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WO3-TiO2 composite materials were obtained using commercial titania (Evonik Aeroxide P25) and hydrothermally crystallized
WO3. Different ratios of TiO2/WO3 were investigated, starting at 1wt.% of WO3 to 50wt.%. +e morphology of WO3 was of the
star-like type, and its structure is basically composed of monoclinic crystalline phase. All spectroscopic characteristics of the
composites and their derived data (band-gap energy value, light absorption threshold, and IR specific bands) directly varied with
the increase of theWO3 content. However, the oxalic acid photodegradation achieved under UV light reached the highest yield for
24wt.% WO3 content, a result that was attributed to the charge separation efficiency and the surface hydrophilicity. +e latter
mentioned reason points out the crucial importance of the surface quality of the investigated structure in photocatalytic tests.

1. Introduction

+e study of semiconductors remained in the last years
a systematically investigated research topic. +e imple-
mentation of nanomaterials in the industry had a major role
in the blooming research of nanomaterials. One of these
nanomaterials is tungsten trioxide (WO3), a transition metal
oxide with large applicability spectra that is commonly used
in paints as pigment [1], in solar cells for electricity pro-
duction [2, 3], and in coatings for heat production from
absorbing solar energy [4], such as humidity, moisture, and
gas sensors [5–7].+is oxide is also an important component
in “smart windows” due to its electrochromic properties [8].
Moreover, WO3 is used as a catalytic and photocatalytic
purifier for air and water [9, 10].

WO3 nanomaterials (nano- or microcrystals) can be
synthesized via various methods, such as hydrothermal
crystallization [11], solvothermal crystallization [12],
chemical vapor deposition [13], atomic layer deposition [14],
physical vapor deposition [15], sol-gel synthesis [16], and
laser pyrolysis [17]. +ere is an extensive list of possibilities

towards WO3 production, but the most widely used tech-
nique is the hydrothermal crystallization because this
method is relatively simple, and it is not expensive and time-
consuming [18–21].

Tungsten trioxide has an interesting peculiarity; in
certain cases, it can act as a charge separator [22]. Due to this
feature, it is a viable component for binary composite
systems, in which another metal oxide is used as an electron
donor, generally TiO2 [23] or ZnO [24], but NiO [25] was
also used. +e final goal of these composite systems is either
to apply them as a sensor or as a photocatalyst, or even both
simultaneously. Photocatalytic efficiency of WO3 semi-
conductor can be enhanced if noble metals are added,
WO3/Au, WO3/Ag, or WO3/Pt composite systems being
related to show an improved photocatalytic efficiency to-
wards the removal of organic pollutants in comparison with
commercial TiO2 (Evonik Aeroxide P25) [26–28]. +e
photocatalytic activity of ternary composites based on WO3,
commercial TiO2, and noble metals (WO3/TiO2/noble
metals) was also intensively studied [29–31]. +e most
commonly used methods for the preparation of WO3/P25
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composites are the mechanical mixing or the adjustment of
the semiconductors’ surface charge, and in both cases, the
composites photocatalytic efficiency was improved as
compared to that exhibited by P25 [32, 33].

In this study, tungsten trioxide microcrystals were
synthesized via hydrothermal crystallization, and their
spectroscopic and structural features were investigated.
Various weight percentage composites based on the syn-
thesized WO3 and commercial TiO2 (Evonik Aeroxide P25)
were prepared by mechanical mixing method, and the
photocatalytic activity of these binary composite systems
was assessed.

2. Experimental

2.1. Chemicals. +e chemicals employed for the synthesis of
WO3 microcrystals were ammonium metatungstate hydrate
((NH4)6H2W12O40·xH2O, Sigma-Aldrich, 99.99%) and
hydrochloric acid (HCl, NORDIC 37%, 12M). +e photo-
catalytic activity was evaluated in the aqueous solution
(3mM) of oxalic acid-OA (HO2C-CO2H·2H2O, Sigma-
Aldrich, 98%). Commercial TiO2 (Evonik Aeroxide P25)
was used for the WO3/TiO2 composites preparation. All
chemicals were used as received without further modifica-
tion or purification.

2.2. Synthesis of Star-Like WO3 Microcrystals. 1.23 g of
ammonium metatungstate hydrate (AMT) was dissolved in
20mL of water under constant stirring. 0.84mL (12M)
hydrochloric acid (HCl) was added to the solution which
was stirred for 15 minutes at room temperature. A yellow
suspension was obtained after the hydrothermal crystalli-
zation, which was carried out at 180°C for 4 hours. After the
autoclave cooled down at room temperature, the product
was centrifuged (3×15 minutes, 1600 rpm) and washed with
deionized water in order to remove the impurities remained
in the product.+e product was dried at 70°C for 6 hours and
annealed at 500°C for 30 minutes (heating rate 5°C ·min−1)
[34]. +e WO3-AMT abbreviation was further used to
identify the WO3 crystals synthesized from ammonium
metatungstate hydrate.

