# Detailed observations of NGC 4151 with IUE - IV. Absorption line spectrum and variability ${ }^{\star}$ 

G. E. Bromage, ${ }^{1}$ A. Boksenberg, ${ }^{2}$ J. Clavel, ${ }^{3}$ A. Elvius, ${ }^{4}$ M. V. Penston, ${ }^{2}$ G. C. Perola, ${ }^{5}$ M. Pettini, ${ }^{2}$ M. A. J. Snijders, ${ }^{2}$ E. G. Tanzi ${ }^{6}$ and M. H. Ulrich ${ }^{7}$<br>${ }^{1}$.Astrophysics Group, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX<br>${ }^{2}$ Royal Greenwich Observatory, Herstmonceux Castle, Hailsham, East Sussex BN271RP<br>${ }^{3}$ Observatoire de Meudon, 92190 Meudon, France<br>${ }^{4}$ Stockholm Observatory, 13300 Saltsjobaden, Sweden<br>${ }^{5}$ Istituto Astronomico, Università di Roma, Via Lancisi 29, 00161 Roma, Italy<br>${ }^{6}$ Istituto de Fisica Cosmica, CNR, 20133 Milano, Italy<br>${ }^{7}$ European Southern Observatory, 8046 Garching bei München, Germany

Accepted 1984 December 7. Received 1984 December 4; in original form 1983
November 15

Summary. A detailed analysis is presented of the ultraviolet ( $\lambda \lambda 1150-3200 \AA$ ) absorption spectrum of the NGC 4151 Seyfert nucleus. The IUE data base consisted of high-dispersion ( $\Delta \lambda \sim 0.2 \AA$ ) spectra at 5 epochs, and 137 lowdispersion ( $\Delta \lambda \sim 4-8 \AA$ ) spectra at 31 epochs from 1978 February to 1980 May, together with further low-dispersion data in 1980-81 with NGC4151 in a very faint quiescent state.

Over 30 UV absorption lines are identified, including resonance and excited fine-structure lines, and absorptions from higher metastable levels. There is a strong unidentified blend at $\lambda 1364 / 1370 \AA$. Correlation analyses are presented for 16 strong features in the mean low-dispersion spectra for 31 epochs. This coverage includes a large flare in 1979 May. For the highly ionized species (notably Nv ), equivalent widths $\left(W_{\lambda}\right)$ are correlated with the non-thermal continuum flux. Several low-ion absorptions are perfectly correlated in $W_{\lambda}$

[^0]
## G. E. Bromage et al.

amongst themselves; in general they show moderately strong anti-correlations with continuum flux. All absorption lines appear to be weak when the nucleus is very faint.

Velocity ranges covered by absorptions are typically -1100 to $+100 \mathrm{~km} \mathrm{~s}^{-1}$ relative to the narrow emission lines, and show no obvious dependence on line excitation. Between faint and bright phases the lines of highly ionized species become slightly less negative in velocity but do not change dramatically in overall profile. Observed line widths at high dispersion, together with a detailed study of Si Iv doublet ratios, yield an approximately constant effective $b$ value of $\sim 500 \mathrm{~km} \mathrm{~s}^{-1}$, that is, a constant spread in velocity of the 'assemblage of clouds' in the absorption region. Thus the absorption-line variations are due largely to changes in the column density $(N)$ of the species absorbing, rather than to changes in the velocity-spread ( $b$ value) of the clouds. Our observations suggest a model for the BLR absorption region consisting of large numbers of clouds that are almost optically thin - at variance with the Ferland \& Mushotzky models.

A lower limit on the total H column density is obtained from those Si and C lines observable in the new UV spectra: $N(\mathrm{H}) \geq 10^{21} \mathrm{~cm}^{-2}$, consistent with observed X-ray absorptions. The population of C III and $\operatorname{SiIII} n s n p{ }^{3} P$ metastable absorbers is considerable: the present data imply $N\left(\mathrm{CIII},{ }^{3} P\right) / N(\mathrm{CIv}, g)$ exceeds $10^{-2}$, too high for recombination-dominated population. This result together with observed recombination times and other considerations, points to electron densities in the range $10^{8.5}$ to $10^{10} \mathrm{~cm}^{-3}$.

Considering the likely space densities, the observed range of emission velocities covered, and the lack of any clear time lags in the absorbers' response to continuum flares, the most likely site of absorption is in a shell in the outermost parts of the BLR. Such a shell would have a thickness much less than 1 per cent of its distance from the centre; the mass of the absorption region would be roughly of order $1 M_{\odot}$; and the mass loss rate from the NGC 4151 nucleus (if the loss were episodic rather than continuous) would only be about $10^{-2} M_{\odot} \mathrm{yr}^{-1}$.

## 1 Introduction

The ultraviolet spectrum of the brightest Type 1 Seyfert NGC 4151 nucleus has been monitored with the International Ultraviolet Explorer (IUE) since 1978 February. The rich absorption line spectrum is investigated in this paper. Earlier absorption studies (Anderson 1974 and earlier references therein; Davidsen \& Hartig 1978; Boksenberg et al. 1978; Penston et al. 1979; Penston et al. 1981 - Paper I in the present series) have demonstrated the importance of the absorption spectrum for modelling of the nuclear layers of NGC4151.

The presence in NGC 4151 of a large column density of hydrogen producing soft X-ray absorption (Ives, Sanford \& Penston 1976; Barr et al. 1977) suggested there should be many strong lines in the UV spectrum. A discussion of some of these absorption lines was given in Paper I (Penston et al. 1981) in relation to seven epochs of low-dispersion observation in the first year of IUE operations.

The general location of the species responsible for the absorption spectra has been discussed briefly in Paper I. The strength and variability of many of the lines (including some from metastable lower levels) suggests that most of the absorbers are situated in the active nucleus of NGC4151, rather than in the general interstellar medium of our Galaxy or of the NGC4151 galaxy.

The present paper greatly extends the absorption analysis to cover 47 epochs between 1978

February and 1981 July. The main IUE low-dispersion analysis refers to 31 epochs with spacings of 0.5 day to 2 months between 1978 February and 1980 May. For this monitoring period, the UV, X-ray and visible continuum changes have been described and analysed by Perola et al. (1982 Paper II); and the strong emission lines' variability, by Ulrich et al. (1984 - Paper III).

The present paper (IV) also includes an analysis of IUE high-dispersion spectra at 5 epochs in 1978-79, and of some absorption lines at 11 epochs in 1980-81 when the nucleus was very faint (including detailed monitoring in 1981 April-July). The nucleus apparently remained in this quiescent, very faint state from 1981 April (or earlier) until 1982 July (Gill et al. 1984).

A brief summary of some of the results presented here was given by Bromage et al. (1982) in conference proceedings. Full details of the $I U E$ monitoring observations and an atlas of low-dispersion spectra will be given in a later paper in this series (Snijders et al. 1985, in preparation - Paper VI).

The present paper is arranged as follows. The observational data are summarized in Section 2. The measurements of equivalent widths and velocities from these IUE spectra are described in Section 3. Sections 4,5 and 6 then give results and discussion of particular aspects of the analysis: on the equivalent widths and velocity variations and their correlations with continuum flux (Section 4); on the derivation of column densities in the absorption region of NGC 4151 (Section 5); and on the estimation of electron densities in the absorption region (Section 6). Finally, in a general discussion section (Section 7) we draw together the main conclusions and discuss their implications for models of the absorption line region - its structure, density, ionization conditions, location and size.

## 2 Observational data

The IUE observations used for this paper are summarized in Table 1. Estimates of optical magnitudes for the nucleus, derived from the IUE Fine Error Sensor (FES) and approximately corrected for contamination by starlight from the NGC 4151 galaxy (see Paper II), are included in the table.

A total of 137 spectra at low resolution ( $4-8 \AA$ ) were taken with IUE between 1978 February and 1980 May. They are listed in Paper II (Perola et al. 1982), and have been reduced with a uniform procedure which is described in Papers I and II. Weighted mean spectra were derived for 31 epochs with separations of 0.5 day to 2 months. For most epochs both short-wave ( $\lambda \lambda 1150-1950 \AA$ ) and long-wave ( $\lambda \lambda 1900-3250 \AA$ ) regions were covered.
During this period, five important continuum changes on time-scales of the order of 5-30 days were seen (Paper II). Here these 'events' will be labelled I1, I2, I3, D1 and D2, signifying three increases and two decreases. Of particular importance for the absorption analysis is the large flare of 1979 May (Event I1).
Intensive monitoring was resumed in 1981 April-July. It can be seen from the FES data in Table 1 that the nucleus remained very faint during this 1981 period, fainter than ever previously seen with IUE. However, even in this low state, the nucleus was not truly quiescent: both optical magnitudes (Table 1) and ultraviolet continuum fluxes (Table 6c) varied, usually together. For example, there was a 'mini-flare' event in late June 1981. The lowest fluxes were recorded in 1981 May 08: the far-ultraviolet continuum was then 2.3 mag fainter than in 1978 April, when the UV fluxes were the highest so far recorded.
To complete the low-dispersion data set for 1978-81, three images taken by other observers in 1980 were retrieved from the IUE Data Bank. These are also noted in Table 1.
In addition to the low-dispersion database, the present paper discusses the five short-wave high-dispersion spectra of NGC 4151 (resolution $\sim 0.2 \AA$ ) taken with IUE during the same period. These are also listed in Table 1. All were taken through the large aperture to maximize the rather
G. E. Bromage et al.

Table 1. Journal of observations of NGC4151 with IUE during 1978-81.

## (All images listed here were obtained with the large aperture)

The quoted magnitude is the IUE Fine Error Sensor magnitude, corrected empirically for a contribution of $13^{m} .07$ from the surrounding galaxy (see Paper II).

EPOCH IMAGE | EXP. TIME |
| :---: |
|  |
| (mins) |$\quad$ m

## A. HIGH DISPERSION

1978

| Aug 01.9 | SWP 2170 | 300 | $12.52 \pm .04$ |
| :---: | ---: | ---: | ---: |
| Oct 23.9 | 3114 | 433 | $12.57 \pm .06$ |
| Dec 25.5 | 3704 | 400 | $12.90 \pm .06$ |
|  |  |  |  |
| 1979 |  |  |  |
| May 20.2 | SWP 5310 | 435 | $12.52 \pm .05$ |
| May 26.2 | 5364 | 426 | $12.52 \pm .05$ |

## B. LOW DISPERSION

1978

## Feb 28.7 <br> Dec 09.5

1979

| Jan 21.6 |  |  |  |
| :---: | :---: | :---: | :---: |
| to |  |  |  |
| Dec 14.0 |  |  |  |
| 1980 | 137 spectra at 31 epochs: for full journal of observations see Table 1 of Perola et $a$. 1982 (Paper II) (total observed range in $m_{(F E S-g a l)} \simeq$ 12.4-12.9) |  |  |
| Jan 01.4 |  |  |  |
| $\begin{aligned} & \text { to } \\ & \text { May } 19.3 \end{aligned}$ |  |  |  |
| Jul 30.49 | SWP 9627 | 15 | (from Data |
| Nov 27.44 | SWP 10682 | $3 \times 35$ pseudo-trailed | (from Data |
| 27.49 | LWR 9392 | 15 | (from Data |

1981

| Apr 26.32 | SWP 13810 | 25 | $13.24 \pm .03$ |
| ---: | :--- | :--- | :--- |
| 26.35 | LWR 10448 | 30 |  |
| 26.37 | SWP 13811 | 40 |  |
| 26.40 | LWR 10449 | 25 |  |
|  |  |  |  |
| Apr |  |  |  |
| 30.28 | SWP 13845 | 25 |  |
| 30.31 | LWR 10479 | 25 |  |
| 30.34 | SWP 13846 | 50 |  |
| 30.37 | LWR 10480 | 25 |  |

Table 1-continued

EPOCH
IMAGE
m
(FES-gal)

| May | 04.04 | SWP 13880 | 25 | $13.31 \pm .03$ |
| :---: | :---: | :---: | :---: | :---: |
|  | 04.06 | LWR 10511 | 30 |  |
|  | 04.09 | SWP 13881 | 40 |  |
|  | 04.12 | LWR 10512 | 25 |  |
|  | 04.15 | SWP 13882 | 60 |  |
| May | 08.05 | LWR 10543 | 30 | $13.38 \pm .04$ |
|  | 08.11 | SWP 13921 | 154 |  |
| May | 12.12 | LWR 10574 | 25 | $13.22 \pm .03$ |
|  | 12.15 | SWP 13961 | 25 |  |
|  | 12.17 | LWR 10575 | 25 |  |
|  | 12.20 | SWP 13962 | 50 |  |
| May | 17.05 | SWP 13982 | 30 | $13.30 \pm .04$ |
|  | 17.07 | LWR 10630 | 30 |  |
|  | 17.12 | SWP 13983 | 120 |  |
| May | 23.12 | LWR 10680 | 30 | $13.14 \pm .03$ |
|  | 23.14 | SWP 14030 | 30 |  |
|  | 23.18 | LWR 10681 | 60 |  |
|  | 23.24 | SWP 14031 | 120 |  |
| May | 25.24 | LWR 10700 | 30 | $13.11 \pm .04$ |
|  | 25.27 | SWP 14057 | 50 |  |
|  | 25.31 | LWR 10701 | 50 |  |
| May | 30.03 | SWP 14115 | 30 | $13.20 \pm .04$ |
|  | 30.06 | LWR 10748 | 45 |  |
|  | 30.12 | SWP 14116 | 120 |  |
| Jun | 05.13 | SWP 14189 | 30 | $13.14 \pm .04$ |
|  | 05.16 | LWR 10784 | 30 |  |
|  | 05.21 | SWP 14190 | 96 |  |
| Jun | 08.96 | SWP 14222 | 30 | $13.20 \pm .03$ |
|  | 08.98 | LWR 10813 | 30 |  |
|  | 09.04 | SWP 14223 | 120 |  |
|  | 09.10 | LWR 10814 | 48 |  |
| Jun | 26.01 | SWP 14332 | 30 | $13.01 \pm .05$ |
| Jun | 27.95 | SWP 14348 | 30 | $13.12 \pm .05$ |
| Jun | 29.95 | SWP 14359 | 30 | $13.15 \pm .04$ |
|  | 29.98 | LWR 10968 | 30 | $13.15 \pm .04$ |
| Jul | 03.88 | SWP 14392 | 25 | $13.12 \pm .04$ |
|  | 03.91 | LWR 11004 | 25 |  |
| Jul | 06.88 | SWP 14412 | 60 | $13.16 \pm .04$ |
|  | 06.91 | LWR 11019 | 30 |  |
| Jul | 16.86 | SWP 14495 | 30 | $13.27 \pm .03$ |
|  | 16.89 | LWR 11071 | 30 |  |
|  | 16.94 | SWP 14496 | 100 |  |
|  | 16.99 | LWR 11072 | 30 |  |
| Jul | 27.89 | SWP 14573 | 30 | $13.12 \pm .05$ |
| Jul | 29.90 | LWR 11185 | 120 | $13.14 \pm .05$ |

weak signal. Some results from two of the spectra have already been reported by Penston et al. (1979). All data have now been reprocessed with the correct ITF (Holm 1979) using a special version of IUESIPS which removes strong noise spikes by filtering the raw images with a median filter, thus greatly improving signal-to-noise for very weak images such as these. The signal-to-noise was further enhanced by adding relevant individual high-dispersion spectra.

The nucleus was bright at all high-dispersion epochs except 1978 December 25 when it was in a low state (see the FES magnitudes listed in Table 1). The 1978 October 23 observation was during the decay event D1 and in fact indicates that most of the continuum decline occurred after October 23, with a very short two-folding time of $\leqslant 5$ days (cf. Paper II, where the previous best estimate was $\leqslant 10$ days for this event).

## 3 Line identifications and measurements

### 3.1 ABSORPTION LINE IDENTIFICATIONS

Sixteen strong absorption features have been studied in detail, using the high signal-to-noise (low-dispersion) spectra. These 16 features are listed in Table 2 with their adopted definitions for measurement purposes. In addition, many other lines were detected in the low-dispersion or the high-dispersion data, and Table 3 gives a complete line list. Many of the identifications are indicated in Figs 1 and 2.

