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Detailed observations of California foreshock sequences: 

Implications for the earthquake initiation process 

Douglas A. Dodge and Gregory C. B eroza 

Department of Geophysics, Stanford University, Stanford, California 

W. L. E 11sworth 

U.S. Geological Survey, Menlo Park, California 

Abstract. We find that foreshocks provide clear evidence for an extended nucleation process 
before some earthquakes. In this study, we examine in detail the evolution of six California 
foreshock sequences, the 1986 Mount Lewis (ML = 5.5), the 1986 Chalfant (ML = 6.4), the 1986 
Stone Canyon (ML = 4.7), the 1990 Upland (ML = 5.2), the 1992 Joshua Tree (Mw= 6.1), and the 
1992 Landers (Mw = 7.3) sequence. Typically, uncertainties in hypocentral parameters are too 
large to establish the geometry of foreshock sequences and hence to understand their evolution. 
However, the similarity of location and focal mechanisms for the events in these sequences leads 
to similar foreshock waveforms that we cross correlate to obtain extremely accurate relative 
locations. We use these results to identify small-scale fault zone structures that could influence 
nucleation and to determine the stress evolution leading up to the mainshock. In general, these 
foreshock sequences are not compatible with a cascading failure nucleation model in which the 
foreshocks all occur on a single fault plane and trigger the mainshock by static stress transfer. 
Instead, the foreshocks seem to concentrate near structural discontinuities in the fault and may 
themselves be a product of an aseismic nucleation process. Fault zone heterogeneity may also be 
important in controlling the number of foreshocks, i.e., the stronger the heterogeneity, the greater 
the number of foreshocks. The size of the nucleation region, as measured by the extent of the 
foreshock sequence, appears to scale with mainshock moment in the same manner as determined 
independently by measurements of the seismic nucleation phase. We also find evidence for slip 
localization as predicted by some models of earthquake nucleation. 

Introduction 

A key question in earthquake source mechanics is how do 

earthquakes begin. Do big earthquakes begin in the same manner 

as small earthquakes, or is there something different about the 

initiation process of large versus small events? If there is a differ- 

ence, then large earthquakes may be predictable. Otherwise, 

earthquake prediction might require more detailed knowledge of 

the stress and strength distributions on faults than we are ever 

likely to have. Experimental and theoretical work [e.g., Das and 
Scholz, 1981; Dieterich, 1986, 1992; Ohnaka, 1992; Yamashita 

and Ohnaka, 1991 ] indicates that earthquakes should be preceded 

by quasi-static slip within a nucleation zone. If real earthquakes 

begin this way and if the slip extent of the nucleation zone is 

sufficiently large, then it might be possible to detect the nucle- 

ation process. Observations to date have failed to detect direct 

evidence of the nucleation process such as a strain signal 

generated by aseismic slip prior to earthquakes [ Johnston et al., 
1990, 1994; Abercrombie et al., 1995]. 

Foreshocks are the most obvious manifestation of earthquake 

nucleation and, as such, can provide important constraints on the 

mechanics of the process. While a great deal is known about the 
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statistics of foreshocks [Jones and Molnar, 1979; Jones, 1984; 

Abercrombie and Mori, 1995], foreshock mechanics have not 

generally been closely analyzed. One reason for this is that uncer- 

tainties in foreshock locations are often large relative to the 
dimensions of the sequence. Most earthquakes occur in sparsely 

instrumented areas where the detection and precise location of 

foreshocks may be problematic; however, even in well-instru- 

mented areas, typical location uncertainties are on the order of 

the dimensions of a foreshock sequence, and one cannot easily 

draw conclusions about the interactions among the foreshocks. 

Recently, Dodge et al. [1995] relocated the foreshocks of the 

1992 Landers M W = 7.3 earthquake using waveform cross 
correlation to determine accurate P wave and S wave relative 

arrival times. The resulting locations had relative uncertainties of 

less than 100 m horizontally and 200 m vertically. With this level 

of resolution one can begin to test competing models for earth- 

quake nucleation and foreshock generation. Specifically, one can 

distinguish between models in which foreshocks are a byproduct 

of an aseismic nucleation process and models in which the fore- 

shock stress changes contribute to a cascading failure culminating 
in the mainshock. This distinction is made on the basis of the 

stress changes caused by the foreshocks. If the foreshocks are 

part of such a cascading failure process, then they should push 
the mainshock toward failure, i.e. act to increase the shear 

traction, reduce the normal stress, or increase the pore pressure 

on the mainshock fault plane. Alternatively, if the foreshocks are 

triggered by an aseismic process or if something other than stress 
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changes causes triggering, there need be no causative relation 

between the foreshock stress changes and the mainshock occur- 
rence. 

Dodge et al. [ 1995] estimated the stress change at the Landers 

mainshock hypocenter, due to the foreshocks and found that the 
foreshocks acted to de-stress the mainshock. However, our 

original point estimate of the stress change did not include the 

uncertainties in the hypocentral parameters. In this study, we 

extend our analysis to produce Stress-change distribution func- 

tions, consider the possible role that pore fluid effects can play in 

the failure process, and analyze five other California foreshock 

sequences to see whether the Landers results generalize to other 

earthquakes. 

Relocation Procedure 

The first step in studying the mechanics of foreshocks is to 

obtain accurate locations. This process requires improving the 

velocity model, minimizing errors in arrival picks, and obtaining 
a sufficient number and azimuthal distribution of observations to 

make the hypocentral estimation problem well constrained. Since 

only relative locations are required in our case, the problems with 

the velocity model can be minimized by using the arrival times to 

simultaneously estimate hypocenters, velocity model corrections, 

and station corrections. The foreshocks occupy small volumes so 

the ray paths are similar, and almost all the unmodeled velocity 
structure can be absorbed in the station corrections. We use the 

VELEST earthquake location program [Ellsworth, 1977; 

Roecker, 1981] to estimate velocity model and station correc- 
tions. 

We use waveform cross correlation to minimize pick errors 

and to obtain additional P and S wave arrival picks. Both time 

domain and frequency domain cross correlation techniques have 

been used to produce high-precision relative earthquake locations 

by Poupinet et al. [1984], Fremont and Malone [1987], 
Deichrnann and Garcia-Fernandez [1992], and Dodge et al. 

[1993]. Although the foreshock sequences we analyze are 

compact, there is typically enough waveform diversity within a 

sequence that no single event can be found that correlates well 
with all (or even most of) the other foreshocks. Our first solution 

to this problem [Dodge et al., 1995] was to use a technique 

developed by VanDecar and Crosson [1990] for determining 

relative arrival times of teleseisms recorded by a regional seismic 

network. This technique uses the cross correlations between all 

pairs of signals with a weighted least squares adjustment of the 

corresponding shifts to determine an optimum set of arrival time 

corrections and estimates of the errors in the resulting adjusted 

picks. 

Although we had considerable success with the least squares 

approach, it has limitations. Often, the seismograms from a given 

sequence form distinct groups, highly similar within each group, 

but very different from group to group. If we attempt to adjust all 

seismograms simultaneously, we encounter problems with cycle 

skipping. Also, the seismograms of the larger earthquakes in each 

sequence are often strongly clipped, and their arrivals must be 

picked by hand. The results must be carefully inspected for 

consistency, or the larger event locations may be systematically 

skewed relative to the smaller events. Our current repicking 

algorithm first identifies groups of similar seismograms within a 

sequence and then allows interactive picking of the first arrival 

for the single seismogram with the highest signal-to-noise ratio in 

each group. These picks are then fixed, and the remaining group 

members adjusted by least squares. 

