
was required for recovery. A LOCAL checkpoint could handle 31% of the observed failures, while PARTNER or XOR

could handle another 54%. We had to restart using a checkpoint from the parallel file system for only 15% of the
observed failures.

The most common type of failure (54%) consisted of node failures tripped by a bad power supply, a failed
network interface card, or an unexplained reboot. Each of these failures disabled a single node, except on Coastal,
where two nodes share a single power supply. Based on the system architecture, we can configure SCR to avoid
assigning two nodes that share a common power supply as partners or members of the same XOR set. Thus, PARTNER
and XOR are sufficient to recover from these failures.

Failed writes to the parallel file system were also common (34%). We classify a write failure as temporary (22%)

5

if the write succeeded in a subsequent job that was restarted within the same resource allocation. Otherwise, we
label the failure as persistent (12%). A LOCAL checkpoint is sufficient to restart a job after a temporary write
failure. Persistent write failures consumed the rest of a job’s resource allocation and forced a restart from Lustre

in another allocation.
We also observed ten job hangs (5%), which is a condition where the job stopped progressing but did not fail.

At LLNL, we use an in-house tool, called io-watchdog, to detect and cancel such jobs so that a subsequent job can
run. After a hanging job has been canceled, it can be restarted from a LOCAL checkpoint. We also found that seven
jobs failed (4%) due to a floating-point exception or a memory segmentation violation as the result of a transient
processor fault. We can also use a LOCAL checkpoint to recover from these faults.

A final set of infrequent hardware failures (3%) required restarting from the parallel file system. In two such
failures, multiple nodes were disabled when a power breaker on the wall switched off. We could configure PARTNER

or XOR to account for a failed power breaker. However, this event occurs so infrequently that we just rely on the
parallel file system to recover from it. Three failures were due to persistently bad hardware such as a bad processor
or memory DIMM that caused jobs to hang repeatedly until their resource allocation expired.

Of the failures that require a restart from the parallel file system, persistent write failures are especially expensive.
Although the job often has a valid checkpoint cached on the cluster, the persistent write failure prevents SCR from
flushing this checkpoint. System design should reduce persistent write failures by either improving the parallel file
system reliability or by providing backup parallel file systems. If we allow for temporary write failures but exclude
persistent write failures, only 6 of 169 failures (3.6%) would have required a restart from the parallel file system.
Thus, we could have restarted 96.4% of the failed jobs from checkpoints cached on the cluster. Nonetheless, we
could restart 85% of the failed jobs from cached checkpoints even with the current rate of persistent write failures.

5 Multi-level Checkpoint Model

A multi-level checkpointing system can store the same checkpoint data using several mechanisms, each of which
may have a different cost and level of resilience. Each of L checkpointing mechanisms is a level, for which level
1 checkpoints are the least expensive and resilient, while level L checkpoints are the most expensive and resilient.
In our model, we assume that a checkpoint at level k can be used to recover from a superset of the failure modes
that are recoverable using checkpoints at levels less than k. A level k failure refers to a failure severe enough that
we require a checkpoint at level k or higher for recovery. A level k recovery refers to the process of restoring an
application using a checkpoint saved at level k. A multi-level checkpointing system alternates between different
types of checkpoints to minimize the overall application running time. Since more severe failures happen less
frequently, the system records zero or more level k checkpoints for every level k + 1 checkpoint.

Several factors determine the performance of a multi-level checkpointing system: the length of the compute
interval between checkpoints, the checkpoint and recovery costs at each level, and the failure rates. One must
minimize checkpoint frequency at each level to reduce overhead. At the same time, one must consider the expected
failure frequency of each level, which determines the lost compute time in the event of a failure. Overall, these
factors present a complex optimization problem that requires an explicit multi-level checkpoint model to determine
the optimal number of levels and checkpoint frequencies.

We provide a novel probabilistic model of multi-level checkpointing that can predict the behavior of SCR given
the factors that can affect its performance. This model can guide general use of multi-level checkpoint systems for
current and future systems and motivate system designs that provide adequate overall reliability and efficiency. We
can use the model to optimize performance of a given multi-level checkpointing implementation on a specific HPC
system, as follows. For a given implementation and system, we measure the performance and failure probability
of each checkpoint level, as we did for SCR and LLNL clusters in Sections 3 and 4. This data is then provided to
the model as input, along with the length of the compute interval, the set of checkpoint levels to be used, and the
checkpoint frequency for each level. The model then predicts the overhead of a particular configuration, accounting
for delays due to checkpoints, failures, and restarts. By parameterizing the model with different input values, we
can identify the configuration that provides the optimal performance on a given system.

6

5.1 Assumptions and Error

Our model captures multi-level checkpointing systems with some simplifying assumptions. Of course, any assump-
tions made when designing a model may introduce errors into its predictions. However, we believe that the errors
we introduce are relatively small. Here we discuss our assumptions and the potential impact they have.

We assume that failures are independent. Thus, a failure within a job does not increase the probability of another
failure within that job or future jobs. In reality, some failures are correlated with one another. However, SCR is
designed to mitigate effects of correlated failures. For example, it can avoid using failed nodes in a job allocation
as those nodes may be likely to fail again. Also, it accounts for shared components in the system architecture
when configuring its redundancy schemes. For example, processes on the same node are not selected to be partner
processes.

We assume that checkpoints are taken at regular intervals throughout the job. This may not always be the case.
However, the application we study here, pF3D, does checkpoint at regular intervals.

We also assume costs to read and write checkpoints are constant throughout the job. Of course, read and write
times vary, especially if shared resources such as the network or parallel file system are used. This introduces error
into the results, particularly for checkpoints on the parallel file system.

When a failure occurs, we assume the application rolls back to the most recent checkpoint capable of recovering
from the failure. We do not model possible savings from using an older checkpoint that is also sufficient for recovery
but stored at a lower level. Such a checkpoint requires more work to be re-computed, but its faster recovery time
may lead to better overall efficiency. The effect here is that we may underestimate the performance of multi-level
checkpointing.

We assume an infinite pool of spare nodes, as discussed in Section 3. When using SCR in practice, users often
request extra nodes in their job allocation. Generally speaking, the failure rate is less than the repair rate, so this
assumption typically holds. In the case that there are no spare nodes, SCR copies the most recent checkpoint to
the parallel file system and terminates the job; however, we do not model this capability. Similarly, the model
does not account for allocation time limits that batch systems impose. We assume a single level L checkpoint
period completes within the allocation time limit. In practice, SCR handles batch limits by copying the most
recent checkpoint to the parallel file system before the allocation expires. These assumptions will lead the model
to overestimate performance in cases where SCR is forced to copy checkpoints to the parallel file system when it
otherwise would not.

5.2 Model Overview

We model a multi-level checkpointing system as a Markov Model (MM). An MM is a directed graph in which nodes
represent application states and edges represent the transitions between states. We annotate each edge with the
probability that the application will transition from the source state to the destination state. MMs are history-
less: they assume transition probabilities only depend on the current state. We also annotate transitions with cost
information such as the time spent in the source state given that the transition is taken. Our model has computation
and recovery states. Computation states represent periods of application computation followed by a checkpoint.
Recovery states represent the process of restoring an application from a checkpoint saved previously.

Figure 2(a) presents the basic structure of our model. The white states in the top row are computation states,
and the single blue state at the bottom is a recovery state. Each computation state is labeled by the checkpoint
level it terminates with, while the recovery state is labeled by the checkpoint level it uses to restore the application.

If no failures occur during application execution or checkpointing, the application transitions from one compu-
tation state to the next (horizontal transitions between computation states). If a failure occurs, the application
transitions to the recovery state corresponding to the most recent checkpoint capable of recovering from the failure
(downward transitions from computation states). For example, if a failure at level k or less occurs while in the
middle computation state in Figure 2(a), the system transitions to recovery state k, which restores the application
using the checkpoint written at the end of the previous computation state. However, if a failure occurs at a level
greater than k, the system must transition to a recovery state corresponding to an older checkpoint saved at a
higher level.

7

11

k

k

Level ≤k

Failures
During

Computation or

Checkpointing

Successful

Computation

Successful

Computation

Level < k
Failures

During
Recovery

Successful

Level-k
Recovery

Level ≥k

Failures
During

Recovery

Level >k

Failures
During

Computation or

Checkpointing

(a) Basic structure of multi-level Markov model

1 1 21 1 1 21 1 1 1 3 1 . . .

Level-3 Period

Level-2 Period Level-2 Period Level-2 Period

(b) No failures

1

1

1

1

2

1

2

1

3

1

1

1

1

2

1

1 1

3

. . .

2

1

1

1

1

3

1

1

(c) Level 1 failures and recoveries

1

1

1

1

2

1

2

1

3

1

1

1

1

2

1

1

3

. . .

2

1

1

1

1

3

1

11

(d) Level 2 failures and recoveries

1

1

1

1

2

1

2

1

3

1

1

1

1

2

1

1

3

1

. . .
2

1

1

1

1

3

1

1

(e) Level 3 failures and recoveries

Figure 2: Structure and example of the multi-Level Markov model

8

Y(k)

X(k,c)

Z(k‐1,c)Y(k‐1,k‐1)

Y(k,c)

X(k‐1,k‐1) X(k‐1,k‐1)… X(k‐1,c)

k‐1… k‐1… k‐1… c……

k‐1 k‐1 k‐1

k

(a) General hierarchical structure (b) Structure of basic blocks

1

1

1

1

2

1

2

1

3

1

1

1

1

2

1

1

Y(3,3)

Y(2,2) Z(2,3)

Y(1,1) Z(1,2)
X(2,2)
Y(2,2)

X(1,1) X(1,1) X(1,2)

Y(1,1) Y(1,1) Y(1,2)

X(1,1) X(1,1) X(1,2)

Z(1,2)Y(1,1)

Y(1,1) Y(1,1) Y(1,2)

2

1

1

1

1

3

1

1

X(2,3)
Y(2,3)

X(1,1) X(1,1) X(1,3)

Z(1,3)

Y(1,1) Y(1,1) Y(1,3)

Y(1,1)

X(3,3)

3

1 . . .

(c) Example hierarchical structure

Figure 3: Hierarchical structure of Markov model

If no failures occur during recovery, the application transitions to the computation state that follows the check-
point used for recovery (upward transition from recovery state). If a failure occurs while in a level k recovery, and
if that failure is at a level less than k, we assume the current recovery state must be restarted (loop transition back
to recovery state). However, if the failure is at level k or greater, we assume the application must transition to a
higher-level recovery state (downward transition from recovery state). We assume a recovery state at level L, the
highest level, can be restarted to recover from a failure at any level.