In Fig. 1, sections from a mean high-dispersion spectrum are plotted. Fig. 2 shows extracts of typical low-dispersion spectra. They were chosen to represent a 'very low' state (1981 May 23 example), a 'low' state (1979 May 3) and 'high' states (1978 May and 1979 May 19) of the nuclear continuum flux ( $c f$. Papers II and III).

It is clear that the NGC4151 absorption spectrum is very rich in the ultraviolet. Resonance lines are now seen from Hi, Cii, Civ, Nv, Oi, Mgi, Mgir, Alii, Aliif, Siif, Siiir, Siiv, Sii and Feir. Excited ground-term (fine structure) lines of CiI, Oi, Siir and Feir (up to 0.12 eV ) are clearly present. Furthermore, higher metastable levels are populated too, including Ciif and Simi ns np ${ }^{3} P(6.5 \mathrm{eV})$, Hı $n=2\left(10.2 \mathrm{eV}\right.$ - Balmer lines), Heı $1 s 2 s^{3} S(19.7 \mathrm{eV})$, and probably HeiI $n=2$ ( 40.6 eV ) and SiIf and AliI $(\sim 5 \mathrm{eV})$. Population mechanisms for these excited levels are discussed later in this paper.

There is only one important feature that has defied explanation - a strong unidentified blend of absorption lines at $\lambda \lambda 1364,1370 \AA( \pm 2 \AA)$. Its strength and behaviour points to a very common element and a low stage of ionization (cf. the behaviour of low ions like Siir in Fig. 2). However, it is difficult to understand the existence of such an omission from the multiplet tables. The alternative, of a transient high-velocity component of a different line (e.g. Sirv at $-6700 \mathrm{~km} \mathrm{~s}^{-1}$ ) is yet more unlikely, since the feature reappeared in the same place nearly a year later when the continuum fell again to a 'low' state, whilst no corresponding high-velocity components of other lines were ever seen. There are wavelength coincidences with the main resonance line of Bir at $\lambda 1362.46$ and the excited $\mathrm{Ov} 2 s-2 p{ }^{1} P-{ }^{1} D$ line at $\lambda 1371$, but we are sceptical about these possibilities. The boron abundance would have to be a factor $10^{4}$ higher than normal, whilst the relevant Ov level is not metastable and a density exceeding $n_{\mathrm{e}} \sim 10^{13} \mathrm{~cm}^{-3}$ would be needed to see $\lambda 1371$ in absorption. (The isoelectronic Cшi $\lambda 2296$ line is never seen in absorption, only in emission - cf. Fig. 2.) Furthermore, the observed blend $\lambda \lambda 1364,1370$ behaves as if both components derive from a common (or similar) ion. The feature thus remains a mystery.

### 3.2 MEASUREMENTS FROM LOW-DISPERSION SPECTRA

The present set of weighted mean low-dispersion data have sufficiently high signal-to-noise ratios to enable equivalent widths and mean wavelengths to be accurately measured. The 16 features

Table 2. Definition of absorption features measured from the low-dispersion spectra.

| REFERENCE WAVELENGTH | MAIN CONTRIBUTORS | INTEGRATION REGION | LOCAL CONTINUUM DEFINITION |
| :---: | :---: | :---: | :---: |
| $\lambda_{1 a b}(A)$ |  | (wavelengths in A) | (wavelengths in $A$ ) |
| (1) | (2) | (3) | (4) |
| 1175.70 | CIII** (4) | 1167-1182 | mean of 1155-1167 \& 1182-1187 |
| 1191.90 | Si II, Si II*(5) | 1187-1198 | linear, between 1185 \& 1200 |
| 1240.14 | N V (1) | $\begin{aligned} & \text { 1234-1250 (Si weak) } \\ & 1234-1245 \text { (Si strong) } \end{aligned}$ | LLC: linear, between samples at ends of integration region |
| 1260.42 | Si II, Si II* (4) | $\begin{aligned} & 1254-1275 \text { (weak) } \\ & 1249-1280 \text { (strong) } \end{aligned}$ | linear, between $1246-54 \& 1275-88$ linear, between $1243-49 \& 1280-88$ |
| 1303.27 | $\begin{align*} & \text { Si III** (4) } \\ & \text { Si II (3), OI } \tag{2} \end{align*}$ | 1288-1313 | mean of 1275-1288 \& 1313-1325 |
| 1334.53 | C II, C II* (1) | 1326-1343 | mean of 1313-1326 \& 1343-1355 |
| 1368.00 | Unidentified blend | 1355-1378 | mean of 1343-1355 (extrapolated) |
| 1393.75 | Si IV (1) | 1384.5-1399.3 | LLC: linear, between the apparent emission maxima |
| 1402.77 | Si IV (1) | 1399.3-1411.3 | HLC: fitted emission line profile centred on $\lambda 1402 \AA$ |
| 1526.71 | Si II, Si II* (2) | 1520-1535 | linear, between samples at ends of integration region |
| 1549.10 | C IV (1) | 1541-1557 | LLC: linear, between the apparent emission maxima |
| 1608.46 | Fe II (8) | 1604-1614 | linear, between 1598-1604 and 1614-1622 |
| 1857.41 | $\begin{aligned} & \text { Al III (1) } \\ & \text { Al II** (4) } \end{aligned}$ | 1849-1875 | mean of 1828-1849 (extrapolated) |
| 2599.40 | Fe II (1) | 2591-2608 | mean of 2536-2572 and 2612-2647 |
| 2797.92 | Mg II (1) | 2787-2809 | LLC: linear, between the apparent emission maxima |
| 2945.10 | He I** (1) | 2938-2954 | mean of 2897-2938 and 2954-2994 |

(1) $\lambda_{\text {lab }}$ is the wavelength of the resonance line in the feature (or, mean of unsaturated lines when more than one resonance line contributes) at zero redshift, and in vacuum for $\lambda<2000 \AA$. When no resonance lines are expected, the adopted $\lambda_{\text {lab }}$ is an appropriate mean reference wavelength for zero redshift.
(2) UV multiplet numbers are given in brackets. Throughout this paper, the convention is adopted whereby $x, x^{*}$ and $x^{* *}$ are absorptions from the ground level, excited fine structure levels and higher metastable levels, respectively.
(3) The extended integration region for SiII $\lambda 1260$ applies to epochs 1979 May 3-4 and 1980 March 1-6 only.
(4) LLC=low, HLC=high local continuum. LLC give lower limits to equivalent widths. The Siiv case is discussed in Section 3.2.
(5) For the 'very low state' epochs, especially the 1981 data, the definitions of $\lambda 1240$ and $\lambda 1260$ had to be modified to avoid the narrower Nv emission line. Indeed $\lambda 1240$ absorption was usually not measurable for this reason. Similarly, weak CiI $\lambda 1335$ emission was avoided where necessary in measuring the $\lambda 1335$ absorption.

Table 3. Absorption lines in NGC 4151 spectra, $\lambda \lambda 1170-3200 \AA$.

| Multiplet(UV) |  | Transitions |  | $\lambda(A) \quad$ Measurements and Comments |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C III** | 4 | $2 \mathrm{~s} 2 \mathrm{p}-2 \mathrm{p}^{2}$ | $3_{P-}{ }^{3}$ | 1176 bl | measured: see Tables 4,5 |
| Si II | 5 | $3 s^{2} 3 p-3 s 3 p^{2}$ | ${ }^{2} p_{1}^{2}-{ }^{2} p$ | 1190,1193 | measured: <br> see Tables 4,5 |
| Si II* | 5 |  | ${ }_{\frac{2}{2}}^{2}-{ }^{2} p$ | 1194,1197 |  |
| Si III | 2 | $3 s^{2}-3 s 3 p$ | $1_{S-1}{ }^{1}$ | 1207 | present |
| H I | 1 | 1s-2p | ${ }^{2} S-{ }^{2} p$ | 1216 | $\lambda$ measured: see Table 7 |
| N V | 1 | 2s-2p | ${ }^{2} S-{ }^{2} p$ | 1239,1243 | measured: see Tables 4,5,7 |
| Si II** | 8 | $3 s 3 p^{2}-3 p^{3}$ | ${ }^{4} \mathrm{P}_{-}{ }^{4} \mathrm{~S}$ | 1248,1251 | possibly present |
| S II | 1 | $3 s^{2} 3 p^{3}-3 s 3 p^{4}$ | ${ }^{4} S-4 p$ | $\begin{gathered} 1251,1254 \\ 1260 \end{gathered}$ | present (high dispersion) |
| Si II | 4 | $3 s^{2} 3 p-3 s^{2} 3 d$ | ${ }^{2} P_{\frac{1}{2}}-{ }^{2} D$ | 1260 | blend with S II, Fe II |
| Si II* | 4 |  | ${ }^{2} \frac{P_{3}}{2}-{ }^{2} D$ | 1265 | measured: see Tables $4,5,7$ |
| Fe II | 9 | $\mathrm{a}-\mathrm{x}$ | ${ }_{\frac{6}{D_{9}}}^{2}-{ }^{6} p$ | $1261$ | blended, see above |
| Fe II* | 9 |  | ${ }^{6} \frac{D}{7}_{2}-{ }^{6} p$ | 1267 |  |
| Fe II* | 9 |  | ${ }^{6} D_{\frac{5}{2}} \frac{3}{2}^{-}-{ }^{6} p$ | 1272,1276 | probably present: see Figure 2 |
| Si III** | 4 | $3 \mathrm{~s} 3 \mathrm{p}-3 \mathrm{p}^{2}$ | $3_{p-3}{ }^{\text {P }}$ | 1295-1303b | present (high dispersion) <br> 1 and probably dominates blend |
| Si II | 3 | $3 s^{2} 3 p-3 s 3 p^{2}$ | ${ }_{\frac{1}{2}}^{2}-{ }^{2} S$ | $1304$ | blend with 0 I, Si III** |
| Si II* | 3 |  | ${ }_{\frac{P_{3}}{2}}-{ }^{2} S$ | 1309 | measured: see Tables 4,5,7 |
| $0 \mathrm{I}$ | 2 | $2 p^{4}-2 p^{3} 3 s$ | ${ }^{3} P_{2}-{ }^{3} S$ | $1302$ | blended, see above |
| 0 I* | 2 |  | ${ }^{2} p_{1,0^{-}}{ }^{3} S$ | 1305 bl | blended, see above |
| C II | 1 | $2 s^{2} 2 p-2 s 2 p^{2}$ | ${ }^{2} P_{\frac{1}{2}}-{ }^{2} D$ | 1335 | measured: see Tables 4,5,7 |
| C II* | 1 |  | ${ }^{2} P_{\frac{3}{2}}-{ }^{2} D$ | 1336 |  |
| Si II** | 7 | $3 s 3 p^{2}-3 s 3 p 4 s$ | ${ }^{4} \mathrm{p}-4 \mathrm{p}$ | 1347-1354b | 1 probably present (Figure 2) |

Table 3-continued

| Multiplet(UV) |  | Transitions |  | $\lambda(\AA)$ | Measurements and Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (Unidentified) |  | ? | ? | 1364,1371 | blend measured: Tables 4,5 |
| Si IV | 1 | $3 s-3 p$ | ${ }^{2} S-{ }^{2} P_{\frac{3}{2}}$ | 1394 | measured: see Tables 4,5,7 |
| Si IV | 1 |  | ${ }^{2} S-{ }^{2} p_{\frac{1}{2}}$ | 1403 | measured: see Tables 4,5,7 |
| Si II | 2 | $3 s^{2} 3 p-3 s^{2} 4 s$ | ${ }^{2} P_{\frac{1}{2}}-{ }^{2} S$ | 1527 | measured: see Tables $4,5,7$ |
| Si II* | 2 |  | ${ }^{2} P_{\frac{3}{2}}-{ }^{2} S$ | 1533 |  |
| C IV | 1 | 2s-2p | ${ }^{2} s-{ }^{2} p$ | 1548,1551 | measured: see Tables 4,5,7 |
| Fe II | 8 | $a-y$ | ${ }^{6} \frac{D_{9}}{2}-{ }^{6}$ | 1608 | measured: see Tables 4,5 |
| Fe I ${ }^{\text {* }}$ | 8 |  | ${ }^{6}{ }_{\frac{7}{2}}-{ }^{6}$ | 1618,1622 | blended with above |
| Fe II* | 8 |  | ${ }^{6} \frac{D_{5,3}}{22}-{ }^{6}$ | 1626-1636 | possibly present? |
| Fe II* | 8 |  | ${ }^{6}{\frac{D_{1}}{2}}^{-6}$ | 1639 | possibly present, blend with He II**? |
| He II** | 12.01 | $2 s-3 p$ | ${ }^{2} \mathrm{~S}-{ }^{2} \mathrm{p}$ | 1640 | $\lambda$ measured: see Table 7 |
| Al II | 2 | $3 s^{2}-3 s 3 p$ | ${ }^{1} \mathrm{~S}-1_{\mathrm{P}}$ | 1671 | seen (?) against 0 III em |
| Al II** | 6 | $3 \mathrm{~s} 3 \mathrm{p}-3 \mathrm{~s} 3 \mathrm{~d}$ | $3_{P-}{ }^{3}$ D | 1720-1725 | possibly present |
| Al II** | 5 | $3 \mathrm{~s} 3 \mathrm{p}-3 \mathrm{p}^{2}$ | $3_{p-3}{ }^{\text {P }}$ | 1764-1768 | possibly present |
| Si II | 1 | $3 s^{2} 3 p-3 s 3 p^{2}$ | ${ }^{2} P_{\frac{1}{2}}-{ }^{2} D$ | 1808 | present - see Footnote (1) |
| Si II* | 1 |  | ${ }^{2} P_{\frac{3}{2}}-{ }^{2} D$ | 1817 | ```present - see Footnote (1) and Table 7``` |
| Al III | 1 | 3s-3p | ${ }^{2} s-2 p$ | 1855, 1863 | measured: see Tables 4,5,7 |
| Al II** | 4 | $3 \mathrm{~s} 3 \mathrm{p}-3 \mathrm{~s} 4 \mathrm{~s}$ | ${ }^{3} \mathrm{P}-{ }^{3} \mathrm{~S}$ | 1856-1862 | blended with above, possibly present: see Figure 2 |
| Fe II | 2 | a - z | ${ }_{\frac{6}{2}}^{2}-{ }^{6} F$ | 2374,2382 | present: see Figure 2 |
| Fe II* | 2 |  | ${ }^{6} D_{J \leftarrow \frac{7}{2}}-{ }^{6} F$ | 2383-2413 | present: see Figure 2 |

Table 3-continued

| Multiplet(UV) |  | Transitions |  | $\lambda(A)$ | Measurements and Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fe II | 1 | a-z | ${ }^{6} \frac{D_{9}}{2}-{ }^{6} \frac{D_{7}}{2}$ | 2585 | present: see Footnote (2) |
| Fe II | 1 |  | ${ }^{6} \frac{D_{9}}{2}-{ }^{6} \frac{D_{9}}{2}$ | 2599 | measured: see Tables 4,5 |
| Fe II* | 1 |  | ${ }^{6}$ D- ${ }^{6}$ D | 2598-2631 | present: see Figure 2 |
| He I** | 13 | 2s-7p | ${ }^{3} \mathrm{~S}-{ }^{3} \mathrm{P}$ | 2764 | probably detected |
| Mg II | 1 | 3s-3p | ${ }^{2} \mathrm{~S}-{ }^{2} \mathrm{p}$ | 2796,2803 | measured: see Tables 4,5 |
| He I** | 12 | 2s-6p | ${ }^{3} \mathrm{~S}-{ }^{3} \mathrm{P}$ | 2829 | present |
| Mg I | 1 | $3 s^{2}-3 \mathrm{~s} 3 \mathrm{p}$ | $1_{S-1} 1_{P}$ | 2852 | present |
| He I** | 11 | 2s-5p | ${ }^{3} \mathrm{~S}-{ }^{3} \mathrm{P}$ | 2945 | measured: see Table 4,5 |
| He I** | Opt. 3 | $2 \mathrm{~s}-4 \mathrm{p}$ | $3_{S-}{ }^{3} \mathrm{P}$ | 3188 | present |

(1) SiII and SiiI* $\lambda \lambda 1808,1816$ measurements: 1979 May $3, W_{\lambda}(1808)=0.5 \pm 0.2, W_{\lambda}(1816)=0.6 \pm 0.3 ; 1979$ June 1, $W_{\lambda}(1808)=0.6 \pm 0.2, W_{\lambda}(1816)=0.3 \pm 0.3$.
(2) FeiI $\lambda 2585$ measurements: 1978 November $1, W_{\lambda}(2585)=0.9 \AA, D R=2\binom{+2}{-1} ; 1979$ December 7, $W_{\lambda}(2585)=1.2 \AA, D R=1.3\left({ }_{-0.2}^{+0.4}\right)$, [cf. unsaturated doublet ratio . . 3.5]. At all other epochs, a reseau masks the $\lambda 2585$ line.
defined in Table 2 are both strong enough and sufficiently clear of spectral obstacles to provide useful data for detailed statistical analyses.