One of the major advantages claimed for cross-correlation- 

derived picks has been that one can achieve subsample precision 
[Poupinet et al., 1984; Fremont and Malone, 1987]. For instance, 

if the seismograms are digitized at 100 samples per second, the 

cross-correlation times may have a relative precision of the order 

of 1-2 ms. In the absence of other sources of error this precision 

implies relative source location errors of a few tens of meters at 
most. By introducing hand picks, it might appear that we throw 

away all the gains in accuracy obtained with cross correlation; 

however, in our experience, cross correlation reduces errors on 

two levels. The first and most dramatic improvement in accuracy 

is from the reduction or elimination of pick errors in excess of 

one sample. By analogy with the example just cited, this level of 

timing precision can limit source location errors to about 100 m. 
At this level, cross correlation is essentially a tool to correct pick 

errors. Impulsive arrivals with high signal-to-noise ratios are 

generally picked quite precisely by network analysts. However, 

as the signal-to-noise ratio decreases, the arrivals become in- 

creasingly indistinct until, at some point, the trace i• not used. 
Within that region of decreasing usability, pick errors in excess 

of one sample are common, and our technique removes this error. 

Within groups we are able to achieve subsample timing precision. 

However, since groups of seismograms are tied together by hand 

picks, the relative positions of the groups are not as well deter- 

mined as the relative position of seismograms within a group. 

Figure 1 illustrates the results of this process. These are two 

groups of seismograms ranging in magnitude from 0.9 to 2.0. For 

each group, the trace marked with an upward pointing arrow has 

a clear arrival and the other picks are chosen relative to that 

arrival. In ensemble, all the picks make sense. However, if these 

traces were picked in isolation, it is likely that the picks would 

scatter by at least several hundredths of a second relative to the 

picks shown. Some of the traces might not have been picked at 

all by the network analysts, in which case we gain additional 

observations through cross-correlation picking. Figure 1 is also 

intended to show how picking the P wave arrivals in ensemble 

can help improve the quality of the focal mechanism determina- 

tions. By observing all the traces of a group simultaneously, one 

can easily identify and repair missing or discrepant polarity 

assignments. Figure 2 shows an example of the hypocenter loca- 

tion improvement resulting from our repicking process. Each 

panel shows the seismicity relocated by joint hypocenter 

determination (JHD) using network picks from the Northern 

California Earthquake Center (NCEC) database (top), and the 

same seismicity relocated by JHD using cross-correlation picks 

(bottom). Figure 2 (left) panel shows map views of the preshocks, 

and Figure 2 (fight) shows cross sectional views. 

Both sets of locations indicate a rather narrow, N-S trending 

set of epicenters, but only the second set of locations suggests the 

change in strike about 1 km from the southern end and the 

subsidiary branch of seismicity to the northwest. Note that even 

though there are over 800 additional observations in the second 

set of locations, the average residual is about half that of the first 

set of locations. This is a clear indication of the greater 
consistency of the observations in the second set of locations. 

The foreshock sequences analyzed in this study have all been 

relocated using high-precision picks, and in every case the 

resulting locations have significantly lower average residuals and 

smaller standard errors than locations made using uncorrected 
picks. 
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Figure 1. Waveforms from some Chalfant foreshocks recorded at station WVD aligned by cross correlation with 
resulting P wave picks. Bottom trace has highest signal-to-noise ratio, and its onset is unambiguous. Remaining 
onsets have varying amounts of ambiguity that would likely cause picks made in isolation to scatter by several 
samples relative to the cross-correlation picks. 

Foreshock Sequences 

Our data in this study are seismograms recorded by the north- 
em California, southern California, and University of Nevada, 

Reno, short-period seismic networks. These are vertical- 
component velocity seismograms recorded on 1-Hz sensors. Tens 
of thousands of such digital recordings are available, and given 

that approximately 44% of California and Nevada earthquakes 
with ML > 5 have at least one immediate foreshock [ Jones, 1984; 
Abercrombie and Mori, 1995], one might expect a large number 

of foreshock sequences would have been recorded. However, the 
Northern California Earthquake Data Center and Southern 

California Earthquake Center databases contain 108 earthquakes 
with M L > 5 between 1981 and 1996. Of these, 55 were preceded 
by at least one earthquake within 2 km and within 30 days. 
Thirty-six of those earthquakes occurred within the aftershock 
sequence of a larger earthquake or were part of a swarm with no 
distinct mainshock. Of the remaining events, 11 had only one 

foreshock and 2 had poorly recorded foreshocks. This left six 

earth•quakes with usable foreshock sequences. These are the 1986 
Stone Canyon earthquake (M L = 4.7), the 1986 Mount Lewis 
earthquake (M L = 5.7), the 1986 Chalfant principal foreshock (M 
= 5.8), the 1990 Upland earthquake (M L = 5.2), the 1992 Joshua 

Tree earthquake (M W = 6.1), and the 1992 Landers earthquake 
(Mw = 7.3). The mainshock locations for these sequences are 
shown in Figure 3, and summary statistics for each sequence are 
in Table 1. 

Mount Lewis Sequence 

The 1986 Mount Lewis earthquake (M L = 5.7) occurred on a 

near-north striking fault about 18 km north of the 1984 Morgan 

Hill earthquake (M L = 6.2) epicenter. Although the epicentral 
region had been nearly devoid of seismicity since 1943 [Zhou et 
al., 1993], earthquakes began occurring within 2 km of the 
eventual Mount Lewis epicenter 8 days after the Morgan Hill 
mainshock. In all, there were 110 earthquakes located by the U.S. 

Geological Surver (USGS) Calnet network within 2 km of the 
Mount Lewis epicenter between May 1, 1984, and March 31, 
1986, the date of the Mount Lewis mainshock. Zhou et al. [1993] 

observed that most of the preshocks to the Mount Lewis earth- 

quake were in one of two swarms. The first swarm of about 19 
events started on September 24, 1985, and remained active for 
about 2 weeks. The second swarm was the immediate foreshock 

sequence of 18 events. It started on March 6, 1986, 25 days 
before the mainshock, but was most active on March 24. Zhou et 
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Figure 2. Comparison of relocations using network picks and cross-correlation-derived picks with (left) a map view 
and (fight) a cross section looking to the north. (top) Fifty preshocks to the Mount Lewis earthquake relocated by 
joint hypocenter determination (JHD) using network picks. (bottom) The same events relocated by JHD but using 
the cross-correlation-derived picks. Note that although there are 677 more observations in the second set of 
relocations, the average residual decreased from 0.026 to 0.014 s. The average 2o uncertainties have decreased from 
190 to 79 m (horizontal) and from 272 to 152 m (vertical). 

al. [ 1993] also noted that the preshocks could be divided into two 

groups based on focal mechanisms. Their group A preshocks 
produced a composite focal mechanism with a strike of 355 ø and 

their group B preshock composite focal mechanism had a strike 
of 5 ø . 