Figures 2(b)–(e) show a full MM for an example three level checkpointing scheme. Figure 2(b) shows the portion
that corresponds to failure-free execution, containing only computation states. Checkpoints are taken hierarchically,
with three level 1 checkpoints during each level 2 period and two level 2 checkpoints during each level 3 period.
Figure 2(c) shows the portion that models the effect of level 1 failures, while Figures 2(d)–(e) show the transitions
corresponding to level 2 and level 3 failures respectively.

Our model has a recursive structure, which we take advantage of to develop recurrence equations to efficiently
solve for the expected run time. As illustrated in Figure 3(a), a full model can be built by recursively composing
three basic blocks, which we label X(k, c), Y (k, c), and Z(k, c), where k, c ∈ 1, 2, · · · , L. We show the structure of
these blocks in Figure 3(b). An X(k, c) block consists of a Y (k, c) block and a recovery state at level k. A Z(k, c)
block consists of a series of X(k, k) blocks and a terminating X(k, c) block. When k > 1, a Y (k, c) block consists
of either a single Y (k − 1, c) block or a Y (k − 1, k − 1) block followed by a Z(k − 1, c) block. Finally, when k = 1,
a Y (k = 1, c) block is a base state corresponding to a computation state that terminates with a checkpoint at level
c. The parameter c denotes the checkpoint level taken by the last computation state in a block. The parameter
k denotes the level of a block. For X(k, c) and Z(k, c) blocks in particular, k denotes the checkpoint level that
precedes the first computation state in a block. In Figure 3(c), we show how these blocks are composed to describe
the example from Figure 2.

Upon transitioning into the first computation state of an X(k, c), Y (k, c), or Z(k, c) block, the system will

9

Symbol Definition
L Number of checkpoint levels being modeled
vk Number of level k checkpoints within each level k + 1 period
t Length of compute interval before application initiates a checkpoint
ck Time to record a level k checkpoint
rk Time to complete a level k recovery

fk(t) Probability of suffering a level k failure at time t (the probability density function)
Fk(T) Probability of suffering a level k failure during the time period [0..T] (the cumulative

distribution function: Fk(T) =
∫ T

0
fk(t) dt)

λk Average rate of level k failures assuming Poisson distributions

Table 3: Model parameters

eventually either transition out of the block to the first computation state of the next block, or it will transition to
an external recovery state at some level k ∈ 1, 2, · · · , L. We represent the probabilities and expected run times for
each of these transitions in vectors ~p and ~t, which we compute for each block. Each vector has L+1 elements where
the i-th element, for i ∈ 0, 1, · · · , L, is labeled pi and ti, respectively. Element p0 represents the probability that
a transition is made from a block to the first computation state of the next block, and t0 represents the expected
run time spent within the block given such a transition. Element pk, for k ∈ 1, 2, · · · , L represents the probability
that a transition is made from a block to an external recovery state due to a failure scenario requiring a recovery
at level k, and element tk represents the expected run time spent in the block given such a transition.

We define ~p and ~t similarly for the base recovery states. In this case, p0 and t0 represent the probability and
expected run time of completing the recovery process without failure and transitioning to the computation state
that follows the checkpoint used for recovery. Element pk represents the probability of encountering a level k failure
while in recovery, and tk represents the expected run time before encountering such a failure.

Given the constituent components that a block is built from, along with the ~p and ~t vectors for each of those
components, we can compute the ~p and ~t vectors for the block. Starting from the base computation and recovery
states, we can compute the probability and expected run time vectors for all blocks in a given model structure.

5.3 Model Parameters

We use the definitions listed in Table 3 to parameterize our multi-level checkpoint model. The number of checkpoint
levels is represented by L. The number of level k checkpoints taken within each level k + 1 period is represented by
vk, for k ∈ 1, 2, · · · , L− 1, We assume the application checkpoints (to some level) after completing regular intervals
of computation. We represent the length of this compute interval by t. The parameter ck represents the time
required to write a level k checkpoint, and rk represents the time required to restore an application using a level k
checkpoint.

Functions fk(t) and Fk(T) determine the reliability of the system. The probability that a level k failure occurs
at time t is given by fk(t). The probability that a level k failure occurs at some point during the time period from
t = 0 to t = T is given by Fk(T). In other words, fk(t) is the probability density function for level k failures, and
Fk(T) is the corresponding cumulative distribution function. In this work, we assume failures at each level follow
a Poisson distribution, where λk represents the average failure rate at level k.

5.4 Base States

For the base computation and recovery states, p0 is simply the probability that the application executes for a
certain period of time without encountering a failure, and t0 is just the length of this period. Further, pk for
k ∈ 1, 2, · · · , L, is simply the probability that a level k failure occurs before any other failure during this period,
and tk is the expected run time before encountering such a failure. Given fk(t) and Fk(T), we can directly compute
the elements of ~p and ~t for the base states.

Since failures at different levels are assumed to be independent, the probability that there are no failures at any
level during the time interval t = 0 to t = T is given by

10

p0(T) = (1 − F1(T)) · (1 − F2(T)) · · · (1 − FL(T)),

and the expected run time given that no failures occur during that interval is simply

t0(T) = T.

Furthermore, for each level k ∈ 1, 2, · · · , L, the probability that a level k failure will occur before a failure occurs
at any other level during the time interval t = 0 to t = T is given by

pk(T) =

∫ T

0

(1 − F1(t)) · (1 − F2(t)) · · · (1 − Fk−1(t)) · fk(t) · (1 − Fk+1(t)) · · · (1 − FL(t)) dt.

The integrand above expresses the probability that a level k failure will occur during some infinitesimally small
interval of width dt starting at time t,

fk(t) dt,

multiplied by the probability that a failure at another level has not already occurred by time t,

(1 − F1(t)) · (1 − F2(t)) · · · (1 − Fk−1(t)) · (1 − Fk+1(t)) · · · (1 − FL(t)).

The integral then sums the probabilities of each of these small intervals for all values of t between 0 and T to
derive the total probability that a level k failure will occur before a failure occurs at any other level during the full
time interval from t = 0 to t = T .

Similarly, when pk(T) > 0, the expected run time given that a level k failure occurs before a failure occurs at
any other level during the time interval t = 0 to t = T is given by

tk(T) =

∫ T

0
t · (1 − F1(t)) · (1 − F2(t)) · · · (1 − Fk−1(t)) · fk(t) · (1 − Fk+1(t)) · · · (1 − FL(t)) dt

pk(T)
.

Now, assuming failures at each level follow a Poisson distribution, with failures at level k occurring at an average
rate of λk, the above expressions for p0(T), t0(T), pk(T), and tk(T) evaluate to

p0(T) = e−λT , (1)

t0(T) = T, (2)

and for k ∈ 1, 2, · · · , L,

pk(T) =
λk

λ
(1 − e−λT), (3)

tk(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
, (4)

where

11

λ = λ1 + λ2 + · · · + λL.

The derivation for the above formulas is provided in Section 9.2.

5.4.1 Computation state: a Y (k = 1, c) block

A Y (k = 1, c) block is a base computation state in which the application executes for an interval of length t and
then writes a checkpoint at level c, which requires a time of cc. We denote the probability and expected run time
vectors for this state as ~pY and ~tY , respectively. Using Formulas 1–4 (after substituting i for k as a subscript label)
and setting T = t + cc, we find that

pY 0 = p0(t + cc) = e−λ·(t+cc),

tY 0 = t0(t + cc) = t + cc,

and for i ∈ 1, 2, · · · , L,

pY i = pi(t + cc) =
λi

λ
(1 − e−λ·(t+cc)),

and when pY i > 0,

tY i = ti(t + cc) =
1 − (λ · (t + cc) + 1) · e−λ·(t+cc)

λ · (1 − e−λ·(t+cc))
.

5.4.2 Recovery state at level k

While in a recovery state at level k, the system is recovering from a failure using a checkpoint saved at level k,
which requires a time of rk. We denote the probability and expected run time vectors for this state as ~pR and ~tR.
Using Formulas 1–4 (after substituting i for k as a subscript label) and setting T = rk, we find that

pR0 = p0(rk) = e−λ·rk ,

tR0 = t0(rk) = rk,

and for i ∈ 1, 2, · · · , L,

pRi = pi(rk) =
λi

λ
(1 − e−λ·rk),

and when pRi > 0,

tRi = ti(rk) =
1 − (λ · rk + 1) · e−λ·rk

λ · (1 − e−λ·rk)
.

12

k

pY2

tY2

pY1

tY1

pYk

tYk

pYk+1

tYk+1

pY0

tY0

pR0

tR0

pYk+2

tYk+2

pYL

tYL

pRk

tRk

pRk+1

tRk+1

pRk+2

tRk+2

pRL

tRL

X1 X2 Xk Xk+1 Xk+2 XL

X0

pR1

tR1

pR2

tR2

pRk-1

tRk-1

Figure 4: Diagram of X(k, c)

5.5 The X(k, c) block

An X(k, c) block internally consists of a Y (k, c) block and a recovery state at level k, which we denote by Rk. Let
us refer to these three components as simply X, Y , and R. A diagram of an X(k, c) block is shown in Figure 4.
Here we compute the probability and expected run time vectors for X, which we denote as ~pX and ~tX , assuming
that we are given the vectors for Y , as ~pY and ~tY , and R, as ~pR, and ~tR. To simplify the final expressions, we
merge groups of related transitions into single transitions. (See Section 9.3 for details on merging transitions.)

First, the Y block has one or more edges to the R state. To be precise, Y transitions to the recovery state R
for any failure scenario that requires a recovery level at k or less. We merge each of these transitions from Y to R
into a single transition having probability of PY R and an expected run time of TY R as shown in the top portion of
Figure 5. Using formulas 7 and 8 from Section 9.3, we get

PY R =

k
∑

i=1

pY i

and, when PY R > 0,

TY R =

∑k

i=1 pY i · tY i

PY R

.

Second, the R state has zero or more edges that loop back to itself, as failures at a number of different levels
cause the recovery to be restarted. To be precise, a recovery state at the maximum level k = L is restarted upon
the occurrence of a failure at any level, while a recovery state at a level k < L is restarted upon the occurrence of
a failure at any level less than k. Again using formulas 7 and 8 from Section 9.3, we merge each of these possible

13

Rk

PRXk+1

TRXk+1

PRXk+2

TRXk+2

PRXL

TRXL

Rk

PRR

TRR

Rk

. . .

pY2

tY2

pY1

tY1

pYk

tYk
. . .