2.3. 9e Preparation of TiO2/WO3 Composites. +e
TiO2/WO3 composites were obtained via mechanical mixing
(3× 5minutes), by using the physical mixingmethod. 50–50,
67–33, 76–24, 90–10, and 99–1wt.% TiO2/WO3 composites
were prepared and investigated. According to our previous
work [29], no structural or morphological changes were
observed for the two components, when mixing them by
using the above-described approach.

2.4. Characterization Methods. +e assessment of the crys-
talline structure of the composite components was carried out
by the means of X-Ray Diffraction (XRD) measurements.+e
XRD diffractograms were recorded on a Shimadzu 6000
diffractometer (Shimadzu Corporation, Kyoto, Japan), by
using Cu-Kα irradiation, (λ�1.5406 Å). +e crystalline

phases of the semiconductors were evaluated and the crys-
tallites’ average size was calculated by using the Scherrer
equation [35], whereas the anatase/rutile ratios in P25 were
evaluated by the well-known Banfield approach [36].

Diffuse reflectance spectroscopy (DRS) measurements
were performed by using the JASCO-V650 spectropho-
tometer (λ� 250 – 800 nm) equipped with ILV-724 inte-
gration sphere. +e band-gap energy of the composites
system was determined using the following equation
[37–39]:

(E) �
h · c

λ
, (1)

where (E) is the band-gap energy, h is Plank constant, c
is the speed of light� 3.0×108m·sec−1, and λ is the cut-off
wavelength.

A JASCO 4100 (Jasco, Tokyo, Japan) spectrometer was
used to record the IR spectra of the composites, at room
temperature, in the spectral range of 400–4000 cm−1, with
a spectral resolution of 4 cm−1.+e samples were prepared in
the form of KBr pellets.

+e SEM micrographs were recorded by using an FEI
Quanta 3D FEG scanning electron microscope operating at
an accelerating voltage of 25 kV. +e WO3 nanomaterials
were covered with Au to amplify the secondary electron
signal, while the morphological peculiarities of the semi-
conductor were uncovered.

+e investigation of photocatalytic performance was
carried out in the presence of 2× 60Wfluorescence UV lamps
with λ≈ 365 nm emission maximum, under vigorous stirring
(Csuspension� 1 g·L

−1; V suspension� 75mL; Coxalic acid� 3mM).
+e photocatalytic degradationwas followed for 3 hours using
high-performance liquid chromatography (HPLC). +e
measurements were carried out by using Merck-Hitachi type
D-7000 chromatograph equipped with an L-4250 UV-Vis
detector. +e volume of the loop was 20 μL and the chro-
matography column was installed with Grom Resin ZH-type
load. +e eluent was 0.06% H2SO4 aqueous solution, and the
applied flow rate was 0.8mL·min−1. +e key parameters in-
vestigated here were the conversion (X) and the reaction rate.

3. Results and Discussion

3.1. Crystalline Structure and Particle Size of the
Semiconductors. +e first step in the investigation series was
to check the quality of the composite components. From the
XRD patterns (Figure 1), the crystalline phase and the mean
primary particle size of the synthesized semiconductors were
established. In the case of WO3, only the monoclinic
crystalline phase was detected, as it can be seen from the
diffractogram. However, based on our previous work [33],
one can infer that this synthesis procedure gives rise to
hierarchical structures made up from fine micrometric
needle crystals (30–50 nm wide and 3-4 µm long) that form
a star-like shaped structure (therefore the Scherrer equation
was not used).+e particle size of theWO3 stars was between
3 and 4 µm (as described in Section 3.3). Regarding the
commercial TiO2, both anatase and rutile crystalline phases
were observed, the ratio between anatase and rutile was
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estimated (89 :11), and the primary calculated particle size
(25–40 nm) was very close to the values reported in the
literature.