The difficulties involved in measuring absorption lines in NGC4151-spectra have been discussed in Paper I. However, here the features have consistent definitions which avoid as far as possible any distorting factors. Some of the lines reported in table 4 of Paper I have been remeasured with the new, standard definitions.

Two quantities have been measured throughout:
(i) equivalent width,
$W_{\lambda}=\sum_{i}\left[1-F_{i} / F_{\mathrm{c}}(i)\right] \delta \lambda_{i}$
(ii) relative effective wavelength $\Delta \lambda=\lambda_{\text {obs }}-\lambda_{\text {lab }}$ where $\lambda_{\text {lab }}$ is a reference wavelength (see Table 2) and $\lambda_{\text {obs }}$ is heliocentric observed wavelength,
$\lambda_{\text {obs }}=\sum_{i} \lambda_{i}\left[1-F_{i} / F_{\mathrm{c}}(i)\right] / \sum_{i}\left[1-F_{i} / F_{\mathrm{c}}(i)\right]$
where the summation region is given in Table $2 ; \delta \lambda_{i}$ is the sampling bin width (usually $2.67 \AA$ for SWP and $4.4 \AA$ for LWR, and constant over a line); and $F_{i}$ and $F_{\mathrm{c}}(i)$ are the values of flux respectively in the line and local continuum (defined in Table 2) at the wavelength $\lambda_{i}$ of the $i$ th bin. The wavelength scale for $\lambda_{\text {obs }}$ is based on assuming certain emission lines are at a redshift $z=0.0033$ (see Paper I for details).
[Note: For the Sirv resonance doublet at $\lambda 1400$, which is resolved even at low dispersion, two different definitions of the absorption feature have been made, for comparison purposes. One is

(a)

(b)

Figure 1. Extracts of mean high-dispersion spectrum for the 'high state' of NGC4151 nucleus (average of 1978 August 2, October 24, 1979 May 20 and 26).

(a)
$\lambda(\AA)$


Figure 2. (a-e) Extracts of representative low-dispersion spectra: 1981 May 23 was 'very low state', 1979 May 3 'pre-flare state', 1979 May 19 approaching 'flare maximum' phase, and 1978 May a 'very high' state. Definite and possible absorption line identifications are indicated, together with positions of identified or expected broad emission lines. ( $R=$ reseau, $G=$ geocoronal.)


Figure 2-continued

Table 4．Equivalent widths $W_{\lambda}(\AA)$ measured from low－dispersion spectra．

$$
\text { For definitions of features measured, see Table } 2 \text {. }
$$

（a）Results for 1978－1980 May epochs，for 8 low－ionization features（arranged in order of increasing I．P．of likely major contributor）．

|  |  | Continuum flux $\mathrm{F}_{\mathrm{v}}(\mathrm{mJy})$ <br> （ $\pm 0.4$ typically）$\ddagger$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Event |  | Mg II | Fe II | Fe II | Si II＋ | Si II | Si II | Al III＋ | （unident） |
| Epoch | Label |  |  | $\lambda 1608$ | $\lambda 2599$ | 入1260 | $\lambda 1530$ | $\lambda 1190$ | $\lambda 1860$ | $\lambda 1370$ |


| 1978 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Feb 28.7 |  | 13．4： | $N$ | $N$ | W | $N$ | $1.5 \pm 1.5$ | W | W | $2.0 \pm 1.0$ | W § |
| Apr 16.9 |  | 15.8 | 21．8： | S | $0.8 \pm 0.4$ | $1.2 \pm 0.4$ | $2.2 \pm 0.5$ | $0.9 \pm 0.4$ | R | $4.5 \pm 1.4$ | $-0.1 \pm 0.5$ |
| May 8－12 |  | （15．1） | （23．5） | $2.2 \pm 1.3$ | $0.4 \pm 0.3$ | $1.8 \pm 0.5$ | $0.8 \pm 0.3$ | $0.8 \pm 0.5$ | $1.0 \pm 0.3$ | $1.0 \pm 0.6$ | $-0.1 \pm 0.5$ |
| Jun 17.6 |  | （11．8） | $N$ | $N$ | $0.4 \pm 0.4$ | $N$ | $1.2 \pm 0.5$ | $1.4 \pm 0.5$ | $0.7 \pm 0.6$ | $2.5 \pm 1.0$ | $0.0 \pm 0.5$ |
|  |  |  |  |  |  |  |  |  |  |  | ． |
| Jul 24.29 |  | 10.9 | 16.7 | $2.5 \pm 1.5$ | $0.6 \pm 0.4$ | $1.5 \pm 0.9$ | $4.8 \pm 0.7$ | W | $1.8 \pm 0.4$ | $4.3 \pm 0.6$ | $0.4 \pm 0$ ล6 |
| Aug 02.1 |  | 9.5 | N | N | W | $N$ | $4.6 \pm 0.8$ | $1.5 \pm 0.6$ | R | $2.8 \pm 0.9$ | $0.3 \pm 0 \frac{98}{6}$ |
|  |  |  |  |  |  |  |  |  |  |  | $\frac{0}{3}$ |
| Oct 19.7 | D1 | 9.6 | 18.8 | $3.9 \pm 1.0$ | $0.2 \pm 0.3$ | $1.7 \pm 0.5$ | $3.2 \pm 0.5$ | $1.1 \pm 0.6$ | $1.5 \pm 0.4$ | $3.0 \pm 0.6$ | $-0.3 \pm 0$－6 |
| Nov 01.0 | D1 | （4．3） | （11．3） | $2.8 \pm 1.4$ | $0.6 \pm 0.4$ | $2.0 \pm 1.0$ | $7.8 \pm 0.8$ | $1.0 \pm 0.5$ | $3.6 \pm 0.7$ | $5.8 \pm 1.1$ | $0.0 \pm 0{ }^{5}$ |
| Dec 09.5 |  | 8.3 | 15.2 | $3.1 \pm 0.9$ | $0.0 \pm 0.4$ | $0.8 \pm 0.4$ | $3.5 \pm 0.5$ | W | $1.5 \pm 0.5$ | $3.0 \pm 0.6$ | $0.0 \pm 0.5$ |
| 1979 |  |  |  |  |  |  |  |  |  |  | －${ }^{3}$ |
| Jan 21.6 |  | 5.4 | 11.0 | $2.9 \pm 1.0$ | $1.4 \pm 0.4$ | $1.5 \pm 0.7$ | $5.0 \pm 0.7$ | $1.3 \pm 0.5$ | $R$ | 4．2土0．9 | $1.6 \pm 0$ |
| May 03.3 | 11 | 8.1 | 10.8 | $3.3 \pm 1.0$ | $2.1 \pm 0.4$ | $1.7 \pm 0.8$ | $12.7 \pm 0.6$ | $2.6 \pm 0.3$ | R | $9.3 \pm 0.8$ | $4.7 \pm 0 \frac{\overbrace{5}^{3}}{}$ |
| May 04.6 | 11 | 7.0 | N | $N$ | W | N | $13.7 \pm 1.0$ | $2.3 \pm 0.5$ | R | $8.9 \pm 1.1$ | $6.1 \pm 1 \overline{80}$ |
| May 19.2 | 11 | 12.5 | 17.7 | $3.8 \pm 0.6$ | $0.8 \pm 0.2$ | $0.5 \pm 0.2$ | $4.5 \pm 0.5$ | $0.8 \pm 0.3$ | $R$ | $5.9 \pm 0.6$ | $1.6 \pm 0$ 격 |
| May 21.3 | 11 | 13.6 | 19.4 | $2.8 \pm 1.0$ | $0.8 \pm 0.2$ | $0.7 \pm 0.4$ | $3.8 \pm 0.5$ | $1.2 \pm 0.4$ | R | $4.9 \pm 0.8$ | $0.5 \pm 0.5$ |
| May 23.1 | （11） | 13.1 | 19.0 | $4.6 \pm 0.8$ | $0.9 \pm 0.2$ | $0.6 \pm 0.2$ | $4.1 \pm 0.5$ | $0.8 \pm 0.4$ | R | $6.0 \pm 0.8$ | $0.6 \pm 0.5$ |
| May 25.1 | （11） | 13.7 | 20.0 | $3.9 \pm 0.8$ | $0.7 \pm 0.2$ | $0.8 \pm 0.3$ | $3.8 \pm 0.5$ | $1.4 \pm 0.4$ | R | $4.1 \pm 0.8$ | $0.8 \pm 0$ \％ |
| May 31.7 | （11） | 13.6 | N | N | $0.8 \pm 0.4$ | N | $2.9 \pm 0.8$ | $0.7 \pm 0.5$ | R | $3.7 \pm 1.0$ | $1.1 \pm 088$ |
| Jun 01.2 | （11） | 13.6 | 20.4 | $2.9 \pm 0.6$ | $0.8 \pm 0.2$ | $1.1 \pm 0.4$ | $3.6 \pm 0.4$ | $1.0 \pm 0.4$ | R | 4．0さ0．8 | $0.0 \pm 04$ |
| Aug 07.9 |  | 8.9 | 11.9 | $3.4 \pm 0.5$ | $1.1 \pm 0.2$ | $1.3 \pm 0.2$ | $5.7 \pm 0.6$ | $1.3 \pm 0.3$ | R | $4.9 \pm 0.7$ | $0.3 \pm 0 \stackrel{\stackrel{\square}{¢} 4}{4}$ |
| Dec 07.9 | D2 | 11.2 | 16.0 | $3.8 \pm 0.7$ | $0.5 \pm 0.2$ | $1.6 \pm 0.3$ | $4.1 \pm 0.6$ | $1.4 \pm 0.4$ | $2.2 \pm 0.5$ | $4.0 \pm 0.7$ | $0.8 \pm 0 \cdot{ }^{\circ} 6$ |
| Dec 12.7 | D2 | 8.7 | 13.5 | $4.0 \pm 1.2$ | $0.6 \pm 0.4$ | $2.2 \pm 0.9$ | $5.8 \pm 0.6$ | $1.2 \pm 0.4$ | $2.9 \pm 0.5$ | $5.4 \pm 0.8$ | $0.2 \pm 0.5$ |
| Dec 13.5 | （D2） | 8.7 | 13.5 | $4.0 \pm 0.8$ | $1.1 \pm 0.3$ | $0.9 \pm 0.4$ | $5.6 \pm 0.6$ | $1.1 \pm 0.3$ | R | $5.7 \pm 0.8$ | $0.3 \pm 0$－ 5 |
| Dec 14.0 | （D2） | 9.9 | N | N | $1.9 \pm 0.6$ | N | $3.5 \pm 0.8$ | $1.2 \pm 0.5$ | R | $6.3 \pm 0.9$ | $2.4 \pm 1 \frac{5}{50}$ |
| 1980 |  |  |  |  |  |  |  |  |  |  | － |
| Jan 01.4 |  | 8.5 | 13.3 | $3.6 \pm 1.0$ | $0.2 \pm 0.4$ | $1.4 \pm 0.6$ | $6.4 \pm 0.7$ | $1.4 \pm 0.4$ | $1.7 \pm 0.4$ | $4.8 \pm 0.7$ | $0.3 \pm 0.05$ |
| Mar 01.4 | 12 | 7.2 | 11.0 | $4.0 \pm 1.5$ | $1.0 \pm 0.6$ | $0.7 \pm 0.5$ | $10.0 \pm 0.9$ | $1.5 \pm 0.4$ | R | $7.3 \pm 0.9$ | $1.9 \pm 0.8$ |
| Mar 04.2 | 12 | 7.8 | 11.2 | $4.9 \pm 1.6$ | $0.4 \pm 0.5$ | $0.2 \pm 0.5$ | $9.8 \pm 1.0$ | $1.6 \pm 0.4$ | R | $7.6 \pm 0.9$ | $1.6 \pm 0.8$ |
| Mar 04.8 | 12 | 8.2 | N | N | $1.9 \pm 0.7$ | N | $10.2 \pm 1.0$ | $1.6 \pm 0.4$ | R | $6.6 \pm 0.8$ | $2.0 \pm 0.8$ |
| Mar 06.2 | 12 | 9.3 | 12.9 | $5.2 \pm 1.6$ | $0.9 \pm 0.6$ | $0.7 \pm 0.5$ | $8.7 \pm 0.8$ | $1.7 \pm 0.4$ | R | $7.4 \pm 0.9$ | $0.5 \pm 0.9$ |
| Apr 21.2 | （13） | 2.6 | 6.5 | $2.7 \pm 2.0$ | $2.2 \pm 1.2$ | $1.1 \pm 0.7$ | $3.8 \pm 1.5$ | 5 W | W | $4.2 \pm 1.7$ | $0.6 \pm 0.5$ |
| May 15.0 | 13 | 12.7 | 14.8 | $2.9 \pm 1.2$ | $1.0 \pm 0.5$ | $1.0 \pm 0.8$ | $6.7 \pm 0.7$ | $1.1 \pm 0.4$ | R | $6.1 \pm 0.9$ | $1.6 \pm 0.8$ |
| May 19.3 | 13 | 12.4 | 17.9 | $3.7 \pm 0.9$ | $0.5 \pm 0.3$ | $1.7 \pm 0.5$ | $5.0 \pm 0.5$ | $1.4 \pm 0.4$ | R | $5.0 \pm 0.7$ | $0.6 \pm 0.6$ |

Table 4 －continued
（b）Results for same 1978－1980 May epochs as in Table 4（a）but for 8 intermediate to high－ionisation absorption features