Y(k,c)

PYR

TYR

Y(k,c)

pR0

tR0

Y(k,c)

Rk

PRR

TRR

Y(k,c)

PRY

TRY

Merge multiple edges

from Y to R into a

single edge.

Merge multiple loops

from R to R into a

single edge.

pRk

tRk

pRk+1

tRk+1

pRk+2

tRk+2

pRL

tRL

Merge loop on R into

edges leading away

from R by adjusting

probabilities and times

to account for arbitrary

loops within R before

leaving.

pR2

tR2

pR1

tR1

pRk-1

tRk-1

Xk+1 Xk+2 XL Xk+1 Xk+2 XL

Merge multiple edges

from R to Xk+1 into

a single edge

Figure 5: Merging edges in X(k, c)

14

transitions from R to R into a single transition having probability PRR and an expected run time TRR as shown in
the top portion of Figure 5:

PRR =

0 for k = 1,
∑k−1

i=1 pRi for 1 < k < L,
∑k

i=1 pRi for k = L

and, when PRR > 0,

TRR =

{Pk−1
i=1 pRi·tRi

PRR
for 1 < k < L,

Pk
i=1 pRi·tRi

PRR
for k = L.

The last substitution we make is to collapse the single loop transition from R to R into the transitions leading
away from R. Upon entering R, a transition away from R eventually happens, provided PRR < 1. However, one or
more loops back to R may occur before transitioning away. It is possible to adjust the probabilities and expected
run times of the transitions leading away from R to account for an arbitrary number of loops back to R before
making the transition away. Derivation of the formulas to make these adjustments is provided in Section 9.3.

First, consider the transition from R to Y . Using formulas 9 and 10 from Section 9.3, we collapse the loop
into this transition and redefine its probability to be PRY and expected run time to be TRY as shown the bottom
portion of Figure 5, where

PRY =

{

pR0

1−PRR
for PRR < 1,

0 for PRR = 1,

and, when PRY > 0,

TRY = tR0 +
PRR

1 − PRR

· TRR.

Now, consider the transitions from R to external recovery states. These transitions contribute directly to the
elements of the X vectors. For the i-th element of an X vector, where i ∈ 1, 2, · · · , L, we first merge any edges
from R that contribute to this element, and then we collapse the loop into the merged edge to define a new edge
with probability PRXi

and expected run time TRXi
, as shown in the bottom portion of Figure 5.

Recall under our model that a recovery state at the maximum level k = L is restarted upon the occurrence of a
failure at any level. Such a state only contains loop-back transitions. In this case, there is zero probability that R
transitions to an external recovery state, so when k = L, we have for each i ∈ 1, 2, · · · , L

PRXi
= 0.

While in a recovery state at level k, where k < L, the system transitions to a recovery state at level k + 1 if
either a level k failure or a level k + 1 failure occurs. Otherwise, for the occurrence of a failure at level i, where
i > k + 1, a transition is made to a recovery state at level i. Thus, when k < L, we have for each i ∈ 1, 2, · · · , L

PRXi
=

0 for 1 ≤ i ≤ k or PRR = 1,
pRk+pR(k+1)

1−PRR
for i = k + 1 and PRR < 1,

pRi

1−PRR
for i > k + 1 and PRR < 1,

and, when PRXi
> 0,

TRXi
=

{

pRk·tRk+pR(k+1)·tR(k+1)

pRk+pR(k+1)
+ PRR

1−PRR
· TRR for i = k + 1,

tRi + PRR

1−PRR
· TRR for i > k + 1.

15

k

PYR

TYR

pYk+1

tYk+1

pY0

tY0

PRY

TRY

pYk+2

tYk+2

pYL

tYL

PRXk+1

TRXk+1

PRXk+2

TRXk+2

PRXL

TRXL

X1 X2 Xk Xk+1 Xk+2 XL

X0

Figure 6: Simplified diagram of X(k, c)

After making all of these transformations, the simplified X(k, c) block is shown in Figure 6. Finally, we derive
the total probabilities and expected run times to transition out of the X block as

pX0 =

{

pY 0

1−PY R·PRY
for PY R · PRY < 1,

0 for PY R · PRY = 1,

and, when pX0 > 0,

tX0 = tY 0 +
PY R · PRY

1 − PY R · PRY

· (TY R + TRY).

Also, for each level i ∈ 1, 2, · · · , L

pXi =

{

0 for 1 ≤ i ≤ k or PY R · PRR = 1,
pY i+PY R·PRXi

1−PY R·PRY
for i > k and PY R · PRR < 1,

and, when pXi > 0,

tXi =
pY i · tY i + PY R · PRXi

· (TY R + TRXi
)

pY i + PY R · PRXi

+
PY R · PRY

1 − PY R · PRY

· (TY R + TRY).

Note that the internal recovery state at level k contained within the X(k, c) block handles internal failures such
that X(k, c) never transitions to an external recovery state at level k or lower.

5.6 The Z(k, c) block

A Z(k, c) block only exists when vk > 0, and it internally consists of a chain of X(k, k) blocks of length vk − 1
followed by a single X(k, c) block. Let us refer to these blocks as simply Z, X, and X ′, where Z = Z(k, c),

16

X2

X2

X1

X1

XL

XL

1 2 L

0

X1

X1
X2

X2

XL

XL

X’1

X’1

X’2

X’2

X’L

X’L

X0

X0

X0

X0

X’0

X’0

k

Figure 7: Diagram of Z(k, c)

X = X(k, k), and X ′ = X(k, c). Also, we define v such that v = vk − 1. A diagram of a Z(k, c) block is shown in
Figure 7. Here we compute the probability and expected run time vectors for Z, which we denote as ~pZ and ~tZ ,
assuming that we are given the vectors for X, as ~pX and ~tX , and X ′, as ~pX′ and ~tX′ .

The probability of successfully transitioning from the Z block to the first computation state of the next block
is the probability that v consecutive successful transitions out of X blocks are followed by one successful transition
out the X ′ block. The probability of this sequence occurring is

pZ0 = (pX0)
v · pX′0

and when pZ0 > 0, the expected time to make this transition is

tZ0 = v · tX0 + tX′0.

For each failure level i ∈ 1, 2, · · · , L, there are multiple paths through Z which require a transition to a recovery
state at level i. The first X block may transition to a recovery state at level i. Or, that block may transition
successfully to the next X block, which in turn may transition to a recovery state at level i. Or, the first two X
blocks may transition successfully on to the the third X block, which may transition to a recovery state at level i,
and so on up to and including the final X ′ block. The total probability to leave Z for a recovery state at level i is
the sum of the probabilities corresponding to each of these possible paths:

pZi = pXi + pX0 · pXi + (pX0)
2 · pXi + · · · + (pX0)

v−1 · pXi + (pX0)
v · pX′i

= (1 + pX0 + (pX0)
2 + · · · + (pX0)

v−1) · pXi + (pX0)
v · pX′i.

Using equation 5 from Section 9.1 and substituting x = pX0 and N = v − 1, and knowing that if pX0 = 1 then
pXi = 0, we can simplify pZi to

17

pZi =

{

1−(pX0)
v

1−pX0
· pXi + (pX0)

v · pX′i for pX0 < 1,

pX′i for pX0 = 1.

Similarly, we compute the expected run time to transition from Z to a recovery state at level i by considering
the probability of taking each possible path along with the expected time to take each path. When pZi > 0, we
have

tZi =
Ai

pZi

where

Ai = pXi · tXi + (pX0)
1 · pXi · (1 · tX0 + tXi)

+ (pX0)
2 · pXi · (2 · tXO + tXi) + · · · + (pX0)

v−1 · pXi · ((v − 1) · tX0 + tXi)

+ (pX0)
v · pX′i · (v · tX0 + tX′i)

= Bi + (pX0)
v · pX′i · (v · tX0 + tX′i),

where

Bi = pXi · tXi + (pX0)
1 · pXi · (1 · tX0 + tXi)

+ (pX0)
2 · pXi · (2 · tXO + tXi) + · · · + (pX0)

v−1 · pXi · ((v − 1) · tX0 + tXi)

= (pXi · tXi + (pX0)
1 · pXi · tXi + (pX0)

2 · pXi · tXi + · · · + (pX0)
v−1 · pXi · tXi)

+ ((pX0)
1 · pXi · 1 · tX0 + (pX0)

2 · pXi · 2 · tX0 + · · · + (pX0)
v−1 · pXi · (v − 1) · tX0)

= (1 + (pX0)
1 + (pX0)

2 + · · · + (pX0)
v−1) · pXi · tXi

+ (1 · (pX0)
1 + 2 · (pX0)

2 + · · · + (v − 1) · (pX0)
v−1) · pXi · tX0.

Using equations 5 and 6 from Section 9.1, substituting x = pX0 and N = v − 1, and knowing that if pX0 = 1
then pXi = 0, we can simplify Bi to

Bi =

{

1−(pX0)
v

1−pX0
· pXi · tXi + pX0−v·(pX0)

v+(v−1)·(pX0)
v+1

(1−pX0)2
· pXi · tX0 for pX0 < 1,

0 for pX0 = 1.

5.7 The Y (k, c) block

A Y (k, c) block is built using three different constructions depending on the values of k and (when k > 1) vk−1.
If k = 1, then Y (k, c) = Y (k = 1, c), which is a base computation state. The probability and expected run time
vectors for this state can be directly computed as described in Section 5.4.1.

If k > 1 and vk−1 = 0, then Y (k, c) consists of a single Y (k − 1, c) block. In this case, let us refer to these
blocks as Y and Y ′, where Y = Y (k, c) and Y ′ = Y (k − 1, c). Because Y consists solely of Y ′, the probability and
expected run time vectors to transition out of Y , which we denote as ~pY and ~tY , are trivially computed given the
vectors for Y ′, as ~pY ′ and ~tY ′ :

18

Y’L

Y’L

1 2 L

0

Z2

Z2
ZL

ZL

Y’0

Y’0

Z0

Z0

Y’2

Y’2

Y’1

Y’1

k-1

Z1

Z1

Figure 8: Diagram of Y (k, c)

pY 0 = pY ′0,

tY 0 = tY ′0

and, for each level i ∈ 1, 2, · · · , L,

pY i = pY ′i,

tY i = tY ′i.

If k > 1 and vk−1 > 0, then Y (k, c) consists of a starting Y (k − 1, k − 1) block followed by a Z(k − 1, c) block,
as shown in Figure 8. Let us refer to these states as Y , Y ′, and Z, where Y = Y (k, c), Y ′ = Y (k − 1, k − 1), and
Z = Z(k − 1, c). Here we compute the probability and expected run time vectors to transition out of Y , which we
denote as ~pY and ~tY , assuming that we are given the vectors for Y ′, as ~pY ′ and ~tY ′ , and Z, as ~pZ and ~tZ .