3.2. Optical Properties of the Prepared Composite System.
As the composite structure contains both oxides, it was
crucial to investigate the optical properties of these materials
(Figure 2). +e band-gap energy values were determined by
using the light absorption threshold method, as mentioned
in Section 2.4. In the case of the WO3-AMT semiconductor,
the light absorption threshold was found to be around
550 nm and the calculated band-gap energy was of ≈2.25 eV,
but it should be kept in mind that the band-gap energy value
of the commercial TiO2 is ≈3.2 eV [33]. Concerning
the composites, the light absorption thresholds and the
band-gap energy values were as follows: 394 nm, ≈3.14 eV
(99-1wt.% P25-WO3); 414 nm, ≈2.99 eV (90-10wt.% P25-
WO3); 449 nm, ≈2.76 eV (76-24wt.% P25-WO3); 447 nm,
≈2.77 eV (67-33wt.% P25-WO3); and 451 nm, ≈2.74 eV (50-
50wt.% P25-WO3). +e lowest band-gap energy was found
for the 50-50wt.% P25-WO3 composite. One observes that
the WO3 amount has a significant effect on the band-gap
energy value, and a very interesting fact is that even 1% of
monoclinic tungsten trioxide can influence it, by slightly
reducing this value by 0.06 eV. By adding 10% WO3 to the
composite composition, the band-gap energy was found
to further decrease by 0.21 eV. By increasing the amount of
WO3 to 24%, the band-gap energy was lowered by 0.44 eV.
According to these results, the 99-1%wt.% P25-WO3 and
90-10% wt.% P25-WO3 composites should act as photo-
catalysts under UV light irradiation, while the 76-24%wt.%
P25-WO3, 67–33%wt.% P25-WO3, and 50-50%wt.% P25-

WO3 composites may have photocatalytic potential under
visible light irradiation.

3.3.Morphological Features of the Synthesized Semiconductor.
SEMmeasurements revealed that the morphology of theWO3
(WO3-AMT) microcrystals synthesized from ammonium
metatungstate hydrate was of star-like type (Figure 3). +e
diameter of the stars was between 3 and 4 µm, each star being
constructed from microfibers of 3–4 µm length. More im-
portantly, it was found that all themicrostars showed the same
structure and morphology (i.e., high monodispersity), which
can reinforce all the conclusions derived from the study.

3.4. FT-IR Characterization of the Prepared Composites
System. By analyzing the IR spectra (Figure 4) of the obtained
composites, the specific signals of TiO2 were detected without
any special changing trends, excepting the alteration of some
signals proportionally with the composite components’ ratio.
+e main spectral feature associated with titania was the large
band between 400 and 700 cm−1, which can be attributed to
the stretching vibrations of Ti-O-Ti and Ti-O bonds. In the
case of WO3, several specific spectral characteristics were
observed, such as the ones between 600 and 1000 cm−1 (the
most intense one being located at 931 cm−1), which were
assigned to differentW-O-W stretching modes.+e small but
distinct band at 1035 cm−1 was given by the stretching vi-
bration of the W�O bonds [40]. +ese signals involving
tungsten bond vibrations were also dependent on the WO3
concentration.+e band at 1390 cm−1was interestingly found
to be given by NH4

+ ions [41]. At the first view, this is rather
surprising; but actually, it can be considered an expected
appearance having in view that WO3 was obtained by using
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Figure 2: +e reflectance spectra of the prepared WO3/TiO2
composites system and the band-gap energy dependence on the
WO3 content (inset figure).
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Figure 3: SEM micrographs of the WO3-AMT semiconductors, showing the star-like shape and a fine hierarchical structure.
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ammonium metatungstate. +e only bands that differently
changed self-dependent on the WO3 content were those
directly related to the surface hydrophilicity, namely, those
at 1630 and 3427 cm−1 assigned to OH vibrations. +ese
bands exhibit a relatively high intensity for the samples
with ≥24wt.%WO3 and a slow decrease of it for smallerWO3
content. +is result points out the high water affinity of 90-
10wt.% P25-WO3 and 76-24wt.% P25-WO3, which could
have on impact on the photoactivity of these materials.

3.5. Photocatalytic Activity. +e evaluation of the photo-
catalytic performance was carried out by analyzing the oxalic
acid degradation curves, which provide qualitative and
quantitative information (Figure 5). +e photocatalytic
performance was quantitatively described by using the
conversion values (X).

No photocatalytic activity was observed when bare WO3
and 50-50wt.% TiO2/WO3 were used as photocatalysts in
3mM oxalic acid solution.+is photocatalytic inefficiency of
bare WO3 could be due to the WO3 particles dimension,
which is relatively high (3–4 µm). In the case of 50-50wt.%
TiO2/WO3 composite, the reason could be the screening
effect of the WO3 crystals on the TiO2 particles so that the
system had a deficiency being activated under UV light
irradiation. In this case, the generation of charge carriers was
decreased, and consequently, the photocatalytic activity was
low in the composites with high WO3 content. Only 28% of
oxalic acid was removed using the 67-33wt.% TiO2/WO3
composite system in contrast to 76-24wt.% TiO2/WO3
system, where 99% conversion was achieved. 68% conver-
sion was obtained in the case of 90-10wt.% TiO2/WO3
composites and 95% conversion rate was observed for the
99-1wt.% TiO2/WO3 composites. +e reference catalyst
(commercial TiO2) degraded 73.3 wt.% of oxalic acid.

