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Abstract

We study the 3D reconstruction of plant roots from multi-

ple 2D images. To meet the challenge caused by the delicate

nature of thin branches, we make three innovations to cope

with the sensitivity to image quality and calibration. First,

we model the background as a harmonic function to improve

the segmentation of the root in each 2D image. Second, we

develop the concept of the regularized visual hull which re-

duces the effect of jittering and refraction by ensuring con-

sistency with one 2D image. Third, we guarantee connect-

edness through adjustments to the 3D reconstruction that

minimize global error. Our software is part of a biological

phenotype/genotype study of agricultural root systems. It

has been tested on more than 40 plant roots and results are

promising in terms of reconstruction quality and efficiency.

1. Introduction

As the primary site of nutrient and water uptake, roots

play a critical role in plant growth. Recent research [15, 22]

highlights the role of genes in regulating root branching, a

key component of overall root architecture. A better under-

standing of root architecture could lead to the production of

plants that sequester larger amounts of carbon dioxide, thus

helping to reduce one of the causes of climate change. In

addition, improved root systems can aid in food production

particularly in marginal soils.

To better understand roots, it is important to be able to

compare the complex 3D structure of root systems between

plants with different genotypes. In contrast to simple shapes

of large volume, plant roots have delicate, fine geometric

structures with thin branches; see Figures 1 and 2 for the

plant root imaging system and a sample image. This pos-

es challenges for the image-based 3D reconstruction, which

is exacerpated by the inaccuracies caused by unavoidable
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Figure 1. Plant root imaging system.

Figure 2. Close up image of two roots growing side by side in a

gel container.

small refractions and the jittering inherent in the imaging

system. Furthermore, there are requirements that originate

from the embedding of the software in a larger work pro-

cess, which include the need to have connected 3D recon-

structions and software that is efficient and works without

user intervention. A sample 3D reconstruction is shown in

Figure 3 and additional results can be seen in Figure 9.

We make three main technical innovations to achieve the

detailed 3D reconstruction of plant roots. First, we model

the background of each 2D image as a harmonic function,

which facilitates the extraction of the silhouette by adaptive

thresholding. Second, we formulate the 3D reconstruction



Figure 3. Five views of the reconstruction of a pair of root systems growing in a common container. Here and in the rest of the paper, the

color corresponds to the height on the root.

step as a compromise between two objectives: satisfying

all images and one particular image. The former objec-

tive guarantees for a good global approximation and cor-

responds to the traditional visual hull algorithm. Adding

the latter objective, we call this the regularized visual hull

algorithm, which reconstructs otherwise lost delicate struc-

tures. Third, we develop an algorithm inspired by persistent

homology [5] that guarantees the connectedness of the 3D

reconstruction. Our algorithm is efficient and runs fast in

practice. For example, given a set of forty images, each

consisting of 1, 600× 1, 200 pixels, we can reconstruct the

3D root structure in seconds on a dual core laptop with only

2 GB memory.

This paper is organized as follows: Section 2 reviews

prior work and explains why our problem has not been well

addressed in the literature. Section 3 presents a method for

extracting the binary silhouette using harmonic background

subtraction. Section 4 describes the regularized visual hul-

l that follows two optimization criteria. Section 5 presents

an algorithm for ensuring the 3D reconstruction is connect-

ed. Section 6 shows and compares results obtained with our

software. Section 7 concludes the paper.

2. Literature Review

The problem of reconstructing a 3D shape from 2D im-

ages has been studied for decades. The general purpose al-

gorithm referred to as visual hull, or volumetric carving,

finds the largest shape consistent with the input silhouettes

or color images [1, 4, 8, 9, 13, 14, 19, 20, 10]. However, due

to its sensitivity to calibration errors, thin features of the

shape are likely to be lost. A joint optimization approach

[7] has been proposed to cope with the segmentation and

calibration errors in the moving camera environment. It is

similar to our regularized visual hull but different because

it relies on the texture and color information as matching

cues, which are not available in our setting. A new imaging

system working with coplanar shadowgrams has been in-

troduced in [24], in which the object and the camera remain

still while the light source moves. This reduces the com-

plexity in the calibration step from six degrees of freedom

(position and orientation of the camera) to three (position

of the light source), and leads to improved reconstruction

results. While this method is promising, it cannot be ap-

plied in our lab setting in which the opacity of the gel poses

challenges to collecting the root shadows.