Figure 4 shows the locations in map and cross-sectional views 
of 49 preshocks and the mainshock. These are all the events with 
usable waveforms available. The events of the first swarm are 

shown as large open circles. The immediate foreshocks (swarm 
2) are shown as asterisks. The swarm 1 events form a distinct 

group about 0.7 km in N-S extent and a little over 1 km in 
vertical extent. All the swarm 1 events are north of the main- 

shock, and most of them are deeper. Strike statistics for the two 

groups were determined by generating 200 realizations of the 

epicentral coordinates for all the events and, for each realization, 

fitting a line through the epicenters by least squares. This 
provided 200 estimates of strike for each group. On the basis of 

these estimates, the swarm 1 events occurred on a fault plane 
striking about 351ø+ 2.6 ø. The immediate foreshocks form a 

distinctly different group. They are centered below the main- 

shock hypocenter, and most of them are deeper than the swarm 1 

events. There is little overlap between the two groups, but they 

may abut. The immediate foreshocks extend about 1.1 km along 
strike and range in depth from about 8.5 to 9.2 km. From the 

point of contact with the swarm 1 events to the south, the 

immediate foreshock epicenters lie on a line striking 1 o_+ 2.1ø. 
From the point of contact north they take on the strike of the 

swarm 1 preshocks. Evidently, these two swarms are adjacent to 

a change in strike on the fault. The mainshock hypocenter is less 

than 250 m from the point where the fault appears to change 
strike, and the mainshock focal mechanism has a strike of 355 ø. 

This interpretation is supported by the focal mechanisms. 
Figure 5 shows focal mechanisms for the swarm 1 and swarm 2 

(immediate foreshocks) events computed using the FPFIT 
program [Reasenberg and Oppenheimer, 1985]. These are all the 

focal mechanisms determined using 15 or more first motions for 

all the relocated swarm 1 and swarm 2 events, but excluding six 
events in the region where the two swarms overlap and the focal 
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Table 1. Foreshock Sequences Analyzed 

Mt. Lewis Stone Canyon Chalfant* Upland Joshua Tree Landers 

Magnitude 
Date 

Time, UT 

Latitude, øN 

Longitude, øW 
Depth 
Number recorded 

Number relocated 

Duration hours 

•'Average distance, km 

5.7 4.7 5.8 5.2 6,1 7.3 

March 31, 1981 May 31, 1986 July 20, 1986 Feb. 20, 1990 April 23, 1992 June 28, 1992 
1155:40 0847:56 1429:45 2343:36 0450:23 

37.48 36.64 37.57 34.13 33.96 

121.68 121.25 118.44 117.70 116.32 

8.9 5.9 6.7 4.7 10.0 

18 4 40 7 5 

15 4 30 6 5 

260.2 0.9 414.8 501.9 2.4 

11.5 5.8 13.0 17.6 18.5 

* This is the principal foreshock to the M L = 6.4 mainshock. 
Values show the average distance from the mainshock of the five nearest stations for each sequence. 

1157:34 

34.20 

116.44 

4.5 

30 

24 

6.6 

27.0 

mechanisms vary in strike between the two groups. The average 
strike of the swarm 1 events is 350 ø, with a standard error of 8 ø. 

The average strike of the immediate foreshocks and mainshock is 

0 ø, with a standard error of 6 ø The agreement between the strike 
from the. seismicity and the strike from the focal mechanism 

determinations is good (for the swarm 1 events 351ø, versus 
350% and for the swarm 2 events, 1 o versus 0ø). 

Figure 6 shows a close-up view of the mainshock and 15 

immediate foreshocks that we were able to relocate. In this figure 
the events are shown as disks oriented according to the preferred 

Map View 

ø o 

o 

o 

•+ 

+• 

Mainshock 

1 km 
m 

7 

A - A' Cross section 

o + 

+ 

+ o 

o 

o 

00%0 ¸ 
Mainshock 

1 km 

Events prior to 85/09/24 

Swarm1, 85/09/24 - 85/10/09 

Events from 85/10/10 - 86/03/19 

Foreshocks 86/03/10 - 86/03/31 

Figure 4. Relocated seismicity in the Mount Lewis epicentral region from July 1984 to March 31, 1986, (left) map 
view and (fight) cross section. Events shown as circles are from the swarm that occurred in late 1985. These 
earthquakes are all north of the mainshock hypocenter and centered at a depth of about 8.5 km. The strike of the 
seismicity is about 352 ø . The immediate foreshocks are shown as asterisks and are mostly south of the events of the 
first swarm. Their average depth is about 0.5 km deeper than the earlier events. Except in the region of overlap with 
the earlier events, the Strike of their epicenters is about 3 ø. The mainshock epicenter is located within 250 m of the 
change in strike of the two sequences. The four events at about 7 km depth west of the first swarm apparently 
occurred on a nearby fault striking more to the west. 



DODGE ET AL.: DETAILED OBSERVATIONS OF FORESHOCK SEQUENCES 

850924 1607 
Z= 8.17 M= 1.00 

Mt. Lewis Foreshocks 

850924 721 Z= 8.35 M= 3.50 

850924 510 
Z= 8.30 M= 1.20 

850924 510 Z= 8.30 M-- 1.60 

850924 725 Z= 8.18 M= 2.40 

851005 -1024 
Z= 8.92 M= 1.70 

851008 639 
Z= 8.60 M= 1.20 

850924 2007 
Z== 7.,78- M= 1 .:70 

Swarm I 

Swarm 2 

, 0.5 KM 

22,377 

Mainshock 

Figure 5. Well-constrained focal mechanisms with first motion polarities for the swarm 1 and swarm 2 events 
of the Mount Lewis sequence. Lower hemisphere plots are shown superimposed on lines with the strike of the 
seismicity for each group. Events are shown in order of spatial occurrence. Inset shows the actual location of the 
swarm events with location uncertainties. 
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lkm 
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•95% confidence limits 
Figure 6. Relocated immediate foreshock and mainshock hypocenters for the Mount Lewis sequence, (left) map 
view and (right) cross section. Events are shown as disks with orientation determined from the focal mechanism 

solution. The size of the disks is estimated assuming a 3.0-MPa stress drop. (Mainshock disk is truncated so that 
details of sequence are preserved.) Crosses show the axes of the 95% confidence ellipsoids for the relative 
locations. The same method of presentation is used in later figures showing relocated foreshock sequences. 

nodal plane of the focal mechanisms and view direction. The size 

of the disks is based on a 3-MPa stress drop in this and all 
subsequent plots of this type. However, in the stress change 
calculations presented later, stress drops were allowed to vary 
between 0.1 and 100 MPa. The crosses are the axes of the 95% 

confidence ellipsoids for the relative locations. The mainshock 

hypocenter is just south of the transition from near N-S fault 

strike to a more northwesterly strike shown in Figure 5. The M L 
= 2.7 foreshock that occurred 8 hours prior to the mainshock is 
the event closest to the mainshock hypocenter. Because of its size 

and proximity, it has a major effect on the stress change calcula- 
tions discussed later in this paper. 

Stone Canyon Sequence 

The May 31, 1986, Stone Canyon earthquake (M L = 4.7) was 
the last of a series of six ML = 4 earthquakes that occurred on the 
creeping section of the San Andreas fault near Hollister between 

August 1982 and June 1986 [ Wyss and Habermann, 1988]. The 
ruptures of the six earthquakes, defined by aftershock zones, abut 

each other to form an approximately 20-km long by 5-km deep 
patch that slipped during this period of activity. The May 1986 
Stone Canyon earthquake occurred in a seismic gap between the 
first and third events of the series and was preceded by four 
immediate foreshocks within an hour of the mainshock. 