The probability that a successful transition out of Y occurs is the probability that both Y ′ and Z transition
successfully. The probability of such a sequence occurring is

pY 0 = pY ′0 · pZ0

and the expected time to make this transition is

tY 0 = tY ′0 + tZ0.

For each failure level i ∈ 1, 2, · · · , L, there are two possible paths through Y that can cause a transition to a
recovery state at level i. The Y ′ block may transition immediately to a recovery state at level i, or the Y ′ block
may transition successfully to Z, which in turn may transition to a recovery state at level i. The total probability

19

to leave Y for a recovery state at level i is the sum of the probabilities corresponding to each path

pY i = pY ′i + pY ′0 · pZi.

When pY i > 0, the expected run time of this transition is

tY i =
pY ′i · tY ′i + pY ′0 · pZi · (tY ′0 + tZi)

pY i

.

5.8 Model Metrics

In this work, we are interested in two key metrics: efficiency and parallel file system load. We define efficiency as

efficiency =
idealTime

expectedTime
.

Here, idealT ime is the minimum run time assuming the application spends no time checkpointing and encounters
no failures, while expectedT ime is the expected run time as predicted by the model for a given set of parameters.
This metric indicates how much time is lost to checkpointing activities, including recovery from failures.

To compute the efficiency, we consider a single level L period. After parameterizing the model with a set of
checkpoint levels, checkpoint costs, recovery costs, failure rates, and a time interval between checkpoints, we can
compute the expected time required to complete a single level L period. Namely, we compute ~p and ~t for X(L,L).
The value of element t0 then provides the expectedT ime to complete a level L period, which is well-defined if
p0 = 1. The idealT ime is simply the number of compute intervals during this period multiplied by the length of
each interval. To be precise, this is computed as

idealTime = (v1 + 1) · (v2 + 1) · (vL−1 + 1) · t

= t ·

L−1
∏

k=1

(vk + 1)

To judge the impact on the parallel file system for a particular model configuration, we consider the expected
time between writing consecutive checkpoints to the parallel file system. We define the parallel file system load to
be the inverse of this time. Checkpoints are written to the parallel file system at the end of each level L period,
so the expected time between checkpoints is the same as the expectedT ime as defined above. Hence, we define the
parallel file system load as

load =
1

expectedTime
.

We use these metrics in the following sections to evaluate the benefits of different model configurations.

6 Model Exploration

We used our model to explore the behavior of SCR under varying conditions. We show the benefits of multi-level
checkpointing over single-level checkpointing as failure rates and parallel file system characteristics change. Also,
we illustrate how to use the model to select parameter values that maximize system utilization.

First, we compare the model’s predictions of pf3D efficiency to that observed in real runs on Coastal and Atlas in
Table 4. The data show that the model’s predictions are within a few percent of observed reality for this application
on real systems. Albeit limited due to the many hours required to gather data, these results provide some assurance
that our model is accurate.

20

Table 4: Expected and observed efficiency

System Expected Observed Duration of
Efficiency Efficiency Observation

Coastal 95.2% 94.68% 716,613 node-hours
Atlas 96.7% 92.39% 553,829 node-hours

Figure 9: Optimal efficiency for single- and multi-level checkpointing

We now use the model to explore multi-level checkpointing in a more general context. In the following experi-
ments, we simulated a three level checkpointing system (L = 3) and varied the length of the compute interval, the
number of level 1 and level 2 checkpoints per level 3 period, the failure rates, and the cost of level 3 checkpoints.

For checkpoint costs, we use the times recorded in Table 1 for checkpointing pF3D on Coastal using LOCAL on
RAM, XOR on RAM, and Lustre, which gives us costs of 0.5 seconds, 4.5 seconds, and 1052 seconds, respectively.
We set recovery costs to be the same as checkpoint costs. Using the failure data for pF3D on Coastal in Table 2,
we express the failure rates in units of failures per job-second, i.e., average number of failures at a given level per
node-hour, multiplied by the number of nodes used in the job, divided by 3,600 seconds per hour. This leads to
failure rates of 2 · 10−7 for level 1, 1.8 · 10−6 for level 2, and 4 · 10−7 for level 3.

As future systems become larger, failure rates are expected to increase, and as the system memory size grows
faster than the performance of the parallel file system, the cost of accessing the parallel file system is expected to
increase. To explore these effects, we increase the base failure rates and the level L checkpoint costs by factors of
2, 10, and 50. We do not adjust the costs of lower-level checkpoints, since the performance of node-local storage is
expected to scale with system size. For each combination, we identified the compute interval and the level 1 and
level 2 checkpoint counts that provide the highest efficiency. For comparison, we performed the same experiment
for single-level checkpointing, assuming only the parallel file system is available.

Figure 9 presents the efficiency achieved for each configuration, and Figure 10(a) shows the time between level
L checkpoints. We label the results for the multi-level system as “Multi” and those for the single-level system as
“Single.” The groupings of bars along the x-axis correspond to failure rates that are one, two, ten, or fifty times
the base values. Within each grouping, we increase the cost of the level L checkpoint by one, two, ten, and fifty
times the base value.

In all cases, the multi-level system results in higher efficiencies, and it increases the time between checkpoints
to the parallel file system. Moreover, both advantages increase with either increasing failure rates or higher parallel
file system costs. The gain in machine efficiency ranges from a few percent up to 35%, and, as can be seen in
Figure 10(b), the load on the parallel file system is reduced by a factor ranging from 2x-4x. Thus, compared to
single-level checkpointing, multi-level checkpointing simultaneously increases efficiency while reducing load on the
parallel file system. These results highlight the benefits of multi-level checkpointing on current and future systems.

Overall, we find that multi-level checkpointing is essential for future systems. Even with systems that are
50× less reliable, a three level checkpointing system achieves efficiencies over 75%, so long as we maintain relative

21

(a) Optimal level-L periods (b) Factor by which load is reduced

Figure 10: Checkpoints to the parallel file system

parallel file system performance. On the other hand, we find that we cannot tolerate higher failure rates if the cost
to access the parallel file system also increases. In particular, if systems become 50× less reliable and the cost of
saving application state to the parallel file system rises by 10×, a three level checkpointing system only achieves
26% efficiency.

Figure 11 provides insight into multi-level checkpointing by showing the compute intervals and level 2 checkpoint
counts that provide the optimal efficiency for each failure rate and level L checkpoint cost combination. We do
not graph the optimal level 1 checkpoint counts, as they were zero in all cases. The low number of optimal level 1
checkpoint counts is due to the relatively low number of failures from which we can recover using level 1 checkpoints.

The optimal compute interval decreases with either increasing failure rate or increasing level L checkpoint cost.
For the level 2 checkpoint counts, we found that the optimal counts increased dramatically with increasing failure
rate. The trend for increasing level L checkpoint cost is not as clear, with higher optimal values for costs that are
twice or 50× greater than for the costs that were one and 10× higher. These results indicate that applications
running on systems with higher failure rates or higher parallel file system overheads must increase the ratio of
lower-level checkpoints to parallel file system checkpoints to maximize efficiency.

We investigated the relationship between our model parameters and the expected efficiency of the multi-level
model. Figure 12 shows the expected efficiency when failure rates and the level L checkpoint cost are 1×, 2×, and
10× their base values. The plots were produced by setting the level 1 count to zero, setting the level 2 count to
five, and varying the compute interval from 0 to 2 · 105 seconds.

In general, efficiencies first increase sharply with increasing compute intervals and then decrease relatively slowly
after reaching the optimum. The optimal efficiencies are lower and the declines in efficiency past the peak are sharper
for higher parallel file system costs and failure rates. Further, the compute interval has a complex relationship with
failure rates and checkpoint costs. The efficiencies produced by short compute intervals are highly sensitive to
checkpoint cost and insensitive to failure rates. However, this effect is reversed for large compute intervals, where
efficiencies are sensitive to failure rates but insensitive to checkpoint costs.

Overall, we observe a broad range of compute intervals that result in near-optimal efficiencies for level 1 and
level 2 checkpoint counts that are below or near optimal values. The effect of increasing level 1 counts is lower
efficiencies and narrower near-optimal ranges. The effect of increasing level 2 counts is relatively higher efficiencies
and wider near-optimal ranges up to a point beyond the optimal level 2 count, after which the benefits of adding
level 2 checkpoints declines. These results show that we must carefully choose parameters when using multi-level

22

(a) Optimal compute interval (b) Optimal level 2 checkpoint counts

Figure 11: Optimal multi-level checkpointing parameter values

95%

100%

90%

95%

80%

85%

75%

80%

ic
ie
n
cy

C=1x F=1x

70%

E
ff
i C=1x F=1x

C=1x F=2x
C=1x F=10x
C 2 F 1

60%

65% C=2x F=1x
C=2x F=2x
C=2x F=10x

55%

C=10x F=1x
C=10x F=2x
C=10x F=10x

50%

0 10000 20000 30000 40000 50000

C I l (d)Compute Interval (seconds)

Figure 12: Efficiency versus compute interval

checkpointing as failure rates and parallel file system costs increase. However, we can utilize our model to guide
these decisions.

7 SCR on Diskless Systems

Clusters often use diskless compute nodes. However, Linux supports a RAM disk, which is a file system maintained
in main memory. We can configure SCR to use RAM disk as its node-local storage, but we then need sufficient
memory to store at least one checkpoint in memory along with the application working set. Simulations that require
all available memory on diskless clusters cannot use SCR. However, often sufficient memory can be made available
by running the same simulation on more compute nodes to spread the working set among more processes. We then
must determine if it is worthwhile to use more compute resources in order to use SCR. Our multi-level checkpoint
model can guide this choice by predicting an expected savings in node hours required to complete the job.

First, we derive the required application scalability to benefit by using more nodes as a function of machine
efficiencies with and without SCR. Assume the original problem requires N1 nodes and N2 nodes are required when
using SCR, with N2 > N1. Excluding checkpoints and assuming no failures, let the time to complete the job be TS1

23

when using N1 nodes and TS2 when using N2 nodes. Then, the scalability factor, α, of the application is determined
by the difference in speedup normalized to TS1 divided by the difference in the number of nodes normalized to N1,
such that

α =
TS1

TS2
− 1

N2

N1
− 1

.

Solving for TS2, we get

TS1

TS2
− 1

N2

N1
− 1

= α

TS1

TS2
− 1 = α ·

N2 − N1

N1

TS1

TS2
=

α · (N2 − N1) + N1

N1

1

TS2
=

α · (N2 − N1) + N1

N1 · TS1

TS2 =
N1 · TS1

N1 · (1 − α) + N2 · α
.