| 1978 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Feb 28.7 |  | 13．4： | $N$ | $3.0 \pm 1.0$ | $N$ | W | $3.0 \pm 1.2$ | $1.5 \pm 0.9$ | $4.0 \pm 2.5$ | $3.0 \pm 0.8$ | $6.0 \pm 10$ |
| Apr 16.9 |  | 15.8 | 21．8： | $2.3 \pm 0.6$ | $-0.8 \pm 0.6$ | $1.8 \pm 0.5$ | $4.0 \pm 1.0$ | $2.1 \pm 0.8$ | $2.5 \pm 0.9$ | $2.9 \pm 0.5$ | $\pm 0$ 年 |
| May 8－12 |  | （15．1） | （23．5） | $1.9 \pm 0.4$ | $0.2 \pm 0.5$ | $1.4 \pm 0.4$ | $3.3 \pm 0.8$ | $1.6 \pm 0.5$ | $3.6 \pm 0.5$ | $3.6 \pm 0.5$ | $6.9 \pm 0.6$ |
| Jun 17.6 |  | （11．8） | $N$ | $1.6 \pm 0.7$ | $N$ | $0.6 \pm 0.4$ | $2.2 \pm 1.3$ | $1.4 \pm 1.0$ | $2.3 \pm 1.0$ | $3.8 \pm 0.5$ | $6.0 \pm 0{ }_{5}$ |
| Jul 24.29 |  | 10.9 | 16.7 | $3.1 \pm 0.5$ | W | $1.3 \pm 0.4$ | $3.7 \pm 1.0$ | $2.1 \pm 0.6$ | $3.1 \pm 1.2$ | $3.5 \pm 0.5$ | $4.1 \pm 0.6$ |
| Aug 02.1 |  | 9.5 | N | $3.6 \pm 0.6$ | $N$ | $1.2 \pm 0.5$ | $4.4 \pm 1.3$ | $1.8 \pm 1.0$ | W | $2.7 \pm 0.7$ | $3.4 \pm 0$ 雨 |
| Oct 19.7 | D1 | 9.6 | 18.8 | $2.6 \pm 0.4$ | $0.2 \pm 0.4$ | $1.4 \pm 0.4$ | $5.0 \pm 1.0$ | $2.5 \pm 0.7$ | $3.7 \pm 1.4$ | $3.6 \pm 0.4$ | $5.6 \pm 0 \frac{0}{5}$ |
| Nov 01.0 | D1 | （4．3） | （11．3） | $1.2 \pm 1.0$ | $0.8 \pm 0.6$ | $1.7 \pm 0.8$ | $1.8 \pm 1.4$ | $0.8 \pm 0.8$ | $4.1 \pm 1.5$ | $3.3 \pm 0.8$ | $4.3 \pm 0.7$ |
| Dec 09.5 |  | 8.3 | 15.2 | $2.8 \pm 0.4$ | $0.9 \pm 0.5$ | $3.5 \pm 1.1$ | $3.8 \pm 0.9$ | $1.7 \pm 0.7$ | $5.0 \pm 1.5$ | $3.1 \pm 0.5$ | $5.6 \pm 035$ |
| 1979 |  |  |  |  |  |  |  |  |  |  |  |
| Jan 21.6 |  | 5.4 | 11.0 | $2.6 \pm 0.4$ | $1.0 \pm 0.6$ | $1.9 \pm 0.7$ | $2.2 \pm 0.8$ | $0.6 \pm 0.5$ | $5.0 \pm 1.1$ | $2.8 \pm 0.4$ | $4.0 \pm 0 \frac{5}{6}$ |
|  |  |  |  |  |  |  |  |  |  |  | ${ }_{0}^{0}$ |
| May 03.3 | 11 | 8.1 | 10.8 | $4.1 \pm 0.3$ | $1.3 \pm 0.5$ | $7.6 \pm 0.9$ | $4.0 \pm 0.8$ | $1.1 \pm 0.6$ | $4.1 \pm 0.7$ | $3.1 \pm 0.4$ | 1．6 50 管 |
| May 04.6 | 11 | 7.0 | N | $4.5 \pm 1.0$ | N | $6.8 \pm 1.0$ | $5.9 \pm 1.7$ | $3.6 \pm 1.4$ | $4.9 \pm 1.6$ | $4.1 \pm 0.8$ | $2.2 \pm 0$ \％ 8 |
| May 19.2 | 11 | 12.5 | 17.7 | $4.2 \pm 0.3$ | $1.2 \pm 0.4$ | $3.4 \pm 0.5$ | $4.4 \pm 0.6$ | $2.9 \pm 0.4$ | $4.6 \pm 0.6$ | $4.3 \pm 0.3$ | $5.5 \pm 0.4$ |
| May 21.3 | 11 | 13.6 | 19.4 | $3.7 \pm 0.3$ | $0.5 \pm 0.6$ | $2.5 \pm 0.3$ | $4.9 \pm 0.8$ | $3.2 \pm 0.6$ | $3.8 \pm 0.4$ | $4.3 \pm 0.3$ | $6.3 \pm 0.5$ |
| May 23.1 | （11） | 13.1 | 19.0 | 3．9さ0．3 | $1.1 \pm 0.4$ | $2.3 \pm 0.4$ | $4.7 \pm 0.8$ | $2.9 \pm 0.6$ | $2.9 \pm 0.8$ | $4.4 \pm 0.5$ | $6.0 \pm 0.5$ |
| May 25.1 | （11） | 13.7 | 20.0 | $3.5 \pm 0.3$ | $0.7 \pm 0.5$ | $2.3 \pm 0.4$ | $4.7 \pm 0.8$ | $3.0 \pm 0.6$ | $3.9 \pm 0.5$ | $4.3 \pm 0.5$ | $6.0 \pm 0$ ch |
| May 31.7 | （11） | 13.6 | N | $2.8 \pm 0.5$ | N | $1.4 \pm 0.5$ | $5.0 \pm 1.1$ | $3.2 \pm 0.8$ | $3.7 \pm 0.7$ | $4.0 \pm 0.6$ | $6.8 \pm 0.6$ |
| Jun 01.2 | （11） | 13.6 | 20.4 | $3.5 \pm 0.3$ | $1.0 \pm 0.4$ | $1.2 \pm 0.6$ | $4.9 \pm 0.6$ | $3.0 \pm 0.4$ | $2.6 \pm 0.5$ | $4.7 \pm 0.3$ | $6.2 \pm 0$ \＆ |
|  |  |  |  |  |  |  |  |  |  |  | ס－ |
| Aug 07.9 |  | 8.9 | 11.9 | $3.1 \pm 0.4$ | $0.8 \pm 0.3$ | $1.9 \pm 0.8$ | $4.3 \pm 0.7$ | $1.6 \pm 0.4$ | $3.6 \pm 0.4$ | $3.8 \pm 0.3$ | $3.8 \pm 0 \frac{2}{\infty}$ |
| Dec 07.9 | D2 | 11.2 | 16.0 | $3.2 \pm 0.3$ | $0.7 \pm 0.4$ | $1.0 \pm 0.4$ | $3.3 \pm 0.9$ | $1.9 \pm 0.6$ | $2.6 \pm 0.7$ | $4.2 \pm 0.3$ | $5.3 \pm 084$ |
| Dec 12.7 | D2 | 8.7 | 13.5 | $3.6 \pm 0.3$ | $0.6 \pm 0.5$ | $2.8 \pm 0.4$ | $2.9 \pm 0.8$ | $1.6 \pm 0.5$ | $4.5 \pm 1.3$ | $4.2 \pm 0.4$ | $5.2 \pm 05$ |
| Dec 13.5 | （D2） | 8.7 | 13.5 | $3.7 \pm 0.3$ | $0.5 \pm 0.5$ | $2.6 \pm 0.5$ | $3.9 \pm 0.8$ | $2.1 \pm 0.6$ | $6.0 \pm 1.1$ | $4.4 \pm 0.4$ | $4.8 \pm 0.5$ |
| Dec 14.0 | （D2） | 9.9 | N | $4.0 \pm 0.5$ | N | $1.2 \pm 0.5$ | $3.6 \pm 1.0$ | $3.0 \pm 0.8$ | $5.5 \pm 1.6$ | $4.5 \pm 0.6$ | $5.1 \pm 0 \% 6$ |
| 1980 |  |  |  |  |  |  |  |  |  |  | $\stackrel{\text { ¢ }}{\sim}$ |
| Jan 01.4 |  | 8.5 | 13.3 | $3.4 \pm 0.3$ | $0.8 \pm 0.4$ | $0.6 \pm 0.5$ | $3.3 \pm 0.8$ | $1.1 \pm 0.6$ | $3.3 \pm 1.2$ | $4.2 \pm 0.4$ | $4.5 \pm 0 \stackrel{1}{3}$ |
| Mar 01.4 | 12 | 7.2 | 11.0 | $4.3 \pm 0.5$ | $1.9 \pm 0.9$ | $2.5 \pm 0.5$ | $4.0 \pm 1.1$ | $1.7 \pm 0.9$ | $3.1 \pm 1.2$ | $3.5 \pm 0.5$ | $2.3 \pm 0.6$ |
| Mar 04.2 | 12 | 7.8 | 11.2 | $3.4 \pm 0.5$ | $0.4 \pm 0.7$ | $4.2 \pm 0.6$ | $4.1 \pm 1.1$ | $1.6 \pm 0.9$ | $3.3 \pm 1.1$ | $4.1 \pm 0.5$ | $3.6 \pm 0.6$ |
| Mar 04.8 | 12 | 8.2 | N | $3.8 \pm 0.5$ | N | $4.0 \pm 0.6$ | $4.5 \pm 1.2$ | $1.5 \pm 0.8$ | $3.7 \pm 1.1$ | $3.5 \pm 0.5$ | $4.0 \pm 0.6$ |
| Mar 06.2 | 12 | 9.3 | 12.9 | $5.3 \pm 0.5$ | $1.5 \pm 0.9$ | $2.7 \pm 0.5$ | $4.0 \pm 1.1$ | $1.7 \pm 0.9$ | $4.7 \pm 1.0$ | $3.4 \pm 0.5$ | $4.0 \pm 0.6$ |
| Apr 21.2 | （13） | 2.6 | 6.5 | $2.5 \pm 1.5$ | $0.8 \pm 1.0$ | $0.7 \pm 1.0$ | $1.2 \pm 0.8$ | $0.4 \pm 0.5$ | W | $3.5 \pm 0.6$ | $0.5 \pm 0.5$ |
| May 15.0 | 13 | 12.7 | 14.8 | $4.7 \pm 0.5$ | $1.7 \pm 0.8$ | $4.3 \pm 0.6$ | $4.6 \pm 1.2$ | $3.5 \pm 1.0$ | $4.0 \pm 0.8$ | $3.3 \pm 0.5$ | $4.0 \pm 0.6$ |
| May 19.3 | 13 | 12.4 | 17.9 | $4.2 \pm 0.4$ | $0.8 \pm 0.9$ | $3.4 \pm 0.4$ | $4.5 \pm 0.9$ | $2.8 \pm 0.7$ | $5.2 \pm 0.7$ | $3.0 \pm 0.4$ | $5.3 \pm 0.5$ |

Table 4-continued
(c) Additional measurements for selected 1980 Jul-1981 Jul ("very low state") epochs including newly-derived continuum fluxes $F_{v}(m J y)$ calculated in the
same way as those in Paper II.

| Epoch | $F_{v}(m J y)$ |  |  |  |  | $W_{\lambda}(\AA)$ For Features Defined in Table 2 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\lambda$ | 1455 \& | $\lambda$ | 2500 | $\AA$ | $\begin{gathered} \text { Si I I }+ \\ \lambda \\ 1260 \end{gathered}$ | $\begin{aligned} & \text { Si II } \\ & \lambda 1530 \end{aligned}$ |  | $\begin{aligned} & C \quad \text { II } \\ & 1335 \end{aligned}$ |  | ${ }_{1300}$ |  | $\begin{gathered} \text { C IV } \\ 1550 \end{gathered}$ |

1980

| Jul 30.5 | $6.0 \pm .6$ | $N$ | 4.2 | 2.9 | 3.3 | 1.9 | 3.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nov 27.5 | $2.1 \pm .3$ | $4.4 \pm .3$ | $2.0:$ | $0.5:$ | 1.8 | $<1:$ | $<1.0:$ |

1981

| Apr 26.4 | $2.0 \pm .3$ | $4.0 \pm .2$ | $2.5:$ | $2.0:$ | 1.6 | $<1:$ | 2.8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| May 08.1 | $1.9 \pm .2$ | $3.8 \pm .2$ | 3.1 | 1.2 | 1.7 | 0.7 | 1.6 |
| May 23.2 | $2.5 \pm .2$ | $4.9 \pm .2$ | 5.3 | 2.3 | 1.7 | 1.5 | 2.6 |
| Jun 05.2 | $2.5 \pm .2$ | $4.4 \pm .3$ | 6.0 | 2.0 | $<1:$ | $<1:$ | 2.7 |
| Jun 09.0 | $2.2 \pm .2$ | $4.6 \pm .2$ | 3.4 | 2.1 | 1.6 | $<1:$ | 2.6 |
| Jun 26.0 | $2.4 \pm .4$ | N | 6.6 | 2.4 | 1.0 | $<1:$ | 3.1 |
| Jun 28.0 | $2.0 \pm .4$ | N | 5.1 | 2.6 | 1.8 | $0:$ | 2.4 |
| Jun 30.0 | $2.6 \pm .3$ | $4.7 \pm .2$ | 3.5 | 2.5 | 0.9 | 1.0 | 2.9 |
| Jul 16.9 | $2.1 \pm .3$ | $3.9 \pm .2$ | 3.0 | 1.5 | 0.9 | $<1:$ | 2.6 |
| Average Estimated Standard Errors $= \pm 2$. | $\pm 1$. | $\pm 0.5$ | $\pm 1$. | $\pm 1$. |  |  |  |

Key:
N No spectrum obtained in this $\lambda$ range.
R Camera reseau masks feature.
S Spectrum saturated at this $\lambda$.
W Spectrum too weak or noisy to measure feature.
(LLC) These features defined with a 'low local continuum' estimate - true $W_{\lambda}$ is larger but difficult to define objectively and consistently (see Table 2).
$\ddagger$ For details of continuum flux determinations and errors, see Paper II.
based on a 'low local continuum' (LLC) where (as for $\mathrm{Nv}, \mathrm{Civ}$ and MgII ) a local continuum is drawn simply as a straight line joining the apparent emission maxima to either side. This gives lower limits on equivalent widths, and overestimates the observed Sirv doublet ratio (giving a ratio greater than 2.5 in a quarter of the cases, compared with the physical upper-limit of 2.0). The alternative definition uses a 'high local continuum' (HLC) which simulates the broad underlying Siiv+Orv emission by a simple parameterization. The line is defined by the observed wings over $\lambda \lambda 1350-1382$ and 1412-1430 $\AA$ and a Doppler core with FWHM $=4000 \mathrm{~km} \mathrm{~s}^{-1}$ centred at $\lambda 1402 \pm 1 \AA$. HLC equivalent widths and doublet ratios are more realistic than the LLC ones, and have been used when estimating velocity ' $b$ ' parameters and column densities. However, for
detailed correlation analyses and comparisons with Nv and $\mathrm{C} v$ (for which only LLC measurements were feasible) the Sirv LLC values were used.]

The results for equivalent widths $W_{\lambda}$ and relative wavelengths $\Delta \lambda$ are listed in Tables 4 and 5 respectively. The uncertainties quoted in these tables were carefully evaluated, as explained in Appendix A of this paper. Additional information on velocities was obtained from the high-dispersion spectra (see Section 3.3 below).

Graphs of $W_{\lambda}$ versus time are shown in Fig. 3, together with the light curve of $F_{v}(2500 \AA)$ continuum flux for comparison. The flare (I) and decay (D) events discussed in Paper II are labelled in this figure. It can be seen from Fig. 3 that there is a striking, detailed correlation between the equivalent width of Nv (the highest ionization species measurable with IUE) and the continuum flux at $2500 \AA$. Equally striking is the persistent anti-correlation of continuum flux with equivalent widths of low ions such as SiII. This behaviour is most clearly seen in the development of flare event I1 (1979 May). The correlations are discussed in detail in Section 4 below.

At the 'very low state' epochs [ $F(1455 \AA)<3 \mathrm{mJy}$ ] all absorption lines seem weak. This suggests there is a continuum component present at all times, that is not covered by absorbers. This component tallies with the small remaining short-wave excess present even at 'anomalous' epochs (Paper III), and is attributable to stars or jets outside of the BLR.

### 3.3 ADDITIONAL VELOCITY MEASUREMENTS FROM HIGH-DISPERSION DATA

With the exception of Civ, it is difficult to measure absorption velocities on the individual high-dispersion spectra, because of the low signal-to-noise. However, the Civ lines are clearly seen against the corresponding emission. Nevertheless, the short-wavelength edge of the weaker $\lambda 1550.77$ line is lost in the stronger $\lambda 1548.20$ absorption, and in addition the apparent long-wavelength edge of $\lambda 1548.20$ may be caused or distorted by an overlying emission component from the narrow line region (Penston et al. 1979).

Table 6 gives information concerning the profile of the Civ absorption at the five high-dispersion epochs. Estimates of velocities of the overall 'blue' edge of the absorption feature, and 'red' edges for both components of the doublet, are given with respect to that of the Ly $\alpha$ geocoronal emission, thus taking into account any spurious wavelength scale shifts in the extracted spectra. This wavelength scale is satisfactory in that it leads to no significant velocity changes (within the measuring errors of $\pm 30 \mathrm{~km} \mathrm{~s}^{-1}$ )] in either the narrow Ly $\alpha$ absorption which arises in the outer parts of NGC 4151 , or the $\left.\mathrm{C}_{\text {miI }}\right] \lambda \lambda 1907 / 9$ emission feature which is dominated by the narrow line region (cf. Penston et al. 1979). Table 6 also gives the minimum residual intensity in each component of the Civ absorption doublet, and an indication of which part of the line profile shows this greatest absorption.

It can be seen that the range of velocities covered by the line is remarkably constant except at 1978 December 25, an epoch when NGC4151 was faint. This change is quite significant ( $\sim 120 \mathrm{~km} \mathrm{~s}^{-1}$ ) and can be seen by inspection of the profiles (see fig. 1 of Penston et al. 1979). Even so, the width and blueshifted character of the line is similar from epoch to epoch and it is apparent that changes in the equivalent width arise more through changes in the depth of the line (and thus presumably the column of $\mathrm{C}^{+++}$ions) than in the velocity range spanned. The low-resolution data provide further evidence of this (see Section 5 below).