Figure 7 shows a map view of relocated seismicity for the time 
period July 1984 to the time of the mainshock in May 1986 
within a region 4 km long by 4 km deep and centered on the 
mainshock. At the resolution of these relocations there is little 

evidence for structural irregularity influencing the location of the 
mainshock hypocenter. Although the epicenters of the mainshock 

and immediate foreshocks appear to be displaced somewhat to 
the NE from the other epicenters, the offset is of the order of the 

uncertainties in the locations and may be an artifact. The location 

of the mainshock may be influenced by stress heterogeneity 
resulting from the earthquake of August 10, 1982. The region to 

the NW of the 1986 mainshock was not ruptured during the 
previous earthquakes, but the region to the SE ruptured during 
the 1982 earthquake. From the mainshock epicenter to the SE 
there are only seven earthquakes, but to the NW there are 25 

earthquakes during this time period. This relative lack of earth- 

quakes to the SE is consistent with that region having been 
destressed from the 1982 earthquake, with the sudden transition 

to a higher seismicity rate at the mainshock location possibly 
marking the transition to the higher-stress, unruptured region, 
which ruptured in the May 1986 mainshock. 

Figure 8 shows a more detailed view of the immediate 

foreshocks and mainshock. The earthquakes are shown as ori- 
ented disks, and the crosses are the axes of the 95% confidence 

ellipsoids for the relative locations. The foreshocks are clustered 

within a region about 200 m in length by 350 m in depth. The 
width of the foreshock zone is a little over 100 m. However, since 
the uncertainties in the locations are a substantial fraction of the 
width, it is difficult to tell how much of the width is real and how 
much is due to errors in the foreshock relocation. 

Chalfant Sequence 

The 1986 Chalfant, California, earthquake (M L = 6.4) occurred 
on July 21, 1986, in the Bishop-Mammoth Lakes area. The 
mainshock was preceded by a ML = 5.7 foreshock that occurred 

about 24 hours earlier and 3 km to the north on an apparent 
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Figure 7. Relocated seismicity in the Stone Canyon epicentral region from July 1984 to May 31, 1986. Stippled 
region encloses the immediate foreshock and mainshock epicenters. There is no obvious change in strike of the 
seismicity that might indicate a change in fault strike. The mainshock and immediate foreshocks appear to be 
shifted somewhat to the NE, but the amount of the shift is of the order of the location uncertainties and could be an 
artifact. 
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Figure 8. Relocated immediate foreshock and mainshock hypocenters of the Stone Canyon earthquake, (left) map 
view and (right) cross section looking to the NE. 



22,380 DODGE ET AL.: DETAILED OBSERVATIONS OF FORESHOCK SEQUENCES 

E 
•6 

Cross section, (Viewing azimuth 30 degrees) 

Mainshock hypocenter • 

', 

N60øW S 30 ø W 

• More than 3 days before mainshock 
.: . 

: Within 3 days of mainshock 

N30øE 

Cross section, (Viewing azimuth 120 degrees) 

ß, k hypocenter 

1 km 

/-95% confidence limits 
S 30ow 

Figure 9. Relocated immediate foreshock and mainshock hypocenters of the Chalfant earthquake in cross sections 
(left) looking along strike to the NE and (right) perpendicular to the strike looking to the SE. Foreshocks occurring 
prior to 3 days before the mainshock are shown with open circles. Earthquakes without focal mechanisms are shown 
as squares. 

conjugate fault plane [Smith and Priestley, 1988]. That principal 

foreshock was itself preceded by 40 foreshocks within 17 days 

recorded by the USGS Calnet and University of Nevada, Reno, 

short-period networks. Of these, 30 had usable waveforms and 

were analyzed in this study. Most of the Mammoth Lakes stations 

to the NW of the Chalfant valley are telemetered to Menlo Park. 

A group of stations immediately to the west and SW is teleme- 

tered both to Menlo Park and to Reno. The remaining east and 

NE stations are telemetered only to Reno. Because there were 
five shared stations, we were able to use cross correlation to 

synchronize the two network time bases and merge the data sets, 

thus providing better constrained solutions than would have been 

possible using either data set individually. 

Figure 9 shows the relocated foreshocks. Figure 9 (left) shows 

a cross section looking to the NE along the strike of the principal 

foreshock. Figure 9 (right) is a cross section looking to the SE 

(90 ø clockwise relative to the first cross section). The early 

foreshocks are nearly all shallow, and they appear to form a near- 

vertical plane. However, this fault geometry cannot be verified 

from the focal mechanisms since these events were mostly too 
small to determine well-constrained focal mechanisms. The later 

foreshocks nearly all dip to the NW at about 60 ø and are as deep 

as or deeper than the principal foreshock. The two early events 

for which we calculated focal mechanisms dip to the NW at 

about 60 ø , much the same as the later foreshocks. The later fore- 

shocks appear to define two subparallel fault strands. The 

principal foreshock is offset about 400 m to the SW from most of 

the other foreshocks. However, the largest of the foreshocks to 

the principal foreshock, a ML = 3.9 event, is nearly collocated 

with the principal foreshock hypocenter. This foreshock sequence 

appears to be another example of earthquake nucleation at a fault 

zone irregularity. The principal foreshock hypocenter is at a 

depth of about 6 km, the depth where the change in dip (based on 

seismicity) occurs. Nearly all the large foreshocks of the se- 

quence occurred within 250 m of that apparent change in dip. 

Upland Sequence 

The 1990 Upland, California, earthquake (M L = 5.2) was a 

predominantly left-lateral, strike-slip earthquake that occurred on 
the San Jose fault [Hauksson and Jones, 1991]. This was the 

second of a pair of moderate earthquakes that occurred at nearly 

the same location within two years of each other. The first was a 

M L = 4.6 event that occurred about two km to the southwest and 
about 4 km deeper, also apparently on the San Jose fault 

[Hauksson and Jones, 1991 ]. The 1990 earthquake was preceded 

by three foreshocks on the same day, as well as by four other 

foreshocks that occurred within 20 days prior to the mainshock. 

The relocated seismicity is shown in Figure 10. The foreshock 

sequence is distinguished from the other sequences examined in 

this study in that although the foreshocks were tightly clustered, 

their hypocenters were well removed (> 2 km) from the main- 

shock hypocenter. It is difficult to infer much about the geometry 

of the San Jose fault in the hypocentral region from the limited 

data of the foreshock sequence. However, Hauksson and Jones 

[1991] noted that the dip of the San Jose fault based on after- 

shocks varies with depth. Above 5-6 km the fault dips about 70 ø 
to the NW. Between 6 km and 9-10 km the fault is near vertical, 

from there to about 12 km the fault dips about 60 ø, and below 13 

km the dip is again about 70 ø. The foreshocks range in depth 
from about 6.4 to 7.3 km, and the three for which we have focal 

mechanisms show near vertical dips, consistent with the geome- 

try obtained by Hauksson and Jones [1991]. Most of the 

aftershocks of the 1988 earthquake occurred at depths greater 

than 5 km, below the hypocenter of the 1990 earthquake. If the 

aftershocks outline the part of the fault that slipped coseismically 

or postseismically, then we might expect that the region above 5 
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Figure 10. Relocated immediate foreshock and mainshock hypocenters of the Upland earthquake, (left) map view 
and (right) cross section perpendicular to the strike looking to the SE. Earthquakes without focal mechanisms are 
shown as squares. 

km was closer to failure than the deeper part of the fault. 

Together, these observations suggest that the location of the 
foreshocks could have been controlled both by structural com- 

plexity of the fault zone (the transition from steeply dipping to 

vertical to shallow dipping) and by stress concentration from the 
earlier event. 