Let e1 represent the machine efficiency when using N1 nodes without SCR, and let e2 be the efficiency when
using using N2 nodes with SCR. Then, the total time spent on the machine to complete the job in each case is

T1 =
TS1

e1
,

T2 =
TS2

e2
=

N1 · TS1

e2 · N1 · (1 − α) + e2 · N2 · α
.

The node hours required complete the job in each case are

H1 = N1 · T1 =
N1 · TS1

e1
,

H2 = N2 · T2 =
N1 · TS1

e2 · α + e2 · (1 − α) · N1

N2

.

Finally, the ratio of node hours when using N2 nodes to the node hours when using N1 nodes is

H2 / H1 =
e1

e2 · (α + (1 − α) · N1

N2
)
.

It is beneficial to use SCR by allocating more nodes when H2 < H1, that is, when H2/H1 < 1, which occurs
when the scalability factor satisfies the following condition:

24

0.4

0.5

0.6

0.7

0.8

0.9

1

o
n

 s
ca
la
b
il
ty

‐0.2

‐0.1

0

0.1

0.2

0.3

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

A
p
p
li
ca
ti
o

Increase in number of nodes (N / N)

Hera C=1x F=1x

Coastal C=1x F=1x

Atlas C=1x F=1x

Increase in number of nodes (N2 / N1)

Figure 13: Required scalability to benefit by allocating more nodes

e1

e2 · (α + (1 − α) · N1

N2
)

< 1

e1 < e2 · α + e2 ·
N1

N2
− e2 · α ·

N1

N2

e1 − e2 ·
N1

N2
< α · e2 · (1 −

N1

N2
)

e1 ·
N2

N1
− e2 < α · e2 · (

N2

N1
− 1)

α >
e1 ·

N2

N1
− e2

e2 · (
N2

N1
− 1)

.

This is a general expression for all applications. Now to answer the question for a particular application, we
use our model to estimate the machine efficiency with and without SCR. For example, consider the pF3D runs from
Table 1. Assume the original problem requires N1 nodes and using SCR requires N2 > N1 nodes. We must first
adjust the failure rates and checkpoint costs in order to compute the expected efficiency with additional nodes.

The mean-time-before-failure for the application decreases when it uses more nodes since it is exposed to more
hardware. The amount of hardware used scales linearly with the number of nodes. Since we assume multiple failures
within a class are independent, we scale the failure rate of each failure class linearly with the number of nodes.

Also, the total size of the data set remains fixed regardless of the number of nodes. Thus, we assume the cost
to checkpoint to the parallel file system remains constant. However, the amount of data stored per node decreases
linearly with the number of nodes since we spread the data evenly among the nodes. Thus, the cost to checkpoint
to RAM disk decreases linearly with the number of nodes.

With these adjustments, we apply the model to compute the conditions under which using SCR by allocating
more nodes decreases total node hours. We express the results by plotting the required application scalability as a
function of the ratio of the number of nodes, N2/N1. If an application meets or exceeds the required scalability at a
particular N2/N1 ratio, then it will benefit by allocating N2/N1 more nodes to use SCR. Using the pF3D checkpoint
costs from the top three rows in Table 1 and the failure rates from Table 2, we show the required application
scalability for Hera, Atlas, and Coastal in Figure 13.

The three clusters have three distinct curves. Coastal is the most reliable system, but its parallel file system is
the slowest. Atlas and Hera have much higher failure rates than Coastal, but they have faster parallel file systems.
Atlas and Hera have similar failure rates but the parallel file system on Hera is faster than on Atlas. These varying

25

0.4

0.5

0.6

0.7

0.8

0.9

1

o
n

 s
ca
la
b
il
it
y

‐0.2

‐0.1

0

0.1

0.2

0.3

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

A
p
p
li
ca
ti
o

Increase in number of nodes (N / N)

Atlas C=1x F=1x

Atlas C=2x F=1x

Atlas C=1x F=10x

Atlas C=2x F=10x

Increase in number of nodes (N2 / N1)

Figure 14: Required scalability for higher overhead and failure rates

properties produce three different curves. Thus, the same application may benefit from requesting additional nodes
on one system but not another. Generally, more applications will benefit from using more nodes on Atlas than on
Coastal, and more on Coastal than on Hera.

We observe ranges for which allocating more nodes is beneficial for all values of N2/N1 plotted. Applications can
benefit even if we must double the number of nodes to use SCR. However, at this limit, the application must scale
very well, requiring a scalability factor between 0.90 and 0.97 depending on the platform. We require less scalability
when SCR needs fewer nodes. For example, on Atlas, if only 20% more nodes are required, the application only
needs a scalability factor of at least 0.65 to benefit. Finally, the application can benefit even with zero or negative
scalability if it needs less than 10% additional nodes. Thus, the application may compute more slowly when using
more nodes but still complete the problem in fewer node hours due to the increased efficiency provided by SCR.

In order to understand the potential impact of larger future systems, Figure 14 plots the required scalability for
Atlas if we increase the parallel file system cost and the failure rate. More applications benefit by allocating more
nodes to use SCR when either the cost to checkpoint to the parallel file system or the failure rate increases. If the
checkpoint cost doubles and the failure rate increases by a factor of ten, an application with zero scalability could
allocate up to 40% more nodes and still complete in fewer node hours. While not shown, the machine efficiency at
this extreme drops to as low as 62% without SCR, but it stays above 85% with SCR. For all cases, we reduce the
checkpoint frequency to the parallel file system by a factor between two and four when using SCR.

8 Conclusions

We presented a novel multi-level checkpointing implementation, the Scalable Checkpoint/Restart (SCR) library.
SCR combines checkpointing to stable storage with lower-overhead, less-resilient checkpoint types, e.g., copying
checkpoints to memory on other nodes. SCR performance far exceeds that of the parallel file system, as much as
1, 000× faster when using LOCAL checkpoints.

We also presented a detailed failure analysis for several large HPC systems. We found that applications could
restart from a large majority of system failures using low-overhead checkpoints cached on the cluster. Only 15% of
the observed failures required applications to restart from the parallel file system. Further, improving the reliability
of the parallel file system would enable applications to recover from up to 96.4% of all failures using checkpoints
cached on the cluster.

Finally, we presented a novel, hierarchical Markov model that predicts the performance of multi-level check-
pointing systems based on system reliability and checkpoint cost. This model can guide users in selecting the
best checkpointing parameters for their application. Our analysis with this model demonstrates that multi-level
checkpointing significantly improves system efficiency, particularly as failure rates and relative parallel file system
checkpoint costs increase. We find that we can still achieve 85% efficiency even if systems become 50× less reliable.

26

Our model also demonstrates that many applications will complete in fewer processor hours by using more nodes in
order to provide sufficient memory to use SCR. Finally, SCR achieves these gains in efficiency while simultaneously
reducing the load on the parallel file system by more than a factor of two.

For future work, we will extend our model to account for additional features of SCR. For example, we do not
currently model SCR’s ability to drain lower level checkpoints to the parallel file system. We will extend our model
to determine how this feature can help reduce writes to the parallel file system. We will also extend SCR to copy
checkpoints to the parallel file system asynchronously.

References

[1] B. Schroeder and G. A. Gibson, “A Large-Scale Study of Failures in High-Performance Computing Systems,”
in In Proceedings of the International Conference on Dependable Systems and Networks (DSN), June 2006, pp.
249–258.

[2] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala, and S. A. Wender, “Predicting the Number of
Fatal Soft Errors in Los Alamos National Laboratory’s ASC Q Supercomputer,” IEEE Transactions on Device
and Materials Reliability, vol. 5, no. 3, pp. 329–335, September 2005.

[3] J. N. Glosli, K. J. Caspersen, J. A. Gunnels, D. F. Richards, R. E. Rudd, and F. H. Streitz, “Extending
Stability Beyond CPU Millennium: A Micron-Scale Atomistic Simulation of Kelvin-Helmholtz Instability,” in
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC), 2007, pp. 1–11.

[4] B. Schroeder and G. Gibson, “Understanding Failure in Petascale Computers,” Journal of Physics Conference
Series: SciDAC, vol. 78, p. 012022, June 2007.

[5] E. Vivek Sarkar, Ed., ExaScale Software Study: Software Challenges in Exascale Systems, 2009.

[6] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman, “ZOID: I/O-Forwarding Infrastructure for Petascale
Architectures,” in PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, 2008, pp. 153–162.

[7] R. Ross, J. Moreira, K. Cupps, and W. Pfeiffer, “Parallel I/O on the IBM Blue Gene/L System,” Blue Gene/L
Consortium Quarterly Newsletter, Tech. Rep., First Quarter, 2006.

[8] R. Hedges, B. Loewe, T. McLarty, and C. Morrone, “Parallel File System Testing for the Lunatic Fringe:
The Care and Feeding of Restless I/O Power Users,” in Proceedings of the 22nd IEEE / 13th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST), 2005, pp. 3–17.

[9] R. E. Lyons and W. Vanderkulk, “The Use of Triple-Modular Redundancy to Improve Computer Reliability,”
IBM Journal of Research and Development, vol. 6, no. 2, pp. 200–209, 1962.

[10] E. Gelenbe, “A Model of Roll-back Recovery with Multiple Checkpoints,” in Proceedings of the 2nd Interna-
tional Conference on Software Engineering (ICSE ’76), 1976, pp. 251–255.

[11] N. H. Vaidya, “A Case for Multi-Level Distributed Recovery Schemes,” Texas A&M University, Tech. Rep.
94-043, May 1994.

[12] “Scalable Checkpoint/Restart Library.” [Online]. Available: http://sourceforge.net/projects/scalablecr/

[13] J. W. Young, “A First Order Approximation to the Optimum Checkpoint Interval,” Communications of the
ACM, vol. 17, no. 9, pp. 530–531, 1974.

[14] A. Duda, “The Effects of Checkpointing on Program Execution Time,” Information Processing Letters, vol. 16,
no. 5, pp. 221–229, 1983.

[15] J. S. Plank and M. G. Thomason, “Processor Allocation and Checkpoint Interval Selection in Cluster Com-
puting Systems,” Journal of Parallel Distributed Computing, vol. 61, no. 11, pp. 1570–1590, 2001.