Complementing the general purpose methods, there has

recently been progress using prior knowledge on the shape

to be reconstructed. In [6, 11, 17], shapes are reconstructed

by optimizing objectives that guarantee a continuous and if

possible smooth surface. However, these methods assume

accurate calibration and cannot deal with jittering or oth-

er movements during the image process. Moreover, these

methods are not designed for thin and delicate shapes such

as plant roots. Model-based reconstruction of shapes in a

restricted class, such as trees, buildings, and human bodies,

has also been studied in the past decade [12, 16, 18, 21, 23].

Among this work, image-based tree modeling is the most

relevant to our problem. However, this work is geared to-

ward computer graphics applications and aims for trees that

look realistic as opposed to being accurate. In particu-

lar, fine details are typically not reconstructed but instead

artificially generated and added to the reconstruction. In

contrast, we consider plant roots for biological studies and

therefore aim at a reconstruction that is faithful to the image



data and contains as many of the fine details as possible.

To the best of our knowledge, reconstructing delicate

shapes and plant roots in particular makes our problem u-

nique. The remainder of the paper describes the novel as-

pects of our 3D root reconstruction algorithm as well as ex-

perimental results that provide evidence for its efficacy.

3. Harmonic Background Subtraction

We model an image as a function of intensities, J : Ω→
[0, 255], where Ω is the image grid. Assuming it represents

a root growing in gel, we define the root as the foreground

and the rest of the image as the background. Perhaps the

simplest way to separate foreground from background is by

splitting the pixels with a single intensity threshold. Howev-

er, there are drawbacks because the intensity can vary from

image to image as well as from one location within an image

to another. We therefore propose to work with the normal-

ized intensity, I : Ω→ [0, 1], defined by

I(x, y) =

∑J(x,y)
i=0 h[i]

∑255
i=0 h[i]

, (1)

where h[i] is the number of pixels with intensity i; compare

the first two pictures in Figure 6. In the rest of the paper,

when we refer to an image, we will mean the normalized

intensity function, and we will treat this function as the in-

put to our algorithm.

We find that constructing the foreground with a single

threshold can cause significant branch loss, as shown in Fig-

ure 6, in the middle. We also experiment with hysteresis

thresholding [2], which works by applying a first threshold

to find the main portion of the foreground and then expand-

ing the foreground until a second threshold is reached. This

generally improves the quality of the result, as shown in

Figure 6, second picture from the right. Note, however, that

some important fine branches are still missing.

Although the gel medium appears to be non-uniform, we

observe that the values vary smoothly over the background

and contain no obvious local extrema in the interior. We

therefore decide to approximate the background by a har-

monic function B : Ω → [0, 1]. To compute this func-

tion, we set B(x, y) = I(x, y) on the boundary and enforce

∆B = ∂2B
∂x2 + ∂2B

∂y2 = 0 in the interior of Ω. In other words,

we define the background function by solving the Laplace

equation with a Dirichlet boundary condition:

B|∂Ω = I|∂Ω, (2)

∆B|Ω−∂Ω = 0, (3)

where ∂Ω is the boundary of the domain. Numerically, this

partial differential equation with boundary conditions can

be solved using the finite element method. The right picture

in Figure 4 illustrates the method by showing the harmonic

background of the root image to its left.

Figure 4. The (normalized) intensity of the image, I , on the left,

and its harmonic background model, B, on the right.

Figure 5. The difference between the normalized and the back-

ground intensity functions, I −B.