Joshua Tree Sequence 

The 1992 Joshua Tree, California, earthquake (M W = 6.1) was 

the first large earthquake of the Landers, California, earthquake 

sequence. It occurred about 10 km east of the San Andreas fault 

and 20 km south of the Pinto Mountain fault. The hypocenter was 

at about 10 km depth, and there was no associated surface rupture 

[Hauksson et al., 1993]. The mainshock was preceded by five 

foreshocks within 2.4 hours, the first of which had a magnitude 

of 4.6. Figure 11 shows the relocated mainshock and foreshock 

hypocenters. Prior to the foreshocks there had been almost no 

earthquakes within 2 km of the epicenter since at least 1982. The 

M L = 4.6 foreshock hypocenter was about 300 m from the 

mainshock hypocenter, and the focal mechanisms were both 

right-lateral on a plane striking 345 ø. This relative location is 
based on first-break times since seismograms of both the 

principal foreshock and the mainshock are clipped at all nearby 
stations. 

Landers Sequence 

The 1992 Landers, California, earthquake (Mw = 7.3) was the 

largest earthquake in the sequence that began with the Joshua 

Tree 'foreshocks. The Landers earthquake occurred on June 28, 

approximately 2 months after the Joshua Tree earthquake. The 

mainshock initiated with a magnitude 4.4 sized immediate fore- 

shock [Abercrombie and Mori, 1994] before propagating -70 km 

along strike to the northwest [ Cohee and Beroza, 1994]. The 

epicenter was about 30 km north-northwest of the Joshua Tree 

epicenter. The Landers earthquake was preceded by 27 
foreshocks that occurred within 7 hours of the mainshock and 

within about 1.5 km of the mainshock hypocenter. There were an 
additional three events that occurred between the date of the 

Joshua Tree mainshock and June 28 that were located within 2 

km of the Landers epicenter. 

Figure 12 shows the relocated foreshocks. This is similar to 

Dodge et al. [1995, Figure 9] but uses locations made using the 
technique discussed in this paper. Figure 12 (left) is a map view, 

and Figure 12 (fight) is a cross section looking to the NE 

perpendicular to the strike of the seismicity. The three foreshocks 

occurring before the day of the mainshock are shown unshaded. 
Foreshocks without focal mechanisms are shown as squares. All 

others are shown as oriented disks. The sequence extends about 

1.7 km alo ng the fault and about 1.5 km in depth. The foreshock 
epicenters define an approximate 500-m jog near the mainshock 

hypocenter. The' existence of the jog is supported by the'focal 
mechanisms, which show a systematic rotation in strike through 

the jog. Virtually all the moment release of the foreshock 

sequence is concentrated around the jog. The largest foreshock 

(M L = 3.6) is nearly collocated with the mainshock hypocenter. 

Stress Change Calculations 

The next step in analyzing the mechanics of these foreshock 

sequences is to use our knowledge of the foreshock hypocentral 

parameters to attempt to discriminate between models of fore- 
shock generation. We consider two models; a cascade model and 

a preslip model. In the cascade model (Figure 13a) an initial 

event triggers a sequence of events that culminate in the main- 

shock. Events in the sequence cause the occurrence of later 
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Figure 11. Relocated immediate foreshock and mainshock hypocenters of the Joshua Tree earthquake, (left) map 
view and (right) cross section parallel to the strike looking to the NE. The largest foreshock has a focal mechanism 
very similar to that of the mainshock and is nearly collocated with the mainshock hypocenter. 

events. In this view, big and little earthquakes start out the same 

way The triggering might be directly through the static stress 

changes [ Jones, 1984], indirectly through pore pressure changes 

[Jones et al., 1982], or perhaps through dynamic effects. In the 

preslip model (Figure 13b), nucleation is fundamentally an 
aseismic process involving quasi-static creep over a nucleation 

region. In this model, foreshocks are interpreted as localized 

failure within the aseismically slipping nucleation zone [e.g. Das 
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Figure 12. Relocated immediate foreshock and mainshock hypocenters of the Landers earthquake, (left) map view, 
and (fight) cross section parallel to the strike of the sequence looking to the NE. In map view a pronounced fight 
step is visible in the seismicity. The step is associated with a clockwise rotation of focal mechanisms. The largest 
foreshock has a focal mechanism very similar to that of the mainshock and is nearly collocated with the mainshock 
hypocenter 
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(b)Preslip Triggering 

Figure 13. Schematic depiction of two possible mechanisms for 
foreshock generation. (a) Foreshocks triggered by previous 
foreshocks load the point of the eventual mainshock in a cascade 
of failure. (b) Foreshocks occurring at asperities within the 
nucleation region as the asperities are loaded by creep. Here 
foreshocks are a byproduct of the nucleation process. 

and Scholz, 1981; Ohnaka, 1992]. If the cascade model is correct, 

then the foreshocks should act to trigger the mainshock, directly 

through the static stress changes at the mainshock hypocenter, 

indirectly through increases in pore pressure at the mainshock 

hypocenter, or through dynamic effects. On the other hand, if the 
preslip model is correct or if only dynamic effects are important, 

then the direction and magnitude of the static stress changes at 

the mainshock hypocenter represent only part of the stress 

evolution. Our modeling cannot distinguish the presence or 

absence of dynamic effects, but we can test for static stress 

changes and subsequent pore fluid changes. 

We will model the cumulative stress change at the mainshock 

hypocenter from all of the foreshocks to see if the stress change is 
consistent with the mainshock failure mechanism. This type of 

analysis is commonly used to study fault interactions on a much 

larger scale [e.g., King et al., 1994; Simpson and Reasenberg, 

1994; Harris and Simpson, 1992; Stein et al, 1992]. There are a 

number of idealizations and uncertainties associated with this 

calculation. Potentially geometrically complex faults are modeled 

as one, or a few rectangular planes. An approximation of the 

actual slip distribution is made. The earth is modeled as an elastic 

half-space. Many unknown factors affecting the frictional proper- 

ties of the target fault are lumped into an assumed coefficient of 

friction. These approximations affect details of the stress change 

calculations. However, if the target fault is not in a high-gradient 

part of the stress field, they have little effect on the magnitude or 

sign of the stress change. 
Our relative locations are accurate (95% confidence limits less 

than 100 m horizontally and 200 m vertically), but the size of the 

foreshock zones is only of the order of 1 km. Thus errors in 

hypocentral parameters could, in some cases, induce significant 

errors in calculated stress. We account for those errors by 

mapping the hypocentral uncertainties into distribution functions 

for the stress changes on the mainshock hypocenters. For each 

sequence we estimate the effect of the foreshocks on the 

mainshock initiation by modeling the cumulative stress change 
induced at the mainshock hypocenter by the foreshocks. Each 

foreshock is modeled as a square dislocation with area equal to 

that of a circular patch of radius r [Keilis-Borok; 1959] 

o) 

and displacement 

/•= Mø (2) . 

Here A•is the displacement, M o is the seismic moment, Acris 
the static stress drop, A is the area that slipped, and /• is the 

shear modulus. We estimate M o from the earthquake magnitude 
M using the empirical relation [Kanamori and Anderson, 1975] 

M 0 = 10 (L•+9'ø•) . (3) 

The locations of the foreshock hypocenters (x•,y•,z•) are from 
our relocations, and the orientations of the foreshock fault planes 

and slip vectors (•,6•,•,•) are determined using the FPFIT 
program [Reasenberg and Oppenheimer, 1985]. Only foreshocks 
of at least magnitude 2.0 are used since smaller events have little 

effect on the stress field and since the smaller events usually do 

not have well-constrained focal mechanisms. These data, 

( x•, y•,z• ,A, Au, •,•,•.•) are used to calculate the Stress-change 
tensor at the mainshock hypocenter (x=,y=,z=) using a method 
developed by Okada [1992]. From that we obtain the shear stress 

change in the direction of the mainshock slip vector A•,, the 
normal stress change at the mainshock hypocenter Acr s, and the 
mean stress change at the mainshock hypocenter Acr m , where 

Acr, = Acr•, / 3. (4) 

The Coulomb stress change A• due to one foreshock at the 
mainshock hypocenter is 

= (5) 

Here /a• is the coefficient of friction for dry rock and 
fip=-BAcr• is the pore pressure change at the mainshock 
hypocenter assuming undrained conditions. B is Skempton's co- 

efficient, an elastic constant introduced by Biot theory that is a 
combination of modulii for undrained and drained deformation. 