27

http://sourceforge.net/projects/scalablecr/

[16] J. Daly, “A higher order estimate of the optimum checkpoint interval for restart dumps,” Future
Generation Computer Systems, vol. 22, no. 3, pp. 303 – 312, 2006. [Online]. Available: http:
//www.sciencedirect.com/science/article/B6V06-4F490KH-6/2/6ebfa65591e5d0eb09e2ae5ae3b2ed44

[17] N. H. Vaidya, “A Case for Two-Level Distributed Recovery Schemes,” in Proceedings of the 1995 ACM SIG-
METRICS Joint International Conference on Measurement and Modeling of Computer Systems (SIGMET-
RICS ’95), 1995, pp. 64–73.

[18] B. S. Panda and S. K. Das, “Performance Evaluation of a Two Level Error Recovery Scheme for Distributed
Systems,” in 4th International Workshop on Distributed Computing, Mobile and Wireless Computing (IWDC),
2002, pp. 88–97.

[19] A. J. Oliner, L. Rudolph, and R. K. Sahoo, “Cooperative Checkpointing: A Robust Approach to Large-Scale
Systems Reliability,” in ICS ’06: Proceedings of the 20th Annual International Conference on Supercomputing,
2006, pp. 14–23.

[20] J. S. Plank, K. Li, and M. A. Puening, “Diskless Checkpointing,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 9, no. 10, pp. 972–986, October 1998.

[21] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou, T. Angskun, G. Bosilca, and J. Dongarra, “Fault Tolerant High
Performance Computing by a Coding Approach,” in PPoPP ’05: Proceedings of the Tenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2005, pp. 213–223.

[22] P. Nowoczynski, N. Stone, J. Yanovich, and J. Sommerfield, “Zest Checkpoint Storage System for Large
Supercomputers,” in 3rd Petascale Data Storage Workshop (PDSW), Nov. 2008.

[23] J. S. Plank and K. Li, “ickp: A Consistent Checkpointer for Multicomputers,” IEEE Parallel & Distributed
Technology, vol. 2, no. 2, pp. 62–67, 1994.

[24] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive Incremental Checkpointing for Massively
Parallel Systems,” in Proceedings of the 18th Annual International Conference on Supercomputing (ICS), 2004,
pp. 277–286.

[25] S. I. Feldman and C. B. Brown, “IGOR: A System for Program Debugging via Reversible Execution,” in Pro-
ceedings of the 1988 ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging (PADD),
1988, pp. 112–123.

[26] N. Naksinehaboon, Y. Liu, C. B. Leangsuksun, R. Nassar, M. Paun, and S. L. Scott, “Reliability-Aware
Approach: An Incremental Checkpoint/Restart Model in HPC Environments,” in Proceedings of the 2008
Eighth IEEE International Symposium on Cluster Computing and the Grid (CCGRID), 2008, pp. 783–788.

[27] L. Silva and J. Silva, “Using Two-Level Stable Storage for Efficient Checkpointing,” IEE Proceedings - Software,
vol. 145, no. 6, pp. 198–202, Dec 1998.

[28] J. S. Plank and K. Li, “Faster Checkpointing with N+1 Parity,” in Twenty-Fourth International Symposium
on Fault-Tolerant Computing (FTCS), Digest of Papers, Jun 1994, pp. 288 –297.

[29] D. Patterson, G. Gibson, and R. Katz, “A Case for Redundant Arrays of Inexpensive Disks (RAID),” in
Proceedings of the 1988 ACM SIGMOD Conference on Management of Data, 1988.

[30] W. Gropp, R. Ross, and N. Miller, “Providing Efficient I/O Redundancy in MPI Environments,” in Lecture
Notes in Computer Science, 3241:7786, September 2004. 11th European PVM/MPI Users Group Meeting,
2004.

[31] R. L. Berger, C. H. Still, E. A. Williams, and A. B. Langdon, “On the dominant and subdominant behavior
of stimulated raman and brillouin scattering driven by nonuniform laser beams,” Physics of Plasmas, vol. 5,
p. 4337, 1998.

28

http://www.sciencedirect.com/science/article/B6V06-4F490KH-6/2/6ebfa65591e5d0eb09e2ae5ae3b2ed44
http://www.sciencedirect.com/science/article/B6V06-4F490KH-6/2/6ebfa65591e5d0eb09e2ae5ae3b2ed44

9 Appendix A: Mathematical Derivations

In this section, we detail several mathematical derivations for our model described in Section 5. In Section 9.1, we
show expressions for relevant geometric sums. We present derivations of probabilities and expected run times for
base states when assuming failures follow Poisson distributions in Section 9.2. In Section 9.3, we derive formulas
useful for merging edges in our Markov model.

9.1 Geometric sums

The following two formulas compute the sums of geometric series for when x 6= 1:

N
∑

i=0

xi =
1 − x(N+1)

1 − x
, (5)

N
∑

i=1

i · xi =
x − (N + 1) · x(N+1) + N · x(N+2)

(1 − x)2
. (6)

For completeness, we derive these two formulas below. First, we show the derivation for Formula 5. When
x 6= 1, let A =

∑N

i=0 xi, then

A − A · x = (

N
∑

i=0

xi) − (

N
∑

i=0

xi) · x

= (x0 + x1 + · · · + xN) − (x0 + x1 + · · · + xN) · x

= (x0 + x1 + · · · + xN) − (x1 + x2 + · · · + xN+1)

= x0 + x1 + · · · + xN − x1 − x2 − · · · − xN+1

= x0 + (x1 − x1) + (x2 − x2) + · · · + (xN − xN) − xN+1

= x0 − xN+1

A · (1 − x) = 1 − xN+1

A =
1 − xN+1

1 − x
N

∑

i=0

xi =
1 − xN+1

1 − x
.

Now, we show the derivation for Formula 6. When x 6= 1, let A =
∑N

i=1 i · xi, then

29

A − A · x = (

N
∑

i=1

i · xi) − (

N
∑

i=1

i · xi) · x

= (1 · x1 + 2 · x2 + · · · + N · xN) − (1 · x1 + 2 · x2 + · · · + N · xN) · x

= (1 · x1 + 2 · x2 + · · · + N · xN) − (1 · x2 + 2 · x3 + · · · + N · xN+1)

= 1 · x1 + 2 · x2 + · · · + N · xN − 1 · x2 − 2 · x3 − · · · − N · xN+1

= x1 + (2 · x2 − 1 · x2) + (3 · x3 − 2 · x3) + · · · + (N · xN − (N − 1) · xN) − N · xN+1

= x1 + x2 + x3 + · · · + xN − N · xN+1

= (x0 + x1 + x2 + x3 + · · · + xN − x0) − N · xN+1

= ((

N
∑

i=0

xi) − 1) − N · xN+1

= (
1 − xN+1

1 − x
) − 1 − N · xN+1

=
1 − xN+1 − 1 · (1 − x) − N · xN+1 · (1 − x)

1 − x

=
1 − xN+1 − 1 + x − N · xN+1 + N · xN+2

1 − x

=
x − (N + 1) · xN+1 + N · xN+2

1 − x

A · (1 − x) =
x − (N + 1) · xN+1 + N · xN+2

1 − x

A =
x − (N + 1) · xN+1 + N · xN+2

(1 − x)2

N
∑

i=0

i · xi =
x − (N + 1) · xN+1 + N · xN+2

(1 − x)2
.

9.2 Poisson distributions

In Section 5.4, the general formulas to compute the probability and expected run time vectors for base computation
and recovery states are determined to be

p0(T) = (1 − F1(T)) · (1 − F2(T)) · · · (1 − FL(T)),

t0(T) = T,

and, for k ∈ 1, 2, · · · , L,

pk(T) =

∫ T

0

(1 − F1(t)) · (1 − F2(t)) · · · (1 − Fk−1(t)) · fk(t) · (1 − Fk+1(t)) · · · (1 − FL(t)) dt,

and when pk(T) > 0,

30

tk(T) =

∫ T

0
t · (1 − F1(t)) · (1 − F2(t)) · · · (1 − Fk−1(t)) · fk(t) · (1 − Fk+1(t)) · · · (1 − FL(t)) dt

pk(T)
.

That section then claims that, for failures that follow Poisson distributions with failures at level k occuring at
an average rate of λk, the above expressions evaluate to:

p0(T) = e−λT ,

t0(T) = T,

and for k ∈ 1, 2, · · · , L,

pk(T) =
λk

λ
(1 − e−λT),

tk(T) =
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
,

where

λ = λ1 + λ2 + · · · + λL.

Here, we derive these results. Given that failures at each level follow a Poisson distribution, with failures at
level k occuring at an average rate of λk, the probability density function and cumulative distribution function are
the following:

fk(t) = λk · e−λkt,

Fk(t) = 1 − e−λkt.

The probability that there are no failures during the time interval from t = 0 to t = T evaluates to

p0(T) = (1 − F1(T)) · (1 − F2(T)) · · · (1 − FL(T))

= (1 − (1 − e−λ1T)) · (1 − (1 − e−λ2T)) · · · (1 − (1 − e−λLT))

= (e−λ1T) · (e−λ2T) · · · (e−λLT)

= e−(λ1+λ2+···+λL)·T

= e−λT

where

λ = λ1 + λ2 + · · · + λL.

The expected run time given that no failures occur is simply

t0(T) = T.

31

The probability that a failure at level k occurs before a failure occurs at any other level during the time interval
t = 0 to t = T evaluates to

pk(T) =

∫ T

0

(1 − F1(t)) · (1 − F2(t)) · · · (1 − Fk−1(t)) · fk(t) · (1 − Fk+1(t)) · · · (1 − FL(t)) dt

=

∫ T

0

(1 − (1 − e−λ1t)) · (1 − (1 − e−λ2t)) · · · (1 − (1 − e−λk−1t)) ·

(λk · e−λkt) · (1 − (1 − e−λk+1t)) · · · (1 − (1 − e−λLt)) dt

=

∫ T

0

(e−λ1t) · (e−λ2t) · · · (e−λk−1t) · (λk · e−λkt) · (e−λk+1t) · · · (e−λLt) dt

=

∫ T

0

λk · e−(λ1+λ2+···+λL)·t dt

= λk ·

∫ T

0

e−λt dt

= −
λk

λ
e−λt |T0

= (−
λk

λ
e−λ·T) − (−

λk

λ
e−λ·0)

= −
λk

λ
e−λT +

λk

λ

=
λk

λ
(1 − e−λT).

The expected run time given that a failure at level k occurs before a failure occurs at any other level during the
time interval t = 0 to t = T evaluates to

tk(T) =

∫ T

0
t · (1 − F1(t)) · (1 − F2(t)) · · · (1 − Fk−1(t)) · fk(t) · (1 − Fk+1(t)) · · · (1 − FL(t)) dt

pk(T)
.