To construct the foreground, we use the difference be-

tween the intensity of the image and its background. As

we can see in Figure 5, the foreground is greatly enhanced,

so that applying hysteresis thresholding results in a quali-

tatively improved foreground, as shown in Figure 6, on the

right.

4. Regularized Visual Hull

Typically, 3D shapes are reconstructed from foregrounds

by the visual hull method. Let Ik : Ωk → [0, 1] be the k-



Figure 6. Images of a root system. From left to right: intensity, normalized intensity, foreground constructed by single thresholding, by

hysteresis thresholding, and by harmonic background subtraction.

th image of a single plant root, for k = 1, 2, . . . , N . For

a set V of voxels in 3D, let πk(V ) ⊆ Ωk be its projection

to a set of pixels in the k-th image. We write Fk ⊆ Ωk

for the foreground, noting that π−1
k (Fk) is the maximal set

of voxels with projection Fk. With this notation, we can

define the visual hull as the maximal set of voxels whose

projections are contained in all foregrounds:

V =

N
⋂

k=1

π−1
k (Fk). (4)

Alternatively, we can describe it as the result of an opti-

mization problem. Define the consistency of a voxel v with

the k-th image as

consk(v) =

{

1 if v ∈ π−1
k (Fk)

−N otherwise,
(5)

and its total consistency as cons(v) =
∑N

k=1 consk(v).
Then the visual hull is the set of voxels that maximizes the

total consistency:

V = argmax
S

∑

v∈S

cons(v). (6)

It is not difficult to see that the two views of the visual hul-

l are equivalent. To illustrate why the above optimization

criterion is not sufficient for our purposes, we use twen-

ty images to reconstruct the root, and assume that most of

the images give good quality foreground constructions, as

suggested in Figure 7. Nevertheless, even tiny distortions

can cause inconsistencies between the images such that the

back-projection to 3D is nearly empty. In the end, the visual

hull does not match any of the input images. We suggest to

use one of the twenty images to improve the 3D reconstruc-

tion. Our approach is best cast in the optimization frame-

work with an additional regularization term. Given a set of

images, one distinguished image Ij in this set, and a regu-

larization parameter λ ≥ 0, the regularized visual hull is

the set of voxels, Vλ, such that

Vλ = argmax
S
{
∑

v∈S

cons(v) + λ · |πj(S) ∩ Fj |}, (7)

where |.| denotes cardinality.

Note that we propose to use only one image for regular-

ization. The reason is that jittering causes different images

to contradict each other, so that using two or more images

can result in duplications of the same branch. The limi-

tation to only one distinguished image is not serious since

roots are typically thin and cause only a small amount of

occlusion. The regularization term may cause more voxels

to be added to the solution, but it does not exclude any vox-

els of the visual hull. It follows that regularized visual hull

induces a nested set sequence:

V ⊆ Vλ ⊆ Vκ, for all κ ≥ λ ≥ 0. (8)

We will make use of this observation when we discuss an

efficient algorithm for constructing a regularized visual hull.

We now analyze the role of the regularization term and

the regularization parameter, λ. Clearly, regularization en-

courages the covering of the distinguished foreground, Fj .

In other words, the new framework introduces an explicit

mechanism to use one of the images to guide the 3D re-

construction. If λ is small, the distinguished image is not

important and the regularized visual hull will barely differ

from the visual hull. On the other hand, by choosing λ large,

we can ensure that each pixel in Fj is covered.

The computation of the regularized visual hull is not dif-

ficult. Using the subset relationship expressed in (8), we ini-

tialize the regularized visual hull to the visual hull: Vλ = V .

Next, we visit each pixel u in Fj . If u is not covered, we

look for a voxel with maximal consistency measure in the



Figure 7. Left: twenty stylized root images of which two are dis-

torted. Right: the visual hull and the regularized visual hull ob-

tained using the first image for improvement.

set π−1
j (u):

v = arg max
v∈π

−1

j
(u)

cons(v). (9)

Note that cons(v) is negative, else u would already be cov-

ered. We then compute the regularized measure, cons(v) +
λ, and add v to Vλ if that measure is positive. Otherwise,

we discard v.