B ranges from 0.51 for Tennessee marble to 0.88 for Rhur 

sandstone [Rice and Cleary, 1976]. The exact value of B used 

does not influence our results much since the mean stress changes 
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are relatively small. We used a value of 0.8. The cumulative 

Coulomb stress change due to a sequence of M foreshocks is 

ASc= E A•'ts-# f Ao' N ß (6) 
i=1 

If our data were exact, this point estimate of the stress change 

would be the true stress change. However, although our reloca- 

fions and focal mechanism determinations are very accurate, their 

uncertainties are significant relative to the dimensions of the 

sequence. If the mainshock hypocenter is in a high-gradient part 
of the stress field, then small errors in location, mechanism, or 

event size may cause large changes in the value or even the sign 

of the calculated Coulomb stress. To properly account for the 
effect of the uncertainties, we treat our data 

(xs,ys,zs,A,Au, tps , &s,Zs,x= , y= ,z= , tp= ,&= ,Z =) as random vari- 
ables mapped through the stress-change calculations into the 

random variable AS c, for which we estimate the distribution by 
Monte Carlo simulation [ Press et al., 1986]. We assume that the 

errors in our data are normally distributed with zero mean. For 

the hypocenter locations the distribution of each variable is 
centered on its nominal value and the variance of its distribution 

is taken from the solution covariance. The variance of each focal 

mechanism parameter is taken as the squared parameter uncer- 

tainty from the FPFIT program. Stress drops are assumed to be 

distributed lognormally with a mean of 3.0 MPa and with 99% of 

the values between 0.1 and 100 MPa. From the stress drop 

distribution and magnitude we obtain distributions of foreshock 

size A and slip A•'. To account for the focal plane ambiguity in 

the focal mechanisms, we generate another random variable 

uniformly distributed between-1 and +1 and choose the focal 

plane and rake based on the sign of this random variable. Figure 

14 shows an example set of data distributions generated using 

this approach. 

Figure 15 shows the simulation results for the six foreshock 

sequences. For each sequence the shear traction change, normal 

traction change, Coulomb stress change (I.t = 0.6), and the pore 

pressure change distributions are shown. Of the six sequences, 
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Figure 14. Sample of input parameter distributions for stress-change modeling. (top to bottom) Distributions for the 
source event coordinates, distributions for the source focal mechanism parameters (the bimodal character of the 
strike and rake distributions is intended to account for the focal-plane ambiguity in the focal mechanism 
determinations), corresponding distributions for the mainshock hypocenter (the focal mechanism ambiguity is 
considered to be resolved for the mainshock, so its strike and rake distributions are unimodal), and distribution for 
source stress drop. 
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Figure 15. Stress-change distributions for the six sequences. (top to bottom) The shear traction change distribution, 
the normal traction change distribution, the Coulomb Stress-change distribution, and the pore pressure change 
distributionfor each sequence. The sign conventions are such that positive shear contributes to failure, negative 
normal traction contributes to failure, positive Coulomb stress contributes to failure, and positive pore pressure 
change contributes to failure. The probability of the parameter being less than zero is also shown. 
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only the Mount Lewis foreshocks are likely to have caused stress 
changes that would trigger the mainshock. The shear traction 

change distribution is mostly positive, the normal traction 

change, although near zero, is 55% negative (increasing tension), 

and the pore pressure change distribution is positive. At Stone 
Canyon the shear traction at the mainshock hypocenter is likely 

(80%) to have decreased and the normal traction is likely (72%) 

to have increased. Although there may have been a slight pore 

pressure increase, it was not sufficient to prevent the Coulomb 

stress distribution from being mostly negative. At Chalfant the 

shear traction change was almost certainly negative (99.7%) and 

the normal traction almost certainly increased. Although there 

appears to have been a pore pressure increase of about 0.2 MPa, 

the Coulomb stress change was still negative (99.3%). At Upland 

the stress changes were consistent with triggering, but the 

magnitudes of the stress changes were less than 0.001 MPa. By 

comparison, maximum tidal stresses are of the order of 0.003 - 

0.004 MPa [Bodri and lizuka, 1989]. Since no clear evidence 

exists that tidal stresses trigger earthquakes, we conclude that the 

stress changes from the foreshocks are unlikely to have been 

important in initiating the mainshock. At Joshua Tree the shear 
traction and pore pressure changes were almost certainly negative 

(99.9% and 96.1%) and the normal traction change is likely to 

have been near zero. The resulting Coulomb stress change is less 
than zero (99.9%). At Landers most of the shear traction 

distribution was negative (86.0%). The normal traction and pore 

pressure are both likely to have decreased (77.9% and 85.8%). 
The shear traction changes were much larger than the normal 

traction changes, so the Coulomb stress distribution was mostly 

negative (84.9%) These Coulomb Stress-change results are 
consistent with the previous point estimates of Dodge et al. 

[1995] for this earthquake. 

Discussion 

For four of the six sequences the sign of the Coulomb stress 

distribution suggests that the mainshock was not triggered by 

stress changes from the foreshocks, at least at the 80% confi- 

dence level. At Upland the sign of the Coulomb stress 

distribution was consistent with triggering, but the stress changes 

were so small that they were probably unimportant in triggering 

the mainshock. Only the Mount Lewis foreshocks have Stress- 

change distributions clearly consistent with triggering of the 

mainshock by its foreshocks. 

Pore fluids can accelerate the growth of cracks in silicates 

through stress corrosion [Scholz, 1990]. If increases in pore pres- 

sure increase the rate of stress corrosion, then even though there 

was a net stress decrease at Stone Canyon and Chalfant, the 

foreshocks might have indirectly triggered the mainshock by 

increasing the rate of stress corrosion. However, whether such a 

pressure dependence in the stress corrosion rate exists is 
unknown [Meredith and Atkinson, 1983], and even if it does 

exist, the Landers and Joshua Tree foreshock sequences caused 

the pore pressure to decrease at their mainshock hypocenters. For 

these sequences, no triggering mechanism involving static stress 

changes or pore fluid changes seems appropriate. 

It may be that the relation of foreshocks to the mainshock is 

extremely variable and that some of the time, foreshocks trigger 

the mainshock and some of the time they do not. That possibility 

cannot be rejected based on the results of this study. It is also 

worth noting that our analysis is for the static effects in an 

isotropic earth. If, for instance, high- pressure fluid were prefer- 

entially communicated through the fault zone, it might trigger the 

mainshock even though our analysis indicates that should not 

happen. It is also possible that dynamic stresses from the fore- 

shocks could weaken the fault near the mainshock hypocenter, 

thereby allowing slip at lower driving stress. Despite these 

limitations our results suggest that theories of foreshock genera- 

tion requiring the static stress changes from the foreshocks to 

trigger the mainshock in a kind of cascading failure are not 

universally applicable. Apart from the Mount Lewis example, the 

evidence for this kind of triggering is weak, at best, and the 

evidence against is strong, particularly in the Joshua Tree 

example. 