Simplifying the numerator of tk(T), we get

∫ T

0

t · (1 − F1(t)) · (1 − F2(t)) · · · (1 − Fk−1(t)) · fk(t) · (1 − Fk+1(t)) · · · (1 − FL(t)) dt

=

∫ T

0

t · (e−λ1t) · (e−λ2t) · · · (e−λk−1t) · (λk · e−λkt) · (e−λk+1t) · · · (e−λLt) dt

=

∫ T

0

t · λk · e−(λ1+λ2+···+λL)·t dt

= λk ·

∫ T

0

t · e−λt dt.

Since

∫ b

a

x · ecx dx =
1

c2
· (cx − 1) · ecx |ba,

we find that

32

λk ·

∫ T

0

t · e−λt dt =
λk

λ2
· (−λt − 1) · e−λt |T0

= (
λk

λ2
· (−λ · T − 1) · e−λ·T) − (

λk

λ2
· (−λ · 0 − 1) · e−λ·0)

=
λk

λ2
· (−λT − 1) · e−λT −

λk

λ2
· (0 − 1) · 1

= −
λk

λ2
· (λT + 1) · e−λT +

λk

λ2

=
λk

λ2
(1 − (λT + 1) · e−λT).

Substituting back into tk(T), we get

tk(T) =
λk

λ2 (1 − (λT + 1) · e−λT)

pk(T)

=
λk

λ2 (1 − (λT + 1) · e−λT)
λk

λ
(1 − e−λT)

=
1 − (λT + 1) · e−λT

λ · (1 − e−λT)
.

9.3 Merging Edges

9.3.1 Multiple edges between two blocks

When a block has multiple edges that transition to the same destination block, we apply the following forumlas to
merge those edges into a single logical edge.

Assume a block has N edges that all transition to the same destination block, and assume that a transition
along edge i ∈ 1, 2, · · · , N is taken with probability pi and expected cost ti. Then, these edges can be combined
into a single logical edge having probability P and expected cost T computed as

P =

N
∑

i=1

pi (7)

and when P > 0,

T =

∑N

i=1 pi · ti
P

. (8)

The total probability P is simply the sum of the probabilities of the edges, and the expected cost T is the
average of the expected costs of the edges weighted by their respective probabilities.

9.3.2 Loop-back edges

When a block has an edge that loops back to itself, often what is of interest is the total probability and expected
cost of transitioning to another block, allowing for an arbitrary number of loops before doing so. We apply the
following formulas to merge the effects of a loop-back edge into the probabilities and expected costs of the edges
that lead away from a block.

33

Assume a block has one or more edges leading away as well as a loop-back edge. Assume a transition along the
loop-back edge is taken with probability ploop and expected cost tloop. Now, consider an arbitrary away edge, and
assume it is taken with probability p and expected cost t. Then, the total probability P and expected cost T that a
transition is made away from the block via this particular away edge, accounting for an arbitrary number of loops
before doing so is given by

P =

{

p

1−ploop
for ploop < 1,

0 for ploop = 1
(9)

and when P > 0,

T = t +
ploop

1 − ploop

· tloop. (10)

Here we derive the above forumlas. Consider a block having one or more edges that lead away as well as one
edge that loops back to itself with probability ploop and expected cost tloop. Given that the system starts in this
block and given that ploop < 1, a transition away from the block must eventually happen. However, one or more
transitions along the loop-back edge may occur before transitioning away.

Now consider an arbitrary away edge of this block, and assume for a single transition step, there is a probability
p and associated expected cost t of taking this edge. Given that the system starts in this block, our goal is to
compute P , which we define to be the total probability that a transition is eventually made along this away edge,
allowing for an arbitrary number of loop transitions before doing so.

The system may transition away from the block along the away edge as the first transition with probability
p. Or, it may take the loop transition first and then take the away edge as the next transition with probability
ploop · p. Or, it may take two consecutive loop transtions and then take the away edge as the third transition with
probability ploop · ploop · p. This pattern can be continued an infinite number of times. To get the total probability
P , we sum the probabilities of each of these paths that all terminate with taking the away edge being considered.
Thus,

P = p + ploop · p + (ploop)
2 · p + · · ·

This sum can be written succinctly by taking the limit of formula 5 as N → ∞ given that 0 ≤ ploop < 1.

P = p + ploop · p + (ploop)
2 · p + · · ·

= p · (1 + ploop + (ploop)
2 + · · ·)

= p ·

∞
∑

i=0

(ploop)
i

= p · (
1

1 − ploop

)

=
p

1 − ploop

.

Of course if ploop = 1, then p = 0 since p + ploop ≤ 1. In this case, P = 0 as each term in the infinite sum is
multiplied by zero, so we arrive at the following for P as listed in 9:

34

P =

{

p

1−ploop
for ploop < 1,

0 for ploop = 1.

When P > 0, one may follow a similar method to compute the expected cost of eventually taking the considered
away edge. However, here we use a recursive method instead. This recursive method can be applied since the model
is memory-less – the probability and expected cost of taking a particular edge from a particular block is the same
regardless of the path taken to arrive at the block. Thus, upon entering the block, we assume the total expected
cost to transition away from the block along the considered away edge is known to be T . From above, we also know
that the total probability of taking this edge is P .

Now, given that the system starts in this block, consider the first transition step. This step may transition
along the away edge with probability p and expected cost t, or it may transition along the loop-back edge and
then eventually transition along the away edge. After taking the loop and re-entering the block, we know the total
probability of leaving the block via the considered away edge is P and the expected cost is T . Thus, the probability
of taking the away edge after first taking the loop is ploop ·P , and the expected cost of this path is tloop + T . When
P > 0, we solve for T by computing the expected cost of taking either of these two paths

T =
p · t + ploop · P · (tloop + T)

p + ploop · P

T · (p + ploop · P) = p · t + ploop · P · tloop + ploop · P · T

T · p + T · ploop · P − ploop · P · T = p · t + ploop · P · tloop

T · p = p · t + ploop · P · tloop

T = t +
ploop · P · tloop

p

T = t +
ploop · (p

1−ploop
) · tloop

p

T = t +
ploop

1 − ploop

· tloop.

This expression matches the one given in 10.

35

10 Appendix B: Python Implementation of Multi-level Checkpoint
Model

In this section, we present an implementation of our multi-level checkpointing model described in Section 5. We
use this code to compute the results shown in Sections 6 and 7. The code is written in Python version 2.6.

10.1 Comments

For each simulation run, there are several parameters that can be set that correspond to variables in the mathe-
matical derivation of our model:

• Number of checkpoint levels: L

• Compute interval: t

• A list of the times to write checkpoints at each level: cc

• A list of the times to recover from checkpoints at each level: rk

• A list of the failure rates at each level: λi

• Sum of the failure rates: λ

• A list of the number of level-k checkpoints for each level-k + 1 checkpoint: vk

In an effort to make our code follow the mathematical derivation of our model as closely as possible, we begin
counting list elements at index number 1. This means that each Python list will have a dummy value of zero as the
first value. The values for level-1 will occur in each list at index 1.

10.2 Code

This is a container class used to hold the parameters for each run of the model.

The values are set at initialization time.

Here, we have simply hard-coded in example values. In the real code, the values are

set by command line options.

class options:

def __init__(self):

L is the number of levels

self.L = 2

t is the compute interval in seconds

self.t = 600

checkWriteTimes is a list of the checkpoint costs at each level in seconds

self.checkWriteTimes = [0, 15, 1835]

checkRecoverTimes is a list of the recovery costs at each level in seconds

self.checkRecoverTimes = [0, 15, 1835]

lambdas is a list of the failure rates at each level

self.lambdas = [0, 8.54e-7, 2.01e-7]

lam is the sum of the failure rates

self.lam = 1.06e-6

V is a list of the counts of each level-k checkpoint per level=k+1 checkpoint

self.V = [0, 100, 1]

self.debug = False

epsilon is an upper bound on accumulated error

self.epsilon = 1e-7

We precompute the values for R-base states (recoveryVals),

36

because they don’t change over the course of the execution. This variable

is set at the beginning of a run with a call to computeRecoveryVals()

self.recoveryVals = None

driver code for running the model

def computeRecoveryVals(opts):

R = [None]

for l in range(1,opts.L+1):

r = RbaseCase(l, opts)

R.append(r)

return R

def RunModel(userParameters):

initialize an instance of the options class with user input,

assumed to be stored in variable userParameters

opts = setupOptions(userParameters)

precompute the values for the R base states

opts.recoveryVals = computeRecovery(opts)

begin the recursive computation of the model

Xr = X(opts.L, opts.L, opts)

compute the efficiency of the simulated run

l = len(V)-1

count = 1.0

efficiency = 0.0

for i in range(1,l):

count *= (V[i] + 1)

count *= V[l]

saved = count * opts.t

if(Xvals.tX0 != 0):

efficiency = saved/Xvals.tX0

the model code begins here

#Y(1, _, V) . base case

#X(L, C, V) . Y(L, C, V)

#Y(L, C, V) . if V[L-1] > 0:

Y(L-1, L-1, V) + Z(L-1, C, V)

else:

Y(L-1, C, V)

#Z(L, C, V) . (V[L]-1)*X(L, L, V) + X(L, C, V)

container classes for holding the values of states, mainly for ease of debug printing

def valDebugPrint(val, p0, t0, pis, tis):

str = "%s: p%s0=%4f t%s0=%4f \np%sis=[" % (val,val,p0,val, t0,val)

for i in range(len(pis)):

str += "%4f " % (pis[i])

str += "]\nt%sis=[" % val

for i in range(len(tis)):

str += "%4f " % (tis[i])

37

str += "]"

print str

class XValues:

def __init__(self,pX0, tX0, pXis, tXis):

self.pX0 = pX0

self.tX0 = tX0

self.pXis = pXis

self.tXis = tXis

def debugPrint(self):

valDebugPrint("X", self.pX0, self.tX0, self.pXis, self.tXis)

class YValues:

def __init__(self,pY0, tY0, pYis, tYis):

self.pY0 = pY0

self.tY0 = tY0

self.pYis = pYis

self.tYis = tYis

def debugPrint(self):

valDebugPrint("Y", self.pY0, self.tY0, self.pYis, self.tYis)

class ZValues:

def __init__(self,pZ0, tZ0, pZis, tZis):

self.pZ0 = pZ0

self.tZ0 = tZ0

self.pZis = pZis

self.tZis = tZis

def debugPrint(self):

valDebugPrint("Z", self.pZ0, self.tZ0, self.pZis, self.tZis)

class RValues:

def __init__(self,pR0, tR0, pRis, tRis):

self.pR0 = pR0

self.tR0 = tR0

self.pRis = pRis

self.tRis = tRis

def debugPrint(self):

valDebugPrint("R", self.pR0, self.tR0, self.pRis, self.tRis)

def p0(T, opts):

lam = opts.lam

return exp(-lam * T)

def t0(T, opts):

return T

def pi(T, i, opts):

lam = opts.lam

lami = opts.lambdas[i]

a = (1.0 - exp(-lam * T))

return ((lami*a))/lam

38

def ti(T, opts):

lam = opts.lam

top = 1.0 - (lam * T + 1.0)* exp(-lam * T)

bottom = lam * (1.0 - exp(-lam * T))

return top/bottom

def RbaseCase(k, opts):

compute probabilities of exiting R with no failures

rs = opts.checkRecoverTimes

rK = rs[k]