It is easy to prove the correctness of the above algorithm.

The crucial step is to understand the role of equation (9). If

v is included in Vλ, no other voxels in the set π−1
j (u) will

be included, simply because its inclusion would decrease

the global consistency measure while contributing nothing

to the regularization term. Hence, the regularized visual hull

add the minimal number of voxels to cover the distinguished

image.

5. Repairing Connectivity

The regularized visual hull can consist of more than one

connected component. However, for downstream applica-

tions, connectedness of the reconstruction is sometimes re-

quired, and we will see that it not difficult to be achieved.

We restrict ourselves to adding voxels to the regularized vi-

sual hull, as opposed to removing voxels from it. When we

add a voxel, we prefer those with low inconsistency with the

2D images and with small distance to the regularized visual

hull. For each voxel v, we therefore define

incons(v) = max{−cons(v), 0}, (10)

dist(v) = min
w∈Vλ

‖v − w‖, (11)

We can now formulate an optimization problem: find a con-

nected set of voxels U , with Vλ ⊆ U , that minimizes the

following two measures in sequence:

1. the maximum distance to Vλ,

2. the minimum inconsistency with the 2D images.

Algorithm 1 Topology repair

Let Vλ and S be given and set C = S;

Compute the minimal spanning tree T of S;

for each leaf node u of T do

while u is a leaf and u /∈ Vλ do

C ← C \ {u};
u← the parent of u ;

end while

end for

To be specific, we use the Euclidean distance between the

centers of two voxels to measure their distance, and we say

two voxels are neighbors if they share a 2-dimensional face.

A path is then a sequence of voxels in which any two con-

tiguous voxels are neighbors, and U is connected if any two

of its voxels have a connecting path within U . Similar no-

tions of distance and connectivity are possible and lead to

similar results.

We need some notation to describe an algorithm for this

optimization problem. Let d ≥ 0 be the smallest threshold

such that the set of voxels S = Sd with distance at most

d from Vλ is connected. We optimize the first criterion by

computing S with breadth-first search and limiting U to be

a subset of S. By definition, incons(v) = 0 if v ∈ Vλ, and

by construction, incons(v) > 0 if v ∈ S − Vλ. Note that S
defines a graph in which the voxels are the nodes and pairs

of neighboring voxels are the edges. We define the weight

of an edge as the larger inconsistency of its two nodes.

Next, we compute the minimum spanning tree of this

graph, noting that there are many efficient algorithms de-

scribed in the literature. In this tree, there is a unique

path between any two voxels, namely a minimum cost path

that minimizes the maximum weight of its edges. We say

v ∈ S − Vλ separates if it lies on such a path connecting

two voxels in Vλ. Finally, the desired solution to our opti-

mization problem is the set U that consists of all voxels in

Vλ plus all separating voxels of the minimum spanning tree.

We compute U by repeatedly removing a leaf node if that n-

ode does not belong to Vλ. The algorithm stops with the de-

sired set U . The correctness of the algorithm follows from

the fact that for any two nodes in S, the minimal cost path

that joins them belongs to the minimal spanning tree. After

pruning the tree, we are left with all minimal cost paths that

connect the components of the regularized visual hull into

one component. These paths are aware of the geometry of

the root structure because they achieve maximal consisten-

cy with the 2D images.

This simple algorithm is sketched in Algorithm 1. Com-

puting the minimal spanning tree takes O(nα(n)) time with

α(n) the inverse Ackermann function of n and tree pruning

takes only O(n) time where n = |S|. The overall time



Figure 8. From left to right: the silhouette, the visual hull, an ex-

pansion of the visual hull, and the regularized visual hull after

topology repair.

complexity is therefore O(nα(n)). 1

1Note that the MST algorithm with O(nα(n)) time complexity is

Table 1. Comparison of visual hull (VH), the expansion of its re-

sults (eVH), and the regularized visual hull (RVH) for four differ-

ent root systems.