Several authors [Das and Scholz, 1981; Dieterich, 1992; 

Ohnaka, 1992] have proposed that foreshocks are simply a by- 

product of an aseismic nucleation process. This viewpoint is 

based on theoretical modeling and laboratory simulation of 

earthquake nucleation showing that the dynamic instability is 

preceded by a period of stable sliding within a small patch around 
the eventual hypocenter. In these models, foreshocks are inciden- 

tal to the nucleation process and occur on asperities within the 

nucleation zone that fail from the load imposed by the ongoing 

creep around them. If the nucleation zone is homogeneous in 

strength and stress, there are no foreshocks. Because the fore- 
shocks are incidental to the nucleation process in this model, the 

stress changes from the foreshocks are not required to have any 

particular relation to the mainshock failure mechanism. If the 
fault is planar within the nucleation region, then the static stress 

changes from the foreshocks at the mainshock hypocenter will 

likely be consistent with the failure mechanism of the mainshock. 

For other geometries this need not be the case. Our stress-change 
observations are consistent with this view of foreshock 

generation. 
If foreshocks are indeed a seismic manifestation of an aseismic 

nucleation process, then their distribution and kinematics provide 

constraints on the nucleation process. The distribution of fore- 

shocks would provide information about the size of the nucle- 

ation zone and its relation to mainshock magnitude. There is 
debate about the size of the nucleation zone and whether it is 

large enough to be observable. Dieterich [1986] concludes that 
the radius of the nucleation zone will be too small to observe 

unless the critical slip displacement Dc is considerably larger for 

earthquake faults than for laboratory faults. Ohnaka [1992] 

models nucleation as taking place at a strength heterogeneity on 

the fault with the size of the heterogeneity controlling the size of 

the nucleation zone. In this model, strength increases with dis- 

tance from the center of the nucleation zone, so that stable slip 

can occur within the nucleation zone. As slip progresses, the 

nucleation zone grows until a critical size is reached and dynamic 

rupture ensues. Ohnaka [1993] used foreshocks of the 1978 Izu- 

Oshima earthquake (MJMA = 7.0) to estimate the size of the 
nucleation zone. He found that the foreshock zone attained a size 

of 10 km and that it expanded with time, as required by his 

model. However, the foreshock sequence occurred entirely off- 

shore, so that seismograph coverage was less than optimal. Many 
of the events were located kilometers off the inferred fault trace, 

so there is question about the accuracy of the estimate. Recent 

observations of the seismic nucleation phase [Ellsworth and 

Beroza, 1995], if interpreted in terms of an aseismic nucleation 

process, yield a nucleation zone that scales with mainshock 

magnitude, and the size of that zone ranges from 600 to 6000 m 

for earthquakes with M W 6.5. 

Assuming that the extent of the foreshocks provides at least a 

rough estimate of the size of the nucleation zone, we can compare 

our observations of foreshocks to specific predictions of the 
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models just mentioned. A straightforward estimate of the 

foreshock zone size is given by the smallest rectangle that en- 

closes all the hypocenters when they are projected on the main- 

shock fault plane. Figure 16 shows graphically our estimates of 

the foreshock sequence dimensions for the six earthquakes 

examined in this study. The sequences are arranged according to 

mainshock magnitude along the left side of the figure and are all 

scaled identically. We fit two rectangles to each sequence. One 

encloses the hypocenters, and the other encloses all the slipped 

areas (assuming a 3 MPa stress drop for all events). From the 

area of each rectangle we calculate the radius of a circle of equal 
area. These are our estimates of the lower bound for the radius of 

the region slipping aseismically prior to the mainshock. Figure 16 

(fight) plots the foreshock zone radii versus mainshock moment. 
Our two estimates for each earthquake are plotted as squares 

connected by lines. Also, plotted on the same axes are estimates 

of the nucleation zone radii versus earthquake moment for 21 

earthquakes examined by Ellsworth and Beroza [1995]. Our 
lower bound estimates are within the 1 c• boundaries of a least 

squares fit to their data for all but the Landers earthquake, where 

both estimates are low. However, since foreshocks may provide 

only a lower bound to the nucleation zone size, the underestimate 

at Landers can be explained by invoking aseismic slip over a 

larger area of the fault than that spanned by the foreshocks. 

Alternatively, if the M W = 4.4 subevent to the mainshock ob- 

served by Abercrombie and Mori [1994] is considered as an 
immediate foreshock, then the size of the foreshock zone for 

Landers would very likely increase sufficiently to be consistent 

with the Ellsworth and Beroza [1995] predictions of nucleation 
zone size. 

In interpreting the apparent relation between foreshock zone 

dimensions and mainshock size shown in Figure 16, it is impor- 

tant to understand how the limitations of the data analyzed in this 

study may have affected this result. Obviously, the fewer the 
number of foreshocks, the harder it is to define the foreshock 

zone. In the limiting case of one foreshock the area of a rectangle 

enclosing the hypocenters would be zero, although the area 

enclosing the rupture might be large. More significantly, if 

swarms with no mainshock were plotted on the same figure, 

there would probably be no correlation between swarm dimen- 

sions and mainshock magnitude. 

If the nucleation zone grows with time, as predicted by the 

Ohnaka [1992] model, then the size of the foreshock zone should 

also increase with time. However, since the location of individual 

foreshocks may be controlled partly by the mechanics of the 

nucleation process and partly by the location and characteristics 

of individual asperities, the sequence is not likely to grow out- 

ward uniformly, even if the nucleation zone is expanding 

uniformly. Instead, the foreshock locations may only trend 

outward. With the few events in the sequences we examine, such 

a trend could easily be masked by the "noise" from the asperity 

distribution. Abercrombie et al. [1995] examined the Landers 

foreshock sequence looking for indications of expansion with 
time and found that for the immediate foreshocks there was some 

indication that the zone of foreshocks expanded with time at a 

rate of about 5 to 10 cm/s, but this interpretation depended 

partially on treating one of the event locations as an outlier, an 

assumption that is not absolutely required by the observations. 

To search for possible growth of the foreshock sequences with 

time, we examine two possible measures of growth, the RMS 

distance from the.sequence centroid versus time and the RMS 

distance from the mainshock hypocenter versus time. Plots of 

these quantities are shown in Figure 17 for the Chalfant, Landers, 

and Mount Lewis sequences, the three sequences with enough 

events that a trend might be meaningful. Figure 17 (left) shows 

distance from the centroid versus time, and Figure 17 (right) 

shows distance from the mainshock hypocenter versus time. In 

each plot a least squares fit line is shown as well. Chalfant and 

Landers show a slight growth with time, as indicated by the 

upward slope of the lines in the left-hand plots, but the apparent 

growth is not statistically significant (R=-0.15, R=-0.17). Both of 

these sequences show a much stronger trend for the foreshock 

hypocenters to move toward the mainshock hypocenter with time 

(R=0.53, R=0.70). The Mt Lewis sequence appears to grow 

outward with time and shrink toward the hypocenter. The 

correlation is quite strong for both relations but should be 

interpreted with caution since the strength of the correlation 

depends entirely on two points. These results suggest that there 

may be more of a tendency for the foreshock zone to shrink 

toward the mainshock hypocenter than to grow outward. This 
behavior would be consistent with observations of Ishida and 

Kanamori [1978] and with modeling results by Dieterich [1992] 

showing that for faults with rate- and state-dependent strength, 

the earthquake nucleation process involves localization of slip to 

a subpatch, whose dimensions scale with the characteristic slip 

distance D c. 