In order to study any variations in velocities with ionization state, at improved signal-to-noise, an average high-state high-dispersion spectrum was constructed from the data for 1978 August 2, October 23 and 1979 May 20 and 26. Now, at these four epochs the Civ absorption lines were almost identical in velocity and strength (see Table 6). Proceeding on the assumption that this was also true (at least approximately) for all other lines, the approximate velocity ranges covered by various ion species were estimated from the mean spectrum. These are given in Table 7.
Table 5. Relative wavelengths of absorption lines, measured from low-dispersion spectra. For definitions of features measured, see Table 2.

| Epoch | Event <br> Label | $\begin{gathered} \mathrm{Id}=\mathrm{Mg} \text { II } \\ \lambda_{1 \mathrm{ab}}=2797.9 \end{gathered}$ | Values tabulated here are $\Delta \lambda(\AA)=\lambda_{\text {obs }}-\lambda_{\text {lab }}$ (where $\lambda_{\text {lab }}$ is the reference wavelength) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{array}{r} \mathrm{Fe} \text { II } \\ 1608.5 \end{array}$ | $\begin{aligned} & \text { Fe II } \\ & 2599.4 \end{aligned}$ | $\begin{aligned} & \text { Si II+ } \\ & 1260.4 \end{aligned}$ | $\begin{aligned} & \text { Si II } \\ & 1526.7 \end{aligned}$ | $\begin{aligned} & \text { Si II } \\ & 1191.9 \end{aligned}$ | $\begin{aligned} & \text { Al III+ } \\ & 1857.4 \end{aligned}$ | $\begin{aligned} & (?) \\ & 1368.0 \end{aligned}$ | $\underset{1334.5}{\text { C II }}$ | $\begin{aligned} & \text { He } I^{\star *} \\ & 2945.1 \end{aligned}$ | $\begin{aligned} & \text { Si IIIA* } \\ & 1303.3 \end{aligned}$ | Si IV Mean of 2 Lines | $\begin{aligned} & \text { c III** } \\ & 1175.7 \end{aligned}$ | $\begin{gathered} \text { C IV } \\ 1549.1 \end{gathered}$ | $\begin{gathered} \text { NV } \\ 1240.1 \end{gathered}$ |
| 1978 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Feb 28.7 |  | $N$ | W | $N$ | W | W | W | W | W | +2.3: | $N$ | W | W | +1: | +0.9: | +1.4: |
| Apr 16.9 |  | S | -1 | -1 | +2.7 | -1.7: | R | +5 | W | -0.6 | W | -3.4 | -0.2 | -0 | +0.2 | +1.6 |
| May 8-12 |  | +4 | +3 | -3 | +3.2: | W | +0.3: | +2 | W | +1.7: | W | -1.2 | +2.5: | +2: | +1.8: | +2.4: |
| Jun 17.6 |  | $N$ | +1 | $N$ | +2.2 | -2.0: | +2.4 | +4: | W | -0.3 | N | -4.4 | +1.2 | +2 | +3.4: | +2.9: |
| Jul 24.9 |  | -1 | +1 | +1 | +6.1: | W | +3.6 | +6 | -2: | +2.3 | W | +0.4 | +1.2 | +3 | +1.7 | +1.2 |
| Aug 02.1 |  | N | W | N | +2.9 | +1.0: | R | +4 | W | +1.6 | N | -1.7 | +0.2 | W | +0.1 | +1.3 |
| Oct 19.7 | D1 | -1 | +1 | -0 | +3.6 | +0.8: | +0.9 | +3 | W | +0.3 | +1: | -2.8 | +0.1 | -1 | +0.2 | +1.1 |
| Nov 01.0 | D1 | +1 | -0 | -1 | +5.1 | +0.8: | +3.0 | +5 | W | +0.8: | W | -1.3: | +1.9: | +1 | +2.5: | +1.4 |
| Dec 09.5 |  | -0 | W | +2 | +5.3 | W | +4.1 | +4 | W | +0.5 | +3 | -3.7 | +0.2 | +2 | +0.6 | +1.2 |
| 1979 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Jan 21.6 |  | -0 | +0 | -4 | +3.6 | W | R | +1 | -2 | +0.5 | W | -3.0 | +0.8: | -0 | -0.1 | +1.1 |
| May 03.3 | 11 | -1 | -0 | -4 | +3.6 | +0.6 | R | +5 | -1.4 | +0.1 | -1 | -1.3 | -0.3 | -4 | -1.8 | -1.6 |
| May 04.6 | 11 | N | W | N | +4.8 | +0.3 | R | +6 | -1.7 | +1.4 | N | -0.8 | -0.2: | -3 | -0.5: | +0.1 |
| May 19.2 | 11 | -0 | -1 | -3 | +1.7 | -2.2 | R | +5 | -1 | +0.7 | +4 | -2.2 | +0.5 | -2 | -0.5 | +1.0 |
| May 21.3 | 11 | +3 | +1 | -1 | +2.3 | -0.2 | R | +4 | -1: | +0.8 | +3 | -4.4 | +0.6 | +0 | +0.1 | +1.0 |
| May 23.1 | (11) | +1 | +1 | -1 | +1.7 | -1.7 | R | +4 | -5 | +0.2 | -0 | -3.0 | +0.2 | -1 | -0.5 | +1.0 |
| May 25.1 | (11) | +2 | +0 | -2 | +1.3 | -1.5 | R | +4 | -5 | -0.1 | +6: | -3.5 | +0.5 | -1 | -0.3 | +1.0 |
| May 31.7 | (11) | N | +4 | N | +0.6 | -1.9 | R | +4 | -5 | +0.1 | N | -4.3 | +0.5 | -3 | +0.1 | +2.0 |
| Jun 01.2 | (11) | +0 | -1 | -2 | +1.6 | -2.3 | R | +4 | W | +0.5 | +5: | -3.1: | -0.2 | -1 | -0.3 | +1.2 |


| ¢ | $\overline{\bar{\square}}$ | ： | 管： |
| :---: | :---: | :---: | :---: |
| ¢ | $\bigcirc$ | $\because$ | ： |
| \％＊＊ | テキッワ | ＊ | \％ |
| ¢¢ | \％ | $\stackrel{\square}{\square}$ | 管采 |
| 㖕事 |  | $\cdots$ |  |
| 『\％ | \％x＝$\times 7$ | \％ |  |
| \％\％ワ\％ | \％$\square^{\square}$ | \％ | $\cdots$ |
|  | ＊\％¢ ¢ ¢ ¢ | ＊ | 星： |
|  | ¢\％ | ＊ | \％ |
| ¢จ\％＊ | \％$\times \times \ldots \times \times \ldots$ | $\because$ |  |
| $\bigcirc$ | $\mathfrak{\square}$ | 3 |  |
| \％ $\mathfrak{y y y}$ | ¢ | \％ | 雾： |
| $\cdots \mathrm{rap}$ | 8 |  | \％ |
|  | 7\％\％ 9 ¢7 |  |  |
| ＊¢ \％\％ |  | ＊ | \％ |
| 88 8®® |  |  |  |
|  |  | $\left[\frac{1}{i n}\right.$ | $\stackrel{1}{1}$ |



Figure 3. (a, b) Montage of curves showing time dependence of equivalent widths $W_{\lambda}$ of all measured absorption lines, and also for direct comparison the $\lambda 2500$ continuum flux, for the main monitoring period 1978 February-1980 May. The epochs of both low- and high-resolution observations are indicated, as are the labelled 'events' D1, I1, etc. Points are joined by straight lines, for aiding the eye, but it should be emphasized that some 'events' may well have been missed with the uneven time-sampling.


Figure 3 - continued

Table 6. Variation in Civ absorption profile in high-dispersion spectra.

| date | velocities ( $\mathrm{km} \mathrm{s}^{-1}$ ) |  |  | residual intensities at absorption maxima |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  | $\lambda 1548.20$ <br> 'blue' edge | $\begin{aligned} & \lambda 1548.20 \\ & \text { 'red' edge } \end{aligned}$ | $\begin{aligned} & \lambda 1550.77 \\ & \text { 'red' edge } \end{aligned}$ | ```\lambda 1548.20 (with relative position of deepest absorption)``` | $\lambda 1550.77$ |
| 1978 Aug 02 | -150 | 760 | 860 | 0.1 (Red) | 0.3 |
| Oct 23 | -120 | 760 | 930 | 0.0 (Red) | 0.0 |
| Dec 25 | -300 | 670 | 770 | 0.3 (Centre) | 0.7 |
| 1979 May 20 | -160 | 700 | 840 | 0.0 (Blue) | 0.5 |
| May 26 | -190 | 780 | 880 | 0.0 (Blue) | 0.3 |

## NOTES:

(1) The zero point of the IUE wavelength scale was established using the geocoronal Ly $\propto$ line.
(2) Measurement errors are $\sim 30 \mathrm{~km} \mathrm{~s}^{-1}$.
(3) On 1978 Dec 25 the nucleus was faint; at the other four epochs it was bright (see optical magnitudes in Table 1; ultraviolet continua followed the same trend).
(4) The residual intensities were measured as fractions of the 'local continuum', that is, the emission line. The true continuum flux was approximately 0.2 times this local continuum.

It can be seen from Table 7 that there is no obvious dependence of velocities absorbed on excitation state. The only significant differences between the different lines lie in the estimates of the apparent 'redward' edge: the edge velocity seems to be lower when there is strong emission from that species. If this is a real effect, it could be a consequence of the different absorptions covering different proportions of continuum and emission line regions.

## 4 Results: correlations of equivalent widths, continuum flux, and wavelength shifts

In order to derive an overall picture of ionization conditions and velocities in the absorption line region, and their dependence on continuum flux, series of linear correlation tests were applied to all the $F_{v}, W_{\lambda}$ and $\Delta \lambda$ data from Tables $4(\mathrm{a}, \mathrm{b})$ and 5 - that is, 16 features at the first 31 epochs. The effects of observational error were taken into account from estimated uncertainties on each individual measurement. Details are provided in Appendix B of this paper. whilst the most important and statistically significant results are described below.
[Note: Some of the resonance lines studied in this paper may have a constant, small contribution from 'interstellar' absorbers - in the disc and halo of our own Galaxy and in the outer regions of the NGC 4151 galaxy. It has not been possible to separate these from the BLR absorptions in the correlation analyses. However, of the lines studied in detail here (Table 2), even the lowest recorded equivalent widths of $\lambda \lambda 1610,2600$ (FeiI), $\lambda 1300$ (Oi, SiiI), $\lambda 1530$ (SiII) and $\lambda 1260$ (SiII, SiI, Feir) are still about twice the corresponding 'background' interstellar levels, assuming

Table 7. Ranges of velocity occupied by absorption in mean (high-dispersion) spectrum.

| Line | Wavelength $\AA$ | $\begin{aligned} & \text { Range of Velocity } \\ & \mathrm{km} \mathrm{~s}^{-1} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: |
| L $\alpha$ (Narrow) | 1215.67 | 920 | 1020 |
| L $\alpha$ (Broad) | 1215.67 | $X$ | 1040 E |
| N V | 1238.80 | -150 | 680 |
| N V | 1242.78 | 220 | 630 |
| S II | 1259.53 | - 10 | B |
| Si II* | 1265.04 | - 10 | 610: |
| Si III** | 1294.55 | -150 | B |
| Si II* | 1309.28 | B | $>440 \mathrm{~N}$ |
| C II | 1334.52 | - 50 | B |
| C II* | 1335.68 | B | $>840$ N |
| Si IV | 1393.73 | - 10 | 1240 |
| Si IV | 1402.73 | + 60: | 1020: |
| Si II* | 1533.44 | -160 | 830: |
| C IV | 1548.20 | -160 | 780 E |
| C IV | 1550.77 | >290 B | 890: E |
| He II** | 1640.49 | - 90 | 840 E |
| Si II* | 1816.96 | 300 | B |
| Si II* | 1817.42 | B | 1250 |
| Ae III | 1854.72 | - 80 | 1180: |
| Ae III | 1862.78 | 120 | 680 |

NOTES:
The blue edge is generally sharper and easier to measure than the red one. Uncertainties are typically $\pm 50$ to $100 \mathrm{~km} \mathrm{~s}^{-1}$.
$X$ No signal.
E Edge measured against emission peak.
B Line blended at this edge.
N Noise spike makes it impossible to define end.
column densities similar to those in the 3C 273 sightline (Ulrich et al. 1980). Furthermore, the velocities of the active nucleus material and of interstellar absorbers in our Galaxy overlap and cannot be separated by $I U E$, even in the high-resolution mode. As this overlap is caused by the intrinsic width of the broad absorption lines, a very much better signal-to-noise ratio than is possible with IUE is needed in order to attempt this separation.]

## 4.1 equivalent widths and continuum flux correlations

Some results of the analyses of equivalent-width versus continuum flux correlations are given in Table 8. The four main conclusions from these and other correlation tests are as follows.
(i) The equivalent widths of highly-ionized absorption lines are correlated with continuum flux, in the positive direction. Those of the low-ion lines are well correlated with $F_{v}$ in the negative direction (for an example plot, see fig. 10 of Bromage et al. 1982). Intermediate ions such as Cir, CiII, Siiri are rather poorly correlated with the continuum, and have approximately constant equivalent widths except at very-low-state epochs, when all $W_{\lambda}$ are small.
(ii) The absorption line equivalent widths are generally not correlated with the 'far ultraviolet excess' continuum. All equivalent widths correlate better with the continuum $F_{v}$ at $\lambda 2500$ than with $F_{v}$ at $\lambda 1455$. This supports the two-component continuum model proposed in Paper I and

Table 8. Correlations of absorption-line equivalent widths $\left(W_{\lambda}\right)(\AA)$ with continuum flux levels $F_{v}(\mathrm{mJy})$.

Results of linear correlation tests (see Appendix) are given as:
$R=$ linear correlation coefficient before allowance for errors
$R^{\prime}=$ linear correlation coefficient after error allowance ( $\mathrm{P}=$ apparently perfect correlation)
$m=$ slope of best-fit straight line (units are A.my ${ }^{-1}$ ) ( $L$ = value has low statistical significance since $\left|R^{\prime}-R\right|$ is large)

| Absorption Feature ( 1 | Dominant Contribution | $\stackrel{I . P}{(\mathrm{eV})}$ | $\begin{gathered} W_{\lambda} \text { with } F_{\nu} \\ R\left(R^{\prime}\right) \end{gathered}$ | 2500) m |
| :---: | :---: | :---: | :---: | :---: |
| 2800 | Mg II | 8-15 | -.13(P) | L |
| $\begin{array}{r} 2600 \\ +1610 \end{array}$ | Fe II | 8-16 | -. $37(\mathrm{P})$ | L |
| 1190 | Si II | 8-16 | -. 78(P) | -. 2 |
| 1260 | Si II | 8-16 | -.67(.69) | -. 6 |
| 1530 | Si II | 8-16 | -. 58(P) | L |
| 2945 | He I | 0-24 | -.45(P) | L |
| 1860 | Ae III/II | 6-28 | -.54(.63) | -. 4 : |
| 1370 | ? | ? | -. $32(.38$ ) |  |
| 1335 | C II | 11-24 | -.13(.16) |  |
| 1300 | Si III | 16-33 | -.20(.22) |  |
| 1175 | C III | 24-48 | -.32(P) | L |
| $\begin{array}{r} 1394 \\ +1402 \end{array}$ | Si IV | 33-45 | +.66(P) | +. 5 |
| 1550 | C IV | 48-64 | +.24(.44) | +.1: |
| 1240 | N V | 77-97 | +.88(.95) | +. 3 |

developed in Papers II and III. The component that dominates $\lambda 2500$ (the non-thermal power-law flux) appears to be closely associated with the source of ionizing photons that controls the ionization conditions in the absorption line region. At $\lambda 1455$ the power-law component is diluted by the second (possibly thermal - see Paper III) continuum component - the 'far ultraviolet excess'. The highly ionized absorbers are not even mildly correlated with this excess (as measured by its component $\Delta F_{v}^{\mathrm{c}}(1455)$ defined in Paper II): for Sivv, $R=+0.2$; whilst for Nv , $R=-0.2$.
(iii) Excluding 'anomalous-continuum' epochs from the data set improves correlation of $W_{\lambda}$ and $F_{v}$ ( $\lambda 2500$ ). This is particularly true of low ions like SiiI, Mg II, CII. By 'anomalous-continuum' epochs are meant those when the far-ultraviolet excess component is very low and the continuum can be represented by a single power law across the whole $I U E$ range. For example, the anomalous epoch SiiI $W_{\lambda}$ values are always systematically lower than the rest (see Fig. 4). This cannot be explained by enhanced ionization since SiIII and IV are not particularly strong at anomalous epochs. Possible explanations involving transient optically thick sites of SiII absorption in the outer parts of the accretion disc or innermost parts of the BLR, seem to be ruled out on velocity grounds. There is therefore at present no satisfactory explanation of this effect.
(iv) Low-ion absorption equivalent widths are directly proportional to one another, that is, they are near-perfectly correlated ( $R>0.75, R^{\prime}>0.85$ ), and each best-fit line runs through the origin (within the errors). All the lines studied (1190, 1260, 1300, 1530, 1860 and the unidentified 1370) vary together in unison, even through the anomalous epochs. Furthermore, this result holds even though the individual relationships with $F_{v}$ are not truly linear.