+e most efficient composite for oxalic acid degradation
was the 76-24wt.% TiO2/WO3 system because the re-
combination process was inhibited successfully so that the
separation of the charge carriers was the most efficient in the
case of this sample. +e first five points were taken into
consideration for the calculation of the initial reaction rates.
+e concentration changes of oxalic acid (at 0, 15, 30, 45, and
60min) were plotted versus time to determine the initial
reaction rate (ri) values. +e linearization of these two pa-
rameters and its slope gave the initial reaction rate values.
+e initial reaction rate of the bare WO3 and of 50-50wt.%
TiO2-WO3 composites were null because these systems were
not photoactive. In the other cases, the reaction rate was
5.80mM·s−1·10−3 (67-33%), 22.10mM·s−1·10−3 (76-24%),
12.90mM·s−1·10−3 (90-10%), 11.40mM·s−1·10−3 (99-1%),
and 12.7mM·s−1·10−3 (in the case of commercial TiO2). +e
conversion, initial reaction rate, and band-gap energy values
are summarized in Table 1.

All the activity-related parameters clearly show that it
must be a specific parameter responsible for the high
photoactivity. +e band-gap energy values of the composites
can be eliminated as the main reason because it is a pa-
rameter that varied concomitantly with theWO3 content. As
no structural and morphological changes occurred during

the composite preparation, other approaches should be
exploited. Firstly, an analog case can be involved, in which
a similar phenomenon was explained [29]. As the amount of
WO3 increases, so does the charge separation efficiency in
the composites. However, after a specific concentration of
WO3, this was detrimental, because the WO3 itself is not
photoactive. +is means that increasing too much the ratio
of a charge separator (without self-activity), a lowering of the
overall photoactivity occurs. However, this approach may be
not sufficient alone. +e intensity of the IR bands at
1630 cm−1 and 3427 cm−1 showed nearly the same trend as
the photoactivity. +is means that the photocatalytic deg-
radation is in direct relationship with the hydrophilicity of
the photocatalyst (a fact well-known for TiO2 [42]), which
was confirmed here for the first time in case of TiO2-WO3
composites.
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Table 1: Summary of the photocatalytic properties for the various
composite system and reference catalysts.

Samples
X—conversion
(%) (after
3 hours)

ri
(mM·second−1)·

10−3

Band-gap
energy
value
(eV)

WO3 (AMT) 0.0 0.0 2.25
P25 73.3 12.7 3.20
50% P25-50%
WO3 (AMT)

0.0 0.0 2.74

67% P25-33%
WO3 (AMT)

28.0 05.8 2.77

76% P25-24%
WO3 (AMT)

99.0 22.1 2.76

90% P25-10%
WO3 (AMT)

68.0 12.9 2.99

99% P25-1%WO3
(AMT)

95.0 11.4 3.14
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4. Conclusions

In the herein presented study, WO3-TiO2 composites with
different TiO2/WO3 ratios (1 wt.% of WO3 to 50wt.%) were
obtained by using commercial titania (Evonik Aeroxide P25)
and hydrothermally crystallized WO3. +e morphology of
the synthesized hierarchical WO3 semiconductors was star-
like shaped with a diameter between 3 and 4 µm, and WO3’s
determined crystal phase was monoclinic. +e present study
proves that WO3microcrystals of relatively large dimension,
without photoactivity, can improve the photocatalytic effi-
ciency of the commercial TiO2, acting as a charge separator.
+e band-gap energy values of the composites were found to
be dependent on theWO3 content as well, but no correlation
was established with the photoactivity.

+e 76-24wt.% TiO2/WO3 composite system has shown
the highest photocatalytic activity, reaching a conversion rate
of 99%. Also, this sample and the one with 10wt.% of WO3
exhibited the most intense water affinity as revealed by the IR
bands assigned to water vibrations, showing a clear corre-
lation between these structural entities and photoactivity.

+e obtained results from this study also suggest that
these composites system could be used as efficient photo-
catalysts for other pollutants removal (methyl orange and
salicylic acid), gas sensors, and sensors for detection of
organic pollutants containing the carboxylic functional
group or could be even used for ternary WO3/TiO2/noble
metal composites.
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for recording the IR spectra and Zsejke-Réka Tóth for the
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