tp
1

fp
1

tp
2

fp
2

tp
3

fp
3

tp
4

fp
4

VH 0.87 0.00 0.93 0.00 0.89 0.00 0.97 0.00

eVH 0.90 0.58 0.98 1.36 0.97 1.06 0.99 0.54

RVH 0.92 0.03 0.95 0.01 0.94 0.02 0.98 0.01

6. Experiments

For our experimental study of the reconstruction algo-

rithm, we reconstruct forty plant root systems growing in

laboratory conditions, each described by forty 2D images

taken in a circle around the plant. The root systems are

grown in gel containers and vary in shape, size, and com-

plexity. For imaging purpose, these containers are placed

on top of a turntable, which is programmed to alternate be-

tween a small rotation and a stop, long enough for a single

image to be acquired. The consistency of the gel allows for

a small motion of the root system during the rotation, which

accounts for some of the inaccuracies accumulated during

data acquisition.

For camera calibration we use the orthographic projec-

tion model, although the more complicated perspective pro-

jection model is also applicable. We compare the recon-

structions using our regularized visual hull algorithm with

those obtained using the conventional visual hull method

and with expanded versions of the latter. To quantify the

results, we define two measures, called the true positive and

the false positive ratios, denoted as tp and fp:

tp =
number of covered silhouette pixels

total number of silhouette pixels
,

fp =
number of covered pixels not in silhouettes

total number of silhouette pixels
.

Note that tp is at most 1, while fp can be larger than 1. We

choose this definition to magnify the fact that an improper

3D reconstruction can produce a large number of false pos-

itive voxels, in particular in the considered case in which

the shape is thin and delicate. Also note that for the visual

hull, the false positive ratio is always zero. To meaningfully

compare the regularized with the conventional visual hull

algorithm, we expand the reconstruction result of the visual

hull result uniformly by a certain radius. The expansion re-

covers many of the missing voxels, but it also increases the

false positive ratio. Note that fp = 1 means half of the back

projected pixels are incorrect. The comparison of the recon-

struction results using the regularized visual hull (RVH), the

conventional visual hull (VH), and the expanded results of

the visual hull (eVH) is given in Table 1. It confirms that

too complicated to implement. Instead, we use Kruskal’s algorithm with

O(n log(n)) time complexity.[3, Chapter 23]



the best results are obtained with the regularized visual hull

algorithm, as it increases the true positive ratio with only

a very modest increase in the false positive ratio. This is

nontrivial, because root structures are thin and delicate and

therefore increasing fp is much easier than increasing tp.

An anectodal visual comparison is shown in Figure 8,

where we show the details of the 3D reconstruction by vi-

sual hull, the expansion of its result, and our regularized

visual hull followed by topology repair. Note that in our

experiments, we fixed the parameter λ to 6N . We find that

the regularization is crucial in achieving high quality result-

s. In our experiments, the one out of the forty images that

was used for improving the reconstruction was chosen ran-

domly. We show a few representative 3D root structures

reconstructed with our software in Figure 9.

7. Conclusions and Future Work

We have presented a new method for 3D plant root re-

construction. There are three major innovations in our ap-

proach. First, we model the background gel as a harmonic

function and this way improves the foreground root silhou-

ette extraction compared to conventional single or hystere-

sis thresholding methods. Second, we propose the regu-

larized visual hull, which improves upon the convention-

al visual hull algorithm in its ability to reconstruct delicate

shapes, such as thin branches of the root system. Third, we

repair topological inconsistencies using minimum spanning

trees.

Our software is part of a biological phenotype/genotype

study of agricultural root systems. This benefits researchers

in biology for their root studies. We also plan to extend our

method to other delicate objects such as bones, hair, and

intestines in medical imaging applications.

References

[1] A. Broadhurst, T. Drummond, and R. Cipolla. A probabilis-

tic framework for space carving. In ICCV, pages 388–393,

2001.

[2] J. Canny. A computational approach to edge detection. IEEE

Trans. Pattern Anal. Mach. Intell., 8(6):679C698, 1986.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. MIT Press, 2009.