### 4.2 MEAN WAVELENGTHS AND WAVELENGTH SHIFTS

Trends in effective wavelengths (Table 5) have been quantified by performing linear correlation tests on the $W_{\lambda}$ versus $\Delta \lambda$ relationships (see Appendix B). The principal results are as follows:
(i) The most reliable mean effective wavelengths ( $C_{I I}, S_{i v}$ and $N v$ ) yield mean velocities of $-820( \pm 100) \mathrm{kms}^{-1}$ relative to the emission lines. For lines other than Cir, Sirv and Nv , estimates of absolute velocities are rendered more uncertain because of blending of species or greater local-continuum curvature (for Nv the effects of $\mathrm{Ly} \alpha$ and Nv emission wings tend to cancel out). Even for Cir and Nv , the relative contributions of the two lines in each feature are uncertain: if Nv is optically thin, the mean effective velocity is $-700 \mathrm{~km} \mathrm{~s}^{-1}$, if in the optically thick limit, $-850 \mathrm{~km} \mathrm{~s}^{-1}$. The distorting effect of the Galactic contribution to the C II feature has been allowed for in this calculation, so that the mean of $-820 \mathrm{~km} \mathrm{~s}^{-1}$ refers to the active nucleus of NGC 4151.
(ii) Effective wavelengths for the high ions $C_{I V}, S_{i v}$ and $N_{V}$ are correlated with their $W_{\lambda}$ values when the lines strengthen they shift to slightly longer wavelengths. The effect is particularly noticeable for the well-observed I1 flare event. The shifts amount to the equivalent of about $360 \mathrm{~km} \mathrm{~s}^{-1}$ for Nv and $270 \mathrm{~km} \mathrm{~s}^{-1}$ for Civ. Only about half of this (at most) could arise from doublet-ratio (saturation) changes, so there appears to be evidence for real mean velocity shifts of order $150 \mathrm{~km} \mathrm{~s}^{-1}$.

The shifts are towards less negative velocities when the continuum brightens. These shifts in mean velocity are therefore in the same sense and of the same order of magnitude as those seen in Civ velocity profiles from high-dispersion data (Table 6).*

[^1]

Figure 4. $(a, b)$ Graphs of equivalent widths versus $\lambda 2500$ continuum flux, for all epochs (1978-81) with points connected where epochs separated by less than about 2 weeks. The main events are labelled. Time lags between continuum changes and absorption line strength changes (see Section 7) would show here as loops, being anti-clockwise for positive correlations ( $a-N v$ ) or clockwise for negative correlations (b-SiII 1260 ). In (b) connections are marked off in intervals of 2 days where convenient. Colon signs indicate much larger than average errors (the average being indicated by the error ellipse).

There is no evidence here for time lags for Nv , and only weak and conflicting evidence for SiII lags (see especially the I1 event line, compared with the clear Civ emission lags demonstrated in paper III).
'Anomalous continuum epochs' are marked with open circles: note that for SiII these points lie systematically low (see Section 4.1).
(iii) Any wavelength (velocity) shifts of low-ion absorption lines are difficult to disentangle because of line blending at low dispersion. However, for those ions least affected by blends and saturation uncertainties (Ciif, HeI, FeiI) there are very weak anticorrelations of $\Delta \lambda$ with $W_{\lambda}$ (that is, when these low ions strengthen, they shift to slightly shorter wavelengths). This would support result (ii) above if confirmed.
(iv) The mean observed wavelengths (last row of Table 5) of the $\lambda 1300,1260$ and 1190 features clearly confirm that the excited levels of SiII ${ }^{*} 3 s^{2} 3 p^{2} P_{3 / 2}(0.04 \mathrm{eV})$ and SiIII** $3 s 3{ }^{3}{ }^{3} \mathrm{P}(6.6 \mathrm{eV})$ are well populated. Even after allowance for an assumed mean velocity shift of $+140 \mathrm{~km} \mathrm{~s}^{-1}$ from $\lambda_{0}$ positions [derived from result (i) above], the mean observed $\lambda 1260$ and $\lambda 1190$ wavelengths are closest to the positions of the excited-level lines.
(v) Finally, the very high $\Delta \lambda$ for $\lambda 1860$ can only partly be explained by optical thickness effects or blending of Aliir with the Alif** lines. Since the velocity range (Table 7) is not unusual, there are only two possible explanations: either there is a strong (unidentifiable) extra line in the blend, or else the Alimi lines fall coincidentally close to a small gap in a forest of weak emission lines. In either case the tabulated equivalent widths and wavelengths from the low-dispersion data must still be treated with caution.

## 5 Results: column densities for absorption region

In principle, ion column densities derived from the $I U E$ absorption spectrum may be used to calculate a total $N(\mathrm{H})$ value for the instantaneous line-of-sight through the absorption line region. This latter may then be compared with the very large hydrogen columns deduced from soft X-ray photoelectric absorption measurements for this active nucleus. Values of $N(\mathrm{H})$ varying between $4 \times 10^{22}$ and $2 \times 10^{23} \mathrm{~cm}^{-2}$ have been derived from the X-ray data (Ives et al. 1976; Barr et al. 1977; Holt et al. 1980). Unfortunately, however, only a lower limit to gas columns can be derived from the ultraviolet absorption spectrum, because:
(i) not all ionization and excitation states are represented in the IUE spectra;
(ii) the detailed velocity structure is not well known, and hypothetical large columns with small $b$ values can remain undetected when blended with broader components;
(iii) the geometrical arrangement and motions of absorbing clouds in the line-of-sight relative to the emission line region and continuum source are still poorly understood.

Elements represented best in the $I U E$ spectra are C and Si . In each case, the neutral atoms are not detected, and fifth and higher stages of ionization are unobservable but may have significant populations. For carbon, $\mathrm{C}_{\mathrm{II}}, \mathrm{C}_{\text {II }}{ }^{*}, \mathrm{C}_{\mathrm{III}}{ }^{* *}$ and Civ are accessible to IUE but neither $\mathrm{CII}^{* *}$ nor (crucially) the $\mathrm{C}_{\text {III }}$ ground state give rise to any lines within the $I U E$ range. For silicon the situation is only slightly better: SiiI, $\mathrm{SiII}^{*}$, $\mathrm{SiII}^{* *}$, $\mathrm{SiIII}^{* *}$ and Siiv are all measurable, but the important SiIII $\lambda 1206$ resonance line proves difficult since it is severely blended with strong broad Ly $\alpha$ absorption, and overlaid with Ly $\alpha$ geocoronal emission at low resolution.

Before we can go on to calculate total column densities, we must of course have some information on the velocity dispersions (line profiles) of the absorbers. Noting that the resolved Siiv doublet appears to be only partly saturated (doublet ratio is always more than 1; Table 4) we first consider single-Gaussian-shaped profiles and calculate $N$ and the velocity dispersion parameter $b$ at various epochs. This model is broadly consistent with the observed high-dispersion line profiles, widths and doublet strengths (Fig. 1, Table 6, Table 7; and also Penston et al. 1979, and Penston et al. in preparation, the latter for the Mgir doublet).

Consider the flare event I1. We have the following measurements using the HLC Sirv definition and the low-dispersion data (Tables 2 and 4):
$D R=1.8 \pm 0.1$ and $W_{1403}=2.5 \pm 0.5$ (pre-flare, May 3);
and
$D R=1.3 \pm 0.1$ and $W_{1403}=4.7 \pm 1.0$ (flare, May 21-31).
From these we obtain $b$ values:
$b=570_{-130}^{+180} \mathrm{~km} \mathrm{~s}^{-1}$ (pre-flare) and $470_{-180}^{+350}$ (flare),
These are the same, within the uncertainties. A value of $\sim 500 \mathrm{~km} \mathrm{~s}^{-1}$ for $b$ is also consistent with Siiv doublet observations at other epochs, including the well-observed 'intermediate state' epochs of 1979 December 12, 13 and 1980 January 1, although there is a very slight trend towards higher values of $b$ at lower flux levels as with the I1 results. Unfortunately the Civ and Nv resonance doublets are unresolved at low dispersion, but the small number of measurements of the Feir $\lambda \lambda 2585,2599$ doublet (Table 3) also indicate a degree of saturation consistent with a $b$ value of a few hundred $\mathrm{km} \mathrm{s}^{-1}$.

Effective $b$ values within the range determined above $\left(500_{-150}^{+250} \mathrm{~km} \mathrm{~s}^{-1}\right)$ are also obtained from consideration of the high-dispersion data for both high and low ions (Fig. 1; Tables 6, 7). Consider the Nv lines in the mean 'high-state' spectrum (Table 7). The velocity range seen is from about -900 to $-300 \mathrm{~km} \mathrm{~s}^{-1}$ relative to the emission lines. Further, the mean velocity from low-dispersion data [Section 4.2, results (i) and (ii)] is about -650 . The Nv lines are then quite symmetric, with an effective velocity dispersion $\sim 250 \mathrm{~km} \mathrm{~s}^{-1}$ and corresponding $b$ value $\sim 400 \mathrm{~km} \mathrm{~s}^{-1}$. Some other absorptions appear to be a little broader and more asymmetric, covering a wider velocity range -1100 to +100 around the effective mean of $\sim-650 \mathrm{~km} \mathrm{~s}^{-1}$. The observations are all consistent with $b$ values in the range $500_{-150}^{+250} \mathrm{~km} \mathrm{~s}^{-1}$, however, and this applies to both high and low-ionization species.

These results indicate that the NGC 4151 absorption line variations are due mainly to changes in the column density $(N)$ of the species absorbing, rather than to changes in the $b$ values for the assemblage of absorbing clouds.

Assuming an effective $b=500 \mathrm{~km} \mathrm{~s}^{-1}$ for all ions column densities for the various observed carbon and silicon ions have been calculated, using the equivalent widths listed in Table 4. For carbon ions we find:
$N\left(\mathrm{C}_{\mathrm{II}}+\mathrm{C}_{\mathrm{IIII}}+\mathrm{CIV}\right)=\left\{\begin{array}{l}\left.[3.0+(>3.5)+1.3] \times 10^{15} \mathrm{~cm}^{-2} \text { (pre-flare) }\right) \\ {[2.4+(>1.7)+4.6] \times 10^{15} \mathrm{~cm}^{-2} \text { (flare) }}\end{array}\right.$
where a lower limit for $\mathrm{C}_{\mathrm{III}}$ assuming $N(\mathrm{CiII})>5 \times N\left(\mathrm{C}_{\mathrm{III}}{ }^{* *}\right)$ is assumed, corresponding to the high-density limit for reasonable temperatures $\left(T_{\mathrm{e}} \leqslant 5 \times 10^{4}\right)$. Hence, we have $N(\mathrm{C})>9 \times 10^{15} \mathrm{~cm}^{-2}$. (If the $b$ value were in fact not 500 but $250 \mathrm{~km} \mathrm{~s}^{-1}$, we would have $\left.N(\mathrm{C})>8 \times 10^{16} \mathrm{~cm}^{-2}\right)$.

Similar arguments for silicon ions lead to:
$N($ SiII + III + Iv $)=\left\{\begin{array}{l}{[5.5+(>5.4)+0.6] \times 10^{15}(\text { pre-flare })} \\ {[0.5+(>0.8)+2.0] \times 10^{15}(\text { flare })}\end{array}\right.$
so that for $b=500, N(\mathrm{Si})>1.2 \times 10^{16} \mathrm{~cm}^{-2}$. (For $b=250$, this would be $>3 \times 10^{17}$.)
Making the further reasonable assumption of solar elemental abundances (cf. Barr et al. 1977, Holi et al. 1980) yields
$N(\mathrm{H}) \geq 10^{21} \mathrm{~cm}^{-2}$
where the inequality derives from the adoption of lower limits for $\mathrm{C}_{\text {III }}$ and SiIII, from the assumption of ultraviolet covering factor of unity and from ignoring any saturated cloud components with $b \leqq 50 \mathrm{~km} \mathrm{~s}^{-1}$. This lower limit for $N(\mathrm{H})$ can be compared with the $N(\mathrm{H}) \sim 10^{22}-10^{23}$ derived from soft X-ray data.

## 6 Results: electron density in absorption region

Electron densities $n_{\mathrm{e}}$, or limits on them, can be estimated from several separate aspects of the $I U E$ data - from the relative strengths of excited fine structure lines, from considerations of metastable-level populations, and from observed ion recombination times (Anderson 1974).

### 6.1 EXCITED FINE STRUCTURE LINES

Absorption is present in the excited fine structure lines (EP 0.04 eV ) of Siir at $\lambda \lambda 1265,1309$ and 1533. The corresponding ground state lines are blended in the first two cases with $\mathrm{Si}_{\mathrm{I}} / \mathrm{FeIII}_{\text {II }}$ and SiIII/Oi respectively, but $\lambda 1526.70$ is detectable on the wing of Civ and is free from blending. From the high-dispersion spectra, the excited line seems to be (in the high state) as strong as, and (1978 December 25) nearly twice as strong as, the resonance line. Absorption in the excited fine structure line (EP 0.01 eV ) of CII is also presumably present but it is strongly blended with the resonance line. Excited levels ( EP up to 0.12 eV ) of $\mathrm{Fe}_{\text {II }}$ multiplets 2 and 1 and perhaps others are also detected in some spectra (see Figs 1 and 2 ), whilst $\Delta \lambda$ values from low-dispersion spectra confirm the SiII* identifications.

There are several possible mechanisms for populating the excited $J=3 / 2$ level of $\mathrm{Si}^{+}$. These are: (i) collisions with electrons, protons and hydrogen atoms; (ii) direct infrared excitation; (iii) ultraviolet pumping; and (iv) recombination.

At densities above $n_{\mathrm{e}} \sim 5 \times 10^{3} \mathrm{~cm}^{-3}$, collisions will dominate and set up a 2:1 ratio in accordance with the statistical weights. It seems quite probable from the discussion in the next sections that the density in the absorbing cloud is actually much higher than this. It is therefore to be expected that statistical equilibrium is established and the excited fine structure lines should indeed be stronger (by a factor 2 in the optically thin case), consistent with the observations. No determination can be made in this case of the effects of infrared or ultraviolet pumping discussed by Bahcall (1967) for quasars.

### 6.2 ABSORPTION LINES FROM MESTASTABLE STATES

Several absorption lines in NGC 4151 spectra arise from metastable states. These include the Balmer lines and Hei $\lambda 3889$ seen in the optical (Anderson \& Kraft 1969), Ciir $\lambda 1176$, Simi $\lambda 1297$, Hei $\lambda 3188,2945,2829,2764$, and possibly Heii $\lambda 1640$ and lines of Siir and Alii (see Table 3 and Figs 1 and 2). Probably the easiest case to consider here is that of CiII, since the observed absorption is unblended and the relevant atomic physics is well studied.