L = opts.L

pR0 = p0(rK,opts)

tR0 = t0(rK, opts)

compute probabilities of exiting R at each failure level

pRis = [0] # put a dummy in for index 0

tRis = [0]

for i in range(1,L+1):

pRi = pi(rK, i, opts)

tRi = ti(rK, opts)

pRis.append(pRi)

tRis.append(tRi)

if opts.debug:

total = (sum([pR0] + pRis))

assert (fabs(total - 1.0) < opts.epsilon), ("%4f %4f" % (total, total - 1.0))

ret = RValues(pR0,tR0,pRis,tRis)

return ret

def YbaseCase(c, opts):

t = opts.t

cws = opts.checkWriteTimes

cC = cws[c]

L = opts.L

compute probability and time of exiting Y with no failures

pY0 = p0(t + cC, opts)

tY0 = t0(t + cC, opts)

compute probabilities of exiting Y at each failure level

pYis = [0]# put a dummy in for index 0

tYis = [0]

for i in range(1,L+1):

pYi = pi(t + cC, i, opts)

tYi = ti(t + cC, opts)

pYis.append(pYi)

tYis.append(tYi)

if pY0 == 0.0 :

return YValues(pY0,tY0,pYis,tYis)

if opts.debug:

39

the sum of all probabilities leaving a state should be 1.0

total = (sum([pY0] + pYis))

assert (fabs(total - 1.0) < opts.epsilon), ("%4f %4f" % (total, total - 1.0))

each individual ti should be less than t0

for i in range(1,L+1):

assert tY0 > tYis[i]

ret = YValues(pY0,tY0,pYis,tYis)

return ret

#Z(k, c) . (V[k]-1)*X(k, k) + X(k, c)

def Z(k, c, opts):

if opts.debug:

print "ENTER Z(%s, %s)" % (k, c)

v = opts.V[k]

L = opts.L

initialize to 0’s for all values

X1r = XValues(0,0,[0 for i in range(L+1)],[0 for i in range(L+1)])

if there is more than one X state in this Z, first compute

the values for X(k, k)

if (v - 1 > 0):

X1r = X(k, k, opts)

if opts.debug:

X1r.debugPrint()

compute the values for X(k, c)

X2r = X(k, c, opts)

if opts.debug:

X2r.debugPrint()

compute the probability and time of exiting Z with no failures

pZ0 = pow(X1r.pX0,v-1) * X2r.pX0

tZ0 = (v-1) * X1r.tX0 + X2r.tX0

compute the probabilities and times of exiting Z at each failure level

pZis = [0]

tZis = [0]

for i in range(1,L+1): # index starts with 1

pZi = 0.0

tZi = 0.0

if i > k:

pZi = ((1.0 - pow(X1r.pX0,v-1))/(1.0 - X1r.pX0))

*(X1r.pXis[i]) + pow(X1r.pX0,v-1) * X2r.pXis[i]

B1 = (1.0 - pow(X1r.pX0,v-1))/(1 - X1r.pX0) *X1r.pXis[i]*X1r.tXis[i]

B2 = (X1r.pX0 - (v-1) * pow(X1r.pX0,v-1) + (v-2) * pow(X1r.pX0,v))

B2 = B2/(pow((1-X1r.pX0),2)) * X1r.pXis[i] * X1r.tX0

B = B1 + B2

A = B + pow(X1r.pX0,v-1) * X2r.pXis[i]* ((v-1) * X1r.tX0 + X2r.tXis[i])

tZi = A/pZi

pZis.append(pZi)

40

tZis.append(tZi)

if pZ0 == 0.0:

return ZValues(pZ0, tZ0, pZis, tZis)

if opts.debug:

the sum of all probabilities leaving a state should be 1.0

assert fabs(sum([pZ0] + pZis) - 1.0) < opts.epsilon

each individual ti should be less than t0

for i in range(1,L+1):

assert tZ0 > tZis[i]

if opts.debug:

print "LEAVE Z(%s, %s)" % (k, c)

ret = ZValues(pZ0, tZ0, pZis, tZis)

return ret

#Y(k, c) . if V[k-1] > 0:

Y(k-1, k-1) + Z(k-1, c)

else:

Y(k-1, c)

def Y(k, c, opts):

if opts.debug:

print "ENTER Y(%s, %s)" % (k, c)

if k == 1, we compute the values for the base case

if(k == 1):

Yr = YbaseCase(c, opts)

if opts.debug:

Yr.debugPrint()

print "LEAVE Y(%s, %s)" % (k, c)

return Yr

if there are no recovery states at level k-1, there is no Z state

if(opts.V[k-1] == 0):

Yr = Y(k-1, c, opts)

if opts.debug:

Yr.debugPrint()

print "LEAVE Y(%s, %s)" % (k, c)

return Yr

otherwise, compute values for a Y and Z state

L = opts.L

Yr = Y(k-1, k-1, opts)

if opts.debug:

Yr.debugPrint()

Zr = Z(k-1, c, opts)

if opts.debug:

Zr.debugPrint()

compute the probability and time of exiting Y with no failures

pY0 = Yr.pY0 * Zr.pZ0

tY0 = Yr.tY0 + Zr.tZ0

41

compute the probabilities and times of exiting Y at each failure level

pYis = [0]

tYis = [0]

for i in range(1,L+1):

pYi = Yr.pYis[i] + Yr.pY0 * Zr.pZis[i]

top = (Yr.pYis[i]*Yr.tYis[i] + Yr.pY0*Zr.pZis[i]*(Yr.tY0 + Zr.tZis[i]))

tYi = top/pYi

pYis.append(pYi)

tYis.append(tYi)

#if pY0 == 0.0:

if pY0 < opts.epsilon:

return YValues(pY0, tY0, pYis, tYis)

if opts.debug:

the sum of all probabilities leaving a state should be 1.0

assert fabs(sum([pY0] + pYis) - 1.0) < opts.epsilon

each individual ti should be less than t0

for i in range(1,L+1):

assert tY0 > tYis[i]

if opts.debug:

print "LEAVE Y(%s, %s)" % (k, c)

ret = YValues(pY0, tY0, pYis, tYis)

return ret

#X(k, c) . Y(k, c)

def X(k, c, opts):

if opts.debug:

print "ENTER X(%s, %s)" % (k, c)

L = opts.L

has Y and recovery

Yr = Y(k, c, opts)

if opts.debug:

Yr.debugPrint()

r = opts.recoveryVals

pRis = r[k].pRis

pR0 = r[k].pR0

tRis = r[k].tRis

tR0 = r[k].tR0

pYR = 0.0

tYR = 0.0

pRR = 0.0

tRR = 0.0

for i in range(1,k+1): # range(1,5+1) makes 1,2,3,4,5

pYR += Yr.pYis[i]

tYR += Yr.pYis[i] * Yr.tYis[i]

tYR = tYR/pYR

42

M = k-1

if k == opts.L:

M = k

for i in range(1,M+1): # range(1,5+1) makes 1,2,3,4,5

pRR += pRis[i]

tRR += pRis[i] * tRis[i]

if (k != 1):

tRR = tRR/pRR

if too close to 0, just return 0

if (pRR - 1.0 > opts.epsilon):

pX0 = 0.0

tX0 = 0.0

pXis = [0 for i in range(1,L+1)]

tXis = [0 for i in range(1,L+1)]

return XValues(pX0, tX0, pXis, tXis)

pRY = pR0/(1.0-pRR)

tRY = tR0 + (pRR/(1.0-pRR)) * tRR

PRis = [0]

TRis = [0]

for i in range(1,L+1):

pRi = 0.0

tRi = 0.0

if i == k + 1:

pRi = (pRis[k] + pRis[i])/(1.0 - pRR)

tRi = (pRis[k]*tRis[k] + pRis[i]*tRis[i])/(pRis[k]+pRis[i])

+ pRR/(1.0-pRR) * tRR

elif i > k + 1:

pRi = pRis[i]/(1.0 - pRR)

tRi = tRis[i] + pRR/(1.0 - pRR) * tRR

PRis.append(pRi)

TRis.append(tRi)

error condition, returns all zeros

if (pYR - 1.0 > opts.epsilon) or (pYR+Yr.pY0 - 1.0 > opts.epsilon)

or (1.0 - pYR*pRY < opts.epsilon) :

pX0 = 0.0

tX0 = 0.0

pXis = [0 for i in range(1,L+1)]

tXis = [0 for i in range(1,L+1)]

return XValues(pX0, tX0, pXis, tXis)

pX0 = Yr.pY0/(1.0 - pYR*pRY)

tX0 = Yr.tY0 + ((pYR*pRY)/(1.0 - pYR*pRY)) * (tYR + tRY)

pXis = [0]

tXis = [0]

for i in range(1,L+1):

pXi = 0.0

43

tXi = 0.0

if i > k:

pXi = (Yr.pYis[i] + pYR * PRis[i])/(1.0 - pYR*pRY)

tXi_1 = Yr.pYis[i]*Yr.tYis[i] + pYR*PRis[i] * (tYR + TRis[i])

tXi_1 = tXi_1/(Yr.pYis[i] + pYR*PRis[i])

tXi_2 = (pYR*pRY)/(1.0 - pYR*pRY) * (tYR + tRY)

tXi = tXi_1 + tXi_2

pXis.append(pXi)

tXis.append(tXi)

#print "pX0: %s" % pX0

if pX0 < opts.epsilon:

return XValues(pX0, tX0, pXis, tXis)

if opts.debug:

the sum of all probabilities leaving a state should be 1.0

total = fabs(sum([pX0] + pXis))

assert ((total - 1.0) < opts.epsilon), ("%4f %4f" % (total, total - 1.0))

each individual ti should be less than t0

for i in range(1,L+1):

assert tX0 > tXis[i]

if opts.debug:

print "LEAVE X(%s, %s)" % (k, c)

ret = XValues(pX0, tX0, pXis, tXis)

return ret

44