[4] W. B. Culbertson, T. Malzbender, and G. G. Slabaugh. Gen-

eralized voxel coloring. In Workshop on Vision Algorithms,

pages 100–115, 1999.

[5] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topologi-

cal persistence and simplification. Discrete & Computational

Geometry, 28(4):511–533, 2002.

[6] O. D. Faugeras and R. Keriven. Complete dense stereovision

using level set methods. In ECCV (1), pages 379–393, 1998.

[7] J.-Y. Guillemaut, J. Kilner, and A. Hilton. Robust graph-

cut scene segmentation and reconstruction for free-viewpoint

video of complex dynamic scenes. In ICCV, pages 809–816,

2009.

[8] K. N. Kutulakos and S. M. Seitz. A theory of shape by

space carving. International Journal of Computer Vision,

38(3):199–218, 2000.

[9] A. Laurentini. The visual hull concept for silhouette-based

image understanding. IEEE Trans. Pattern Anal. Mach. In-

tell., 16(2):150–162, 1994.

[10] S. Lazebnik, Y. Furukawa, and J. Ponce. Projective visual

hulls. International Journal of Computer Vision, 74(2):137–

165, 2007.

[11] M. Lhuillier and L. Quan. Surface reconstruction by inte-

grating 3d and 2d data of multiple views. In ICCV, pages

1313–1320, 2003.

[12] A. R. Martinez, I. Martı́n, and G. Drettakis. Volumetric

reconstruction and interactive rendering of trees from pho-

tographs. ACM Trans. Graph., 23(3):720–727, 2004.

[13] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. M-

cMillan. Image-based visual hulls. In SIGGRAPH, pages

369–374, 2000.

[14] W. Matusik, H. Pfister, A. Ngan, P. A. Beardsley, R. Ziegler,

and L. McMillan. Image-based 3d photography using opac-

ity hulls. In SIGGRAPH, pages 427–437, 2002.

[15] M. Moreno-Risueno, J. V. Norman, A. Moreno, J. Zhang,

S. Ahnert, and P. Benfey. Oscillating gene expression deter-

mines competence for periodic arabidopsis root branching.

Science, 329:1306–1311, 2010.

[16] B. Neubert, T. Franken, and O. Deussen. Approximate

image-based tree-modeling using particle flows. ACM Trans.

Graph., 26(3):88, 2007.

[17] S. Paris, F. X. Sillion, and L. Quan. A surface reconstruction

method using global graph cut optimization. International

Journal of Computer Vision, 66(2):141–161, 2006.

[18] L. Quan, P. Tan, G. Zeng, L. Yuan, J. Wang, and S. B.

Kang. Image-based plant modeling. ACM Trans. Graph.,

25(3):599–604, 2006.

[19] S. M. Seitz and C. R. Dyer. Photorealistic scene reconstruc-

tion by voxel coloring. International Journal of Computer

Vision, 35(2):151–173, 1999.

[20] G. G. Slabaugh, W. B. Culbertson, T. Malzbender, M. R.

Stevens, and R. W. Schafer. Methods for volumetric recon-

struction of visual scenes. International Journal of Computer

Vision, 57(3):179–199, 2004.

[21] P. Tan, G. Zeng, J. Wang, S. B. Kang, and L. Quan. Image-

based tree modeling. ACM Trans. Graph., 26(3), 2007.

[22] J. Traas and T. Vernoux. Oscillating roots. Science,

329:1290–1291, 2010.

[23] H. Xu, N. Gossett, and B. Chen. Knowledge and heuristic-

based modeling of laser-scanned trees. ACM Trans. Graph.,

26(4), 2007.

[24] S. Yamazaki, S. G. Narasimhan, S. Baker, and T. Kanade.

Coplanar shadowgrams for acquiring visual hulls of intricate

objects. In ICCV, pages 1–8, 2007.



Figure 9. Six reconstructed root systems or pairs of root systems, each shown from five different directions.