The reason why some earthquakes are preceded by foreshocks 

and others are not is still unknown, but fault zone heterogeneity 

may be an important factor. The idea that foreshocks are associ- 

ated with fault zone heterogeneity goes back to at least Mogi 

[ 1963], and there is considerable observational evidence for that 

association. For instance, Jones et al. [1982] concluded that the 

1975 Haicheng earthquake (ML = 7.3) probably nucleated at an 

en echelon fault step. Jones [1984] showed that of seven 

California earthquakes with foreshock sequences, four were 
associated with fault zone discontinuities and the other three were 

possibly associated with fault zone discontinuities. Lindh et al. 

[1978] observed a change in P/SV ratios between foreshocks and 

aftershocks for three California earthquakes that they attributed to 

a systematic change in stress or fault orientation in the source 

region. There is a strong inverse relation between depth of main- 

shock and foreshock sequence duration [Jones, 1984], which was 

attributed to the increase in minimum compressive stress with 

depth. In a more recent study, Abercrombie and Mori[ 1995] 

observed a similar decrease in number of foreshocks with depth 

and a dependence on focal mechanism of the mainshock. They 

suggested that the inverse relation with depth was due, at least 

partially, to the decrease in crustal heterogeneity with depth. 

We can investigate the relation between crustal heterogeneity 

and foreshock generation using the results of this study. If we use 

the deviation of the fault from simple planar structure as a 

measure of heterogeneity, we can look for a relation between the 
amount of deviation and the number of foreshocks. There are a 

number of potential pitfalls with this approach. For instance, our 

measure of heterogeneity will not account for all sources of 

strength and stress variations, there may not be enough 

foreshocks to define the geometry of the fault, the number of 

foreshocks recorded might be biased because of differences in 

network sensitivity, and the choice of temporal and spatial 

windows used to identify immediate foreshocks could bias the 

results. Thus any relation that emerges from this analysis must be 

regarded as being suggestive rather than definitive. 

We think that differing network sensitivities are unlikely to 
have biased our results. The seventh row of Table 1 shows the 

number of foreshocks recorded by the networks for each main- 

shock, and the bottom row shows the average distance from the 
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Figure 16. Comparison of foreshock zone dimension to mainshock moment. (left) Source disks of the six foreshock 

sequences projected onto their respective mainshock fault planes (from Figures 7-13). The rectangles superimposed 
on the plots indicate two ways of measuring the size of the foreshock zones. The outer rectangle encloses the source 
disks (based on 3-MPa stress drop), and the inner rectangle encloses the hypocenters. From the rectangle areas we 
calculate the radii of equivalent circles, and these are plotted (fight) against mainshock moment. For each event the 
two estimates of source radius are connected by a line. On the same graph are plotted the estimates of source radius 
versus mainshock moment from the Ellsworth and Beroza [1995] study of the seismic nucleation phase. The 
straight lines are a least squares fit to the data and the 1 o boundm-ies from the fit. 
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Figure 17. Foreshock sequence evolution with time. (left) distance of the foreshocks from the geometric mean of 
the foreshock cluster as a function of time before the mainshock. (fight) Distance of the foreshocks from the 
mainshock hypocenter as a function of time before the mainshock. For each plot a least squares fit line to the dath is 
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might exist. 
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mainshock of the five nearest stations for each sequence. If the 

variation in number of events is due to differing station distribu- 

tions, then the number of foreshocks should be inversely related 

to average station distance. In fact, smaller numbers do not corre- 

spond to larger distances. For instance, the Landers sequence 

with 30 recorded immediate foreshocks has the greatest average 

distance, and Stone Canyon with only four immediate foreshocks 

has the smallest average distance. 

All the sequences analyzed in this study were chosen using a 

spatial window of 2 km radius. This radius is large enough to 

avoid not selecting a potential foreshock because of network 

location error and small enough to avoid including seismicity 

from most nearby faults. Our results are not very sensitive to 

increases in this parameter because the distance to the nearest 

active fault is much greater than 2 km in all cases. 

We used a time window of 30 days prior to the mainshock in 
our selection of immediate foreshocks. Our results are sensitive 

to this parameter choice. In the case of Mount Lewis most of the 

foreshocks we analyzed occurred 7 days before the mainshock, so 

a time window less than 7 days, for example, would exclude 
them. In the case of Chalfant the foreshocks occurred over a 3- 

week period, and a time window shorter than that would change 
our results. 

The results of our comparison are shown in Figure 18. The top 

portion of the figure shows the immediate foreshocks plotted in a 

plane perpendicular to the mainshock fault plane. The parallel 

lines bounding the events in each sequence are drawn parallel to 

the average focal plane orientation of the foreshocks. Note that 

one of the Chalfant foreshocks is not enclosed by the lines for 

that sequence. This event is sufficiently distant from all the other 

events that there is some question as to whether it is actually part 

of the sequence. If this event was used, the correlation between 

fault zone width and number of foreshocks would be stronger. 

All sequences are plotted at the same scale. The foreshock zone 
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Figure 18. Fault zone width versus number of foreshocks. (top) Immediate foreshocks plotted in a plane 
perpendicular to the mainshock focal plane. The lines are drawn parallel to the average focal plane orientation of the 
foreshocks and just far enough apart to enclose all the foreshock and mainshock hypocenters. All sequences are 
plotted to the same scale. (bottom) Fault zone widths (measured perpendicular to the parallel lines for each 
sequence) plotted versus number of immediate foreshocks. 
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widths are measured perpendicular to the parallel lines for each 

sequence. Figure 18 (bottom) shows those widths plotted against 

the number (from the catalog) of immediate foreshocks. With the 

exception of the Mount Lewis sequence there is a continuous 
increase of fault zone width with number of foreshocks. The 

correlation coefficient of the relation is 0.86. Although not 

definitive, these results certainly suggest that the strength of the 

heterogeneity is related to the number of foreshocks. 

Summary 

We have used high-precision relocations of the foreshock se- 

quences of six California earthquakes to gain insight into the 

earthquake nucleation process. We find evidence that the fore- 

shocks did not act to trigger the subsequent mainshocks by static 

stress changes. Of the six sequences, only one (Mount Lewis) had 

stress changes consistent with static stress triggering. The stress 

changes from the Upland foreshock sequence were probably too 

small (< 0.001 MPa) to have been important. For the remaining 
four sequences the Stress-change distributions indicated that the 

foreshock sequences acted to destress the mainshock hypocen- 
ters. These results are consistent with a model in which the 

foreshocks are incidental to a predominantly aseismic earthquake 

nucleation process. We find that the size of the nucleation region, 

measured by the extent of the foreshocks, scales with mainshock 

moment in the same manner as determined independently by 

measurements of the seismic nucleation phase [Ellsworth and 

Beroza, 1995]. Thus we now have two completely independent 

suggestions that a slow nucleation process precedes some earth- 

quakes. We also find evidence for slip localization, as predicted 
by some models of earthquake nucleation [Dieterich, 1992]. Fault 

zone heterogeneity appears to be an important factor in the 
location of the nucleation zone and in the number of foreshocks 

produced during nucleation. For three of the six sequences 

(Mount Lewis, Chalfant, and Landers) the mainshock hypocenter 

was located within 300 m, at most, of a significant change in 

strike or dip of the causative fault. The foreshocks to the Upland 

earthquake were located at a change of dip of the San Jose fault 

identified by Hauksson and Jones [ 1991 ]. Foreshock locations 

for the Stone Canyon and Joshua Tree earthquakes suggest that 
multiple fault planes may have been involved, but the scale of the 

possible heterogeneity is of the same order as the uncertainties in 
the locations. 
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