In principle, the same excitation mechanisms apply to these $\mathrm{C}_{\mathrm{III}} 2 s 2 p{ }^{3} P$ metastable levels as were listed in the last section. However, only collisions from the ground $2 s^{21} S$ and dielectronic and radiative recombination need be considered, since radiative processes via discrete levels between the initial (ground) and final (metastable) terms must involve at least one slow (intersystem or forbidden) transition. Processes depopulating the metastable levels of $2 s 2 p^{3} P^{0}$ include radiative decay via $\lambda 1909$, collisional excitation and de-excitation and photoionization. Thus the population balance equation becomes:
$n_{\mathrm{III}}{ }^{* *}\left(A+n_{\mathrm{e}} q^{\mathrm{D}}+n_{\mathrm{e}} \sum_{j} q_{j}^{\mathrm{E}}+\int_{v_{0}}^{\infty} \frac{\pi F_{v}}{h v} \alpha_{P} d v\right)=\alpha_{\mathrm{R}} n_{\mathrm{e}} n_{\mathrm{Iv}}+q^{\mathrm{E}} n_{\mathrm{e}} n_{\mathrm{II}}$
where

| $n_{\mathrm{III**}}$ | is the space density of twice ionized ions in the metastable levels, |
| :--- | :--- |
| $n_{\mathrm{e}}$ | is the electron density, |
| $n_{\mathrm{III}}, n_{\mathrm{IV}}$ | are the densities of (ground state) twice and three times ionized ions, respectively, |

$A \quad$ is the radiative decay rate from the metastable level, $n_{\mathrm{e}} q^{\mathrm{E}}, n_{\mathrm{e}} q^{\mathrm{D}}$ are the collisional excitation and de-excitation rates, respectively, $F_{v} \quad$ is the ionizing flux at frequency $v$,
$v_{0} \quad$ is the threshold frequency for ionizing from the metastable level, $\alpha_{P} \quad$ is the cross-section for photoionization from the metastable level and $\alpha_{R} \quad$ is the effective coefficient for recombination to the matastable level.

To estimate $F_{v}$ in the photoionization term is rather difficult since the distance of the absorbing cloud from the nucleus, and the ionizing spectrum at the relevant frequencies, are unknown. Therefore, it seems most general to write
$A n_{\mathrm{II}}{ }^{* *}+\left(q^{\mathrm{D}}+\sum_{j} q_{j}^{\mathrm{E}}\right) n_{\mathrm{e}} n_{\mathrm{II}}{ }^{* *}<\alpha_{\mathrm{R}} n_{\mathrm{e}} n_{\mathrm{IV}}+q^{\mathrm{E}} n_{\mathrm{e}} n_{\mathrm{III}}$.
Inserting numerical values from Dufton et al. (1978), Nussbaumer \& Storey (1978) and Storey (1981) for a temperature of $T_{\mathrm{e}}=2 \times 10^{4} \mathrm{~K}$, which is appropriate to conventional photoionizationequilibrium models for broad line regions of active galactic nuclei (see e.g. Davidson 1972), we have:
$\frac{n_{\mathrm{II} * *}}{n_{\mathrm{IV}}}<\frac{2 \times 10^{-4}+0.2\left(n_{\mathrm{II}} / n_{\mathrm{IV}}\right)}{1+5 \times 10^{9} n_{\mathrm{e}}^{-1}}$.
(Here it has been assumed that the individual $2 s 2 p^{3} P$ levels are in statistical equilibrium. Collisional excitation from ${ }^{3} P$ to $2 p^{2}{ }^{1} P$ and ${ }^{1} D$ has been included.) We note also that the highest value of $n_{\mathrm{II}}{ }^{* *} / n_{\mathrm{HI}}$ is $\sim 0.2$, for thermal equilibrium (Boltzmann factor).

Now, using the absorption lines $\lambda 1176$ and $\lambda 1550$, an observed value can be estimated for the ratio of the column densities (capital $N$ 's) of $\mathrm{CIII}{ }^{* *}$ and Civ. The transition probabilities of Nussbaumer \& Storey (1978) lead to $\Sigma f_{\text {abs }}=1.37$ for the $\lambda 1176$ multiplet, and a weighted mean $\lambda_{\text {abs }}=1175.94 \AA$. The equivalent width of $\lambda 1176$ is usually $3 \pm 1 \AA$ but reached $4.5 \pm 1 \AA$ in the pre-flare state. Thus,
$N_{\text {III** }}>\left\{\begin{array}{l}2.7 \pm 0.6 \times 10^{14} \mathrm{~cm}^{-2} \text { (pre-flare) } \\ 1.8 \pm 0.6 \times 10^{14} \mathrm{~cm}^{-2} \text { (generally) }\end{array}\right.$
assuming unsaturated lines to compute these lower limits. Combining the same measurements with the columns of CIV derived in Section 5 and assuming $b=500 \mathrm{~km} \mathrm{~s}^{-1}$ for both species yields:
$\frac{N_{\mathrm{II} * *}}{N_{\mathrm{IV}}}=\left\{\begin{array}{l}40\left( \pm_{15}^{20}\right) \times 10^{-2} \text { (pre-flare) } \\ 6\left({ }_{-4}^{+7}\right) \times 10^{-2} \text { (flare) } .\end{array}\right.$
Values of the space density ratio as high as this certainly cannot be attained via recombination alone; the maximum ratio would be about $3 \times 10^{-4}$. Therefore, the main populating mechanism for the metastable levels must be assumed to be collisional, and there must be a substantial column of $\mathrm{C}_{\text {III }}$ in its ground state. Unfortunately, the latter cannot be measured at present since the resonance line $\lambda 977$ will remain inaccessible until the next generation of ultraviolet satellites. Little direct progress can be made with the analogous SiIII problem either, because the SiIII $\lambda 1206$ resonance is severely blended with Ly $\alpha$ broad absorption and overlaid with geocoronal Ly $\alpha$ emission, in the IUE spectra.

If a 'single-point' model is approximately valid so that the observed column density ratio also applies approximately to mean space densities, then we can combine (4) and (5) to derive a relationship between $\left(N_{\mathrm{III}} / N_{\mathrm{Iv}}\right)$ and $n_{\mathrm{e}}$. Consider the pre-flare observations. Even at the highest densities in the emitting BLR $\left(10^{10}-10^{11} \mathrm{~cm}^{-3}\right)$ we would have $N_{\mathrm{II}}{ }^{* *} / N_{\mathrm{III}} \leqslant 0.2$, whilst
$N_{\mathrm{HI} *} / N_{\mathrm{IV}} \sim 0.4$, and hence $N_{\mathrm{HI}} / N_{\mathrm{rv}} \geqslant 2$. At the lower densities $n_{\mathrm{e}}=10^{9}, 10^{8}, 10^{7},\left(N_{\mathrm{HI}} / N_{\mathrm{rv}}\right)$ would be greater than about $10,100,1000$, respectively, where the inequality derives from neglecting depopulation of $\mathrm{III}^{* *}$ by photoionization to Iv . (Note also that if the assumed temperature were halved to only $10^{4} \mathrm{~K}$, these ratios would be even higher, by a factor of six or so.) Now, the limited observational evidence on SiIII $\lambda 1206$ absorption (cf. Fig. 2), together with the assumption that $N(\mathrm{H})<10^{23}\left(c f\right.$. Section 5) leads to the expectation that $\left(N_{\mathrm{III}} / N_{\mathrm{IV}}\right) \leq 30$ and hence $n_{\mathrm{e}} \geq 10^{8.5}$.

Similar analyses to the above are (in principle) possible for other observed metastable levels (SiIII, AliI, SiII, etc.), although these are difficult to disentangle from blended resonance lines, and at present many of the relevant atomic data are less well known. Population mechanisms for the metastable levels of HeI, Hı and HeII, are likely to be different, namely, recombination in the first case (Ives et al. 1976) and resonance self-absorption in Hi and Heir (Netzer 1975).

### 6.3 DENSITIES FROM RECOMBINATION TIMES

Anderson (1974) derived a lower limit to the absorption line region density, $n_{\mathrm{e}} \geq 5 \times 10^{6} \mathrm{~cm}^{-3}$, from the observations that the Balmer metastable absorptions were varying on the time-scale of 15 days or less. With the present coverage of flares in the ultraviolet, it is now possible to apply the same arguments on recombination times to estimate $n_{e}$ limits from other lines. The ions that have shown the most dramatic changes in the IUE spectra are $\mathrm{N}^{4+}$ and $\mathrm{Si}^{+}$.

Consider the Nv changes with time, illustrated in Fig. 3. First, note that from 1980 March 6 to April 21, the $\mathrm{N}^{4+}$ had all but completely recombined. From this observation and the recombination coefficients of Aldrovandi \& Péquignot (1973) for $T_{\mathrm{e}} \simeq 2 \times 10^{4}, n_{\mathrm{e}}>10^{4.5} \mathrm{~cm}^{-3}$. A tighter limit derives from the 1978 October event (D1). Between the high-resolution observation of October 23.9 and the low-resolution observations of October 31.98, the Nv incompletely recombined, giving $n_{\mathrm{e}} \gtrsim 10^{5.2}$. The changes in $\mathrm{Si}^{+}$during the I 1 event also imply $n_{\mathrm{e}}>10^{5}$. Finally, the apparently fast change in Sirv strength in one day in 1979 (May 3-4) unfortunately relies on a single noisy spectrum for the May 4 epoch, but if confirmed such a fast change would imply $n_{e} \gtrsim 10^{6}$.

The limits on $n_{\mathrm{e}}$ from recombination-time arguments are thus certainly consistent with the best estimates from metastable absorption line considerations (Section 6.2).

## 7 Discussion

Now we draw together the main conclusions from the ultraviolet absorption spectrum and its variations, and discuss their implications for models of the absorption-line region - its structure, density, ionization conditions, location and size.

Discussions of the nature and structure of the absorption region follow early papers by Anderson \& Kraft (1969), Cromwell \& Weymann (1970) and Anderson (1974), who considered both spherical-shell and discrete-cloud models. The more recent X-ray data (Barr et al. 1977; Holt et al. 1980) have been interpreted by Holt et al. (1980) as evidence that the photoelectric absorption of the soft X-rays occurs in a number ( $\sim 100$ ) of relatively small BLR clouds covering the source along our line-of-sight, with an average thickness of about two clouds, each of them being very thick ( $210^{22} \mathrm{~cm}^{-2}$ ). Ferland \& Mushotzky (1982) further suggest that these saturated absorption clouds, characterized by thermal linewidths ( $\sim 10 \mathrm{~km} \mathrm{~s}^{-1}$ ) and large relative motions $\left(\sim 10^{3} \mathrm{~km} \mathrm{~s}^{-1}\right)$, are also fully responsible for the ultraviolet absorption lines. In their model, the absorbers may also only cover the continuum source and not the BLR emission line clouds.

The conclusions drawn from our new UV observations conflict with the Ferland \& Mushotzky BLR model. The Sirv doublet ratios clearly indicate much thinner clouds in the absorption region. In addition the velocity range and structure is essentially the same for the wide range of
observed ion stages and is consistent with the total Si Iv doublet ratios - suggesting an effectively smooth velocity dispersion ( $b \sim 500 \mathrm{~km} \mathrm{~s}^{-1}$ ) in an overall bulk outflow of $\sim 700 \mathrm{~km} \mathrm{~s}^{-1}$.

Instead of the Ferland \& Mushotzky (1982) picture, the ultraviolet data suggest either (i) a rather smooth, accelerating or decelerating outflow (wind); or (ii) a shell containing a very large number $\left(\gtrsim 10^{8} ?\right)$ of optically thin clouds with small thermal motions but $\sim 500 \mathrm{~km} \mathrm{~s}^{-1}$ dispersion amongst the cloud velocities, and with their velocity dependent on density or distance from the nucleus. From this, it is not surprising that there are large discrepancies between the column densities predicted by Ferland \& Mushotzky and those derived by us. Notably, the total gas column density $N(\mathrm{H})$ now derived from the ultraviolet lines (Section 5) is $N(\mathrm{H}) \gtrsim 10^{21} \mathrm{~cm}^{-2}$, to be compared with the soft X-ray absorbing column of $\sim 10^{22-23} \mathrm{~cm}^{-2}$. The relationship between these two estimates remains an open question, which will hopefully become clear from simultaneous X-ray and ultraviolet spectral observations, such as we are undertaking with $E X O S A T$ and IUE.

The correlations between absorption line velocities and continuum brightness (Section 4.2), interpreted in the pictures (i) and (ii) mentioned above, probably reflect the fact that material of the correct ionization state to produce those absorptions is at different positions in the flow of material at different times. However, because of the well-known problem of the ionization parameter $(U)$ being spatially constant if $n \sim r^{-2}$ (Davidson \& Netzer 1979), it is still difficult to decide whether the observations imply a run of velocity increasing outwards (accelerating flow) or inwards (decelerating flow). The choice is critically dependent on the adopted form of the $n(r)$ function, which is of course not well known.

The close correlations of absorption equivalent widths with continuum flux (Section 4.1) coupled with the wide range of ionization stages observed further strengthen the argument that photoionization by the non-thermal photons governs the ionization balance of the ultraviolet and optical absorbers.

The non-thermal photoionization conditions in the absorption region can be judged from the correlation trends with ionization potential (Table 8 ). They strongly suggest that the dominant ionization state in the absorption region is (in the case of carbon and silicon for example) doubly ionized. This leads to a value for the ionization parameter: $\log U \sim-2.5$ (Ferland \& Mushotzky 1982; Ferland \& Netzer 1983).

The presence of absorption lines from metastable levels leads to estimates of minimum space densities: $n_{\mathrm{e}} \geq 10^{8.5} \mathrm{~cm}^{-3}$ (Section 6.2). Now, an upper limit on $n_{\mathrm{e}}$ of $10^{10}$ would be set if the absorption region were identified with that part of the BLR that emits $\mathrm{C}_{\mathrm{III}}$ ]: we argue later that this region does indeed include the absorption region. In Paper III we concluded that the inner parts of the BLR have $10^{10} \leq n_{\mathrm{e}} \leqslant 2 \times 10^{10} \mathrm{~cm}^{-3}$. Since it seems probable that density decreases outwards through the BLR, our best estimate for the absorption region density is in the range $10^{8.5} \leqslant n_{\mathrm{e}} \leqslant 10^{10}$. Combining this density with the value of $U$ gives the position of the absorption region to be about $R \simeq 10^{17.7 \pm 0.4} \mathrm{~cm}$.

We recall that our investigation of the strong emission lines (Paper III) presented evidence for stratification in the BLR. Three 'layers' were distinguished and labelled respectively BLR1, BLR2 and BLR3. The innermost layer BLR1 has a radius $R \sim 3 \times 10^{16} \mathrm{~cm}$ and velocities $V \sim 10-16 \times 10^{3} \mathrm{~km} \mathrm{~s}^{-1}$. Subregion BLR2 has $R \sim 6 \times 10^{16}, V \sim 6-10 \times 10^{3}$, and $n_{\mathrm{e}} \gtrsim 10^{10} \mathrm{~cm}^{-3}$. Finally BLR3 has $R \sim 10^{18}, V \leq 6 \times 10^{3}$ and $n_{\mathrm{e}} \leq 10^{10}$. The position of the absorbing region relative to BLR1, BLR2 and BLR3, is obviously of considerable interest.

Regions covered by absorbers include both continuum source and some or most of the BLR emission: both BLR1 and BLR2 are absorbed (see Figs 1 and 2 and Penston et al. 1979). Furthermore, the very low state (1981 May) Civ data indicate that both continuum and some ( $\sim 20$ per cent) BLR3 were absorbed then. (At these epochs, neither BLR1 nor BLR2 were radiating Civ.) Positioning the absorbers in BLR3 near $R \sim 3 \times 10^{17}$ or beyond thus gives
consistency with both observed coverage of emission velocities and the most likely $n_{\mathrm{e}}$ and $U$ values (see above). However, note that the range of absorption velocities is far less than the total range of emission: judged as a P Cyg profile, the lines are of Beals Type III (Beals 1951).

The lack of any clear evidence for time lags between continuum flares and absorption equivalent widths (see Figs 3 and 4 and the caption to Fig. 4) is significant here. Any time lags between 3 and 30 days should be detectable in the data. The radii of BLR1 and BLR2 are estimated to be about 10 and 20 light days, respectively (see Paper III). Thus, if the absorbers were in BLR1 or BLR2, the spread in time between the light travel time for the centre of the absorption region and that for the limb, would be of this order. This would lead to detectable mean time lags between continuum flares or decays and the absorbers' response to them (cf. observed Civ broad emission time lags reported in Paper III). There is no clear evidence for any such lags in Figs 3 and 4, suggesting that the absorption region is probably well clear of BLR1 and 2. A value of $R \sim 3 \times 10^{17}$ or beyond, is again indicated.

Consider now the likely thickness, $\Delta R$, of the absorption region if it is a spherical shell. We have that $\Delta R \simeq N(\mathrm{H}) / n_{\mathrm{e}}$, with $10^{21} \leq N(\mathrm{H}) \leq 10^{23}$, and $10^{8.5} \leq n_{\mathrm{e}} \leq 10^{10}$. Hence, $10^{11} \leq \Delta R \leq 10^{14.5}$. Furthermore, since $R \geqq 10^{17}$ in order to be clear of BLR2, we must have $(\Delta R / R)<1$ per cent, with a best estimate of $(\Delta R / R) \sim 0.01$ per cent.

Such a shell at $R \sim 3 \times 10^{17} \mathrm{~cm}$ cannot completely cover the NGC4151 BLR regions or it would emit more than $4 \times 10^{-12} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$ in $\mathrm{H} \beta$ and outshine the whole of BLR3 $\mathrm{H} \beta$ emission which is observed to be $1.8 \times 10^{-12}$ (Osterbrock \& Koski 1976). This limits the covering factor of the absorption region to $f \leq 0.1$.

Assuming $N(\mathrm{H})=10^{22} \mathrm{~cm}^{-2}$ and $R^{2} f=10^{34} \mathrm{~cm}^{2}$, the total mass in the BAL region is $\sim 1 M_{\odot}$. The mass loss rate depends on whether it is assumed to be steady or episodic (Cromwell \& Weymann 1970). If we assume that the shell or assembly of clouds is not being continually fed by material that goes undetected until it enters the shell at $R=10^{17.5} \mathrm{~cm}$, then the mass loss rate for the nucleus is only $\sim 10^{-2} M_{\odot} \mathrm{yr}^{-1}$ or less. This shrinkage of the original 'cornucopia of matter' announced by Anderson \& Kraft (1969) is fortuitously similar in scale to the reduction proposed by Cromwell \& Weymann (1970), who first introduced the episodic picture.

This paper has provided detailed identification and correlation studies of the NGC4151 absorption line spectrum. The analyses have yielded better estimates of the absorbing region location, size, structure and density than hitherto. Yet there are of course still many unsolved problems requiring observers' attention.

The sampled flares I1 and I3 were invaluable to this analysis, but for example the important transition from very low quiescent state to the pre-flare condition has not yet been monitored. A detailed sampling at $\leqslant 4$-day intervals in X-rays and ultraviolet of any large flare would be crucial material for further modelling of the response of the various nebular sub-regions. The long-standing problem of the relationships between soft X-ray and UV-optical gas columns $N(\mathrm{H})$ and their respective locations can only be solved by simultaneous observations (with IUE and EXOSAT initially). Higher velocity resolutions and better signal-to-noise ratios - such as should be attainable with the Space Telescope- are needed in order to look for fine velocity structure, saturated clouds, and the separation of Galactic halo and interstellar absorptions from the NGC4151 nuclear ones.

Complementary studies of BAL quasars (Weymann \& Foltz 1983) and other absorption-line Seyferts are also needed, to see if they vary in similar ways to NGC4151, and to study these phenomena over a wide range of luminosities of Active Galactic Nuclei.

## Acknowledgments

We are grateful to the ESA and SERC IUE selection committees for generously supporting the observational programme. We would like to thank Dr Prab Gondhalekar of Rutherford

Appleton Laboratory for his help with the observing campaigns. GCP acknowledges financial support from the Italian CNR and MPI.

## References

Aldrovandi, S. M. V. \& Péquignot, D., 1973. Astr. Astrophys., 25, 137.
Anderson, K. S., 1974. Astrophys. J., 189, 195.
Anderson, K. S. \& Kraft, R. P., 1969. Astrophys. J., 158, 859.
Bahcall, J. N., 1967. Astrophys. J., 149, L7.
Barr, P., Ives, J. C., Sanford, P. W. \& White, N. E., 1977. Mon. Not. R. astr. Soc., 181, 43P.
Beals, C. B., 1951. Publs Dom. astr. Obs., 9, 1.
Boksenberg, A., Snijders, M. A. J., Wilson, R., Benvenuti, P., Clavel, J., Macchetto, F., Penston, M. V., Boggess, A., Gull, T. R., Gondhalekar, P., Lane, A. L., Turnrose, B., Wu, C. C., Burton, W. M., Smith, A., Bertola, F., Cappaccioli, M., Elvius, A. M., Fosbury, R., Tarenghi, M., Ulrich, M. H., Hackney, R. L., Jordan, C., Perola, G. C., Roeder, R. C. \& Schmidt, M., 1978. Nature, 275, 404.
Bromage, G. E., Boksenberg, A., Clavel, J., Elvius, A., Penston, M. V., Perola, G. C., Pettini, M., Snijders, M. A. J., Tanzi, E. G., Tarenghi, M. \& Ulrich, M. H., 1982. ESA SP-176, p. 533.

Cromwell, R. \& Weymann, R., 1970. Astrophys. J., 159, L147.
Davidsen, A. F. \& Hartig, G. F., 1978. Proc. COSPAR/IAU Symp. on X-ray Astronomy, p. 377, eds Baity, W. A. \& Peterson, L. E., Pergamon Press, Oxford.
Davidson, K., 1972. Astrophys. J., 171, 213.
Davidson, K. \& Netzer, H., 1979. Rev. Mod. Phys., 51, 715.
Dufton, P. L., Berrington, K. A., Burke, P. G. \& Kingston, A. E., 1978. Astr. Astrophys., 62, 111.
Ferland, G. J. \& Mushotzky, R. F., 1982. Astrophys. J., 262, 564.
Ferland, G. J. \& Netzer, H., 1983. Astrophys. J., 264, 105.
Gill, T. R., Lloyd, C., Penston, M. V. \& Snijders, M. A. J., 1984. Mon. Not. R. astr. Soc., 211, 31.
Holm, A., 1979. IUE-NASA Newsletter, 7, 27.
Holt, S. A., Mushotsky, R. F., Becker, R. H., Boldt, E. A., Serlemitsos, P. J., Szymkowiak, A. E. \& White, N. E., 1980. Astrophys. J., 241, L13.

Ives, J. C., Sanford, P. W. \& Penston, M. V., 1976. Astrophys. J., 207, L159.
Netzer, H., 1975. Mon. Not. R. astr. Soc., 171, 395.
Nussbaumber, H. \& Storey, P. J., 1978. Astr. Astrophys., 64, 139.
Osterbrock, D. E. \& Koski, A. T., 1976. Mon. Not. R. astr. Soc., 176, 61p.
Penston, M. V., Clavel, J. C., Snijders, M. A. J., Boksenberg, A. \& Fosbury, R. A. E., 1979. Mon. Not. R. astr. Soc., 189, 45p.
Penston, M. V., Boksenberg, A., Bromage, G. E., Clavel, J., Elvius, A., Gondhalekar, P. M., Jordan, C., Lind, J., Lindegren, L., Perola, G. C., Pettini, M., Snijders, M. A. J., Tanzi, E. G., Tarenghi, M. \& Ulrich, M. H., 1981. Mon. Not. R. astr. Soc., 196, 857 (Paper I).

Perola, G. C., Boksenberg, A., Bromage, G. E., Clavel, J., Elvis, M., Elvius, A., Gondhalekar, P. M., Lind, J., Lloyd, C., Penston, M. V., Pettini, M., Snijders, M. A. J., Tanzi, E. G., Tarenghi, M., Ulrich, M. H. \& Warwick, R. S., 1982. Mon. Not. R. astr. Soc., 200, 293 (Paper II).
Storey, P. J., 1981. Mon. Not. R. astr. Soc., 195, 27p.
Ulrich, M. H. et al., 1980. Mon. Not. R. astr. Soc., 192, 561.
Ulrich, M. H., Boksenberg, A., Bromage, G. E., Clavel, J., Elvius, A., Penston, M. V., Perola, G. C., Pettini, M., Snijders, M. A. J., Tanzi, E. G. \& Tarenghi, M., 1984. Mon. Not. R. astr. Soc., 206, 221 (Paper III).
Weymann, R. J. \& Foltz, C. B., 1983. In: Quasars and Gravitational Lenses, Proc. 24th Liège Astrophysical Colloquium, p. 538.

## Appendix A: estimation of errors on low-dispersion measurements

Lines with widely different strengths and signal-to-noise ratios need to be compared quantitatively in order to extract the most information about the absorption line region and its response to the flaring continuum source. Thus, errors have to be individually estimated for each feature at every epoch. Errors on all the $W_{\lambda}$ are given in Table 4. For simplicity, only average error values for $\Delta \lambda$ are presented in Table 5, with a colon indicating an error about twice the average, whilst the numbers of spectra per camera per epoch vary from 1 to 6 (see Table 1 of Paper II) and this affects accuracies in an obvious way.

In nearly all low-dispersion spectra, particle event 'spikes' were very rare, due to the short exposures involved. For this and other reasons, internal errors - that is, errors within the adopted definitions of lines - are expected to be almost random. They are assumed below to have normal error distributions, and standard errors are quoted in Table 4 for example. External errors for comparisons with other workers' future measurements are much more difficult to assess. They are relatively large when an absorption is superimposed on an emission line (e.g. Civ and Siif $\lambda 1530$ in the Civ emission) but rather small and of the same order as the purely internal errors for cases like SiII $\lambda 1260$ and $\mathrm{C}_{\text {II }} \lambda 1335$ where the local continuum behaviour is clearer.

The internal errors derive from two sources: the uncertainty of the adopted continuum, $F_{\mathrm{c}}$ within its definition due to noise in the continuum windows, and the photometric errors on samples in the integration region itself. Quoted errors in Table 4 are the sum of two contributions, therefore. The first dominates for the wider, shallower features or where only very narrow continuum windows are feasible. This contribution has been calculated by directly following the error propagation from $F_{\mathrm{c}}$, through to $W_{\lambda}$. The second contribution was taken to be given by $N^{-1 / 2}\left(a D^{1 / 2} M^{1 / 2}+b W_{\lambda}\right)$, where $N$ is the number of spectra averaged; $D$ is the continuum IUE DN count and $M$ the number of sampling bins for the features; and $a$ and $b$ are camera-dependent parameters. Using test measurements on individual spectra within one epoch, values of $a=0.01$ (for SWP) and 0.02 (LWR), and $b=0.04$ were adopted here.

These definitions of errors are sufficiently representative, for example, to enable weak (or noisy) lines to be properly included in linear correlation tests against continuum changes and other quantities (see Section 4).

Errors on $\Delta \lambda$ have been derived in a corresponding way and are also used in correlation analyses in this paper. Note that in addition to these errors, the absolute $\lambda$ scale adopted is subject to small systematic errors, which may amount to $1 \AA$ for $\lambda<2000 \AA$ and perhaps $2-3 \AA$ for $\lambda>2000 \AA$ (see Paper I). Such $\lambda$-scale errors are essentially the same for many lines (e.g. $\lambda \lambda 1200-1600$ ) and independent of epoch and continuum flux. They are therefore ignored in the correlation studies presented here, and do not affect any of the conclusions drawn in Section 4.
Errors on continuum flux values, and values of the fluxes $F_{v}$ at $\lambda 1455$ and $\lambda 2500$ themselves, are taken from Table 3 of Paper II for the period up to 1980 May. For subsequent epochs, the continuum values have been newly derived here and are given in Table 4(c); the methods of Paper II were followed exactly.

## Appendix B: Linear correlation analyses

The linear correlation analyses referred to in Section 4, were performed as follows. First, the linear correlation coefficient is defined as usual with no allowance for errors:
$R=\frac{[x, y]}{\sigma_{y} \sigma_{x}}$
where $\sigma_{x}^{2}, \sigma_{y}^{2}$ and $[x, y]$ are the variance of $x$, variance of $y$ and covariance of $x$ and $y$, respectively. To allow for computed observational standard errors (such as those listed in Table 4) and hence derive a corrected correlation coefficient $R^{\prime}$ and best-fit straight line under the maximum likelihood principle, one calculates values of variances $\sigma_{\varepsilon, x}^{2}$ and $\sigma_{\varepsilon, y}^{2}$ for the total scatter variables $\varepsilon_{x}$ and $\varepsilon_{y}$. If one assumes the mean absolute values of $\varepsilon_{x}$ and $\varepsilon_{y}$ are both zero, and $\sigma_{\varepsilon, x}^{2}$ and $\sigma_{\varepsilon, y}^{2}$ can be represented by the mean-square values of the observational standard errors on $x$ and $y$ respectively, then

$$
\begin{equation*}
R^{\prime}=\frac{[x, y]}{\left[\left(\sigma_{y, y}^{2}-\sigma_{\varepsilon, y}^{2}\right)\left(\sigma_{x}^{2}-\sigma_{\varepsilon, x}^{2}\right)\right]^{1 / 2}} \tag{A2}
\end{equation*}
$$

and the 'best straight-line fit' slope is given by
$m=\left(\frac{\sigma_{y}^{2}-\sigma_{\varepsilon, y}^{2}}{\sigma_{x}^{2}-\sigma_{\varepsilon, x}^{2}}\right)^{1 / 2}$
For the present study $R$ and $R^{\prime}$ have been calculated, together with slopes of the three straight-line fits [two least-squares solutions and equation (A3)], for testing the linear correlations between $W_{\lambda}$ and continuum $F_{v}$, and between $\Delta \lambda$ and $W_{\lambda}$.

Values of $R, R^{\prime}$ and $m$ (equations A1, A2, A3) for the $\Delta \lambda$ versus $W_{\lambda}$ relationship were calculated for two sets of data. First, only those epochs with more than two spectra and good signal-to-noise, between 1979 May 3 and 1980 January 1, were included, except that 1979 May 4 is also included to add to the crucial pre-flare May 3 representation. This is the most reliable set of data and covers the large flare event I1 and its following plateau of high flux levels, together with intermediate-state epochs in December-January. Secondly, data on all available epochs were used to assess correlations over the longer time-scale. There are several lines which are strongly correlated in $\Delta \lambda$ and $W_{\lambda}$ over the restricted period 1979 May 3-1980 January 1. They are generally less well correlated when all epochs are added. The change in $R$ may be simply because of the increased numbers of noisy data, but the corrected value $R^{\prime}$ should not show such an effect. A sharp drop in $R^{\prime}$ for example in SiiI $\lambda 1260$ between the restricted and general data sets must be real.

For the equivalent width versus continuum flux $F_{v}$ relationships, correlation coefficients $R$ and $R^{\prime}$ and best-fit slope $m$ have been calculated for four data samples: (i) $W_{\lambda}$ with $F_{v}$ ( $\lambda 1455$ ) for the selected period 1979 May 3-1980 January 1 including I1 epochs with accurate data but dominated by the single event I1; (ii) $W_{\lambda}$ with $F_{v}$ ( $\lambda 1455$ ) for all the main monitored period, 1978 February-1980 May, including up to 31 epochs; (iii) $W_{\lambda}$ with $F_{v}(2500)$ for all the same monitored period, including up to 24 epochs and (iv) $W_{\lambda}$ with the $\lambda 1455$ component of the far-ultraviolet excess, $\Delta F_{\nu}^{\mathrm{c}}(1455)$ as defined in Paper II. The main results are described in the text. The set (iii) is less extensive than (ii) because at 7 epochs no long-wave spectra were obtained. To test whether differences between (ii) and (iii) correlations might be distorted by the slightly different data sets, extra calculations were performed for the same 24 epochs as in (iii) but for $W_{\lambda}$ versus $F_{v}$ ( $\lambda 1455$ ). No important distortions were found, mainly because the additional epochs were essentially already represented in the basic 24 - no large 'events' were peculiar to the extra epochs. For both Nv and Siif, for example, it was evident that differences between (ii) and (iii) correlations were real and highly significant. Intercombinations of $W_{\lambda}$ were also investigated. The correlations of low-ion equivalent widths amongst themselves are particularly striking.

Copies of the full set of correlation plots produced in these analyses are available on request. Examples are shown in figs 3 and 10 of Bromage et al. (1982).


[^0]:    ${ }^{\star}$ Based on observations with the International Ultraviolet Explorer collected principally at the European Space Agency's Villafranca Satellite Tracking Station.

[^1]:    * Note that variations in the Civ emission-line $V / R$ ratio constitute a less reliable estimate of velocity shifts than suggested in Paper I. Now that the database is more representative of extreme cases, it is apparent that variations in $V / R$ can also be caused by changes in the emission width. Furthermore, the apparently extreme change in $V / R$ between 1978 February and later, is now believed due to incompleteness of ITF calibration tables during the 1978 February commissioning phase data reductions.

