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Abstract

The ”ATLAS ITk Strip Sensor Collaboration” R&D group has developed a second iteration of single-sided n+-in-p type micro-

strip sensors for use in the tracker upgrade of the ATLAS experiment at the High-Luminosity (HL) LHC. The full size sensors

measure approximately 97 x 97 mm2 and are designed for tolerance against the 1.1 × 1015neq/cm2 fluence expected at the HL-

LHC. Each sensor has 4 columns of 1280 individual 23.9 mm long channels, arranged at 74.5 µm pitch. Four batches comprising

of 120 sensors produced by Hamamatsu Photonics were evaluated for their mechanical, and electrical bulk and strip characteristics.

Optical microscopy measurements were performed to obtain the sensor surface profile. Leakage current and bulk capacitance

properties were measured for each individual sensor. For sample strips across the sensor batches, the inter-strip capacitance and

resistance as well as properties of the punch-through protection structure were measured. A multi-channel probecard was used

to measure leakage current, coupling capacitance and bias resistance for each individual channel of 100 sensors in three batches.

The compiled results for 120 unirradiated sensors are presented in this paper, including summary results for almost 500’000 strips

probed. Results on the reverse bias voltage dependence of various parameters and frequency dependence of tested capacitances

are included for validation of the experimental methods used. Comparing results with specified values, almost all sensors fall well

within specification.

Keywords: HL-LHC, ATLAS ITk, Micro-strip Sensor, Leakage Current, Depletion, Strip Test
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1. Introduction

The foreseen upgrade of the Large Hadron Collider (LHC)

to the High-Luminosity LHC (HL-LHC) is scheduled to de-

liver collisions in 2022 [1]. To achieve a total cross section

of 3000 fb−1, the instantaneous luminosity of the HL-LHC is

expected to reach 5×1034cm−2s−1 at a centre of mass energy

of 14 TeV. The increase in particle fluence necessitates an up-

grade of the ATLAS inner detector: an all-silicon new inner

tracker (ITk) [2] is proposed to replace the current SemiCon-

ductor Tracker (SCT) and Transition Radiation Tracker (TRT).

The ITk layout as presented in the Letter of Intent [3] assumes

silicon microstrip detectors to be used for 7 endcap disks, and

5 barrel layers. From simulations verified by experiments, the

highest particle fluence in the barrel short strip layer is expected

to be 5.3× 1014neq/cm2 [4]. Including a safety factor of 2, can-

didate ITk sensors will have to be radiation hard up to levels of

1.1 × 1015neq/cm2 . The goal of the ITk Strip Sensor collabora-

tion is to develop a silicon microstrip sensor that is suitable for

use in the new ITk. Results of detailed studies of properties of

full-size sensor prototypes are presented in this paper, whereas

studies of radiation damage of 1×1 cm2 miniature sensors are

reported in [5], [6].

2. ATLAS12 Large Area Sensors

The ATLAS12 sensors are the second iteration of sensors

designed for the Upgrade ITk, superseding the ATLAS07 types

[7]. To cope with the effects of radiation damage during the

sensor lifetime, operation in partial depleted mode is foreseen

towards the end of the detector lifetime. The sensor will need

specially designed structures between the strips to guarantee

strip isolation during its lifetime and mitigate radiation-induced

surface damage whilst retaining a low inter-strip capacitance. A

single-sided n+-in-p sensor offers a trade-off between the above

requirements and cost [8]. 120 full-size prototype sensors were

manufactured by Hamamatsu Photonics [9] on a 6′′ wafer pro-

cess using p-type float zone silicon. Sensors were delivered in 4

batches: VPX12318, VPX12518, and VPX12519, of 33, 32 and

35 sensors respectively were shipped to the UK, and VPX14757

containing 20 sensors was delivered to the US.

The largest square sensor that can be cut from the wafer

measures 97.5 x 97.5 mm2. This geometry is denoted ”Outer

Cut”. Sensors with 462 µm reduced edge metal all around, de-

noted ”Inner Cut”, were made available as well to allow for

smaller inactive regions in the final detector layout. The sen-

sor strip implants are arranged in 4 columns of 1282 implants

each, with the top and bottom implant of each column serving

as field shaping strips. The resulting strip pitch is 74.5 µm, the

strip length is 23.9 mm. All strips are connected to the bias rail

by poly-silicon resistors implanted in the sensor. For biasing

the central two columns, a bias rail runs through the center of

the sensor. Top metal layer strips are AC-coupled to the strip

∗Corresponding author. e-mail: lbah2@cam.ac.uk
1Now at Syracuse University.

Fig. 1: Picture of the corner of an Outer Cut ATLAS12 sensor, illustrating the

layout of the bias rail, guard ring, strip top metal and bias resistors. The dicing

streets intended for the Inner Cut sensors are clearly visible.

implants, which have p-stop traces running in between along

the full length for strip isolation. The top metal layer is pas-

sivated, with openings for probing and wirebonding. Figure 1

contains a photograph showing the sensor details.

3. ATLAS12A mechanical properties

The sensor mechanical specifications state the following:

• nominal thickness: 310±20 µm,

• thickness variation: ±10 µm across the sensor. This means

some thickness variation is allowed between sensors, but

not across a sensor.

• sensor flatness when unstressed: <200 µm,

• Outer Cut dimensions: 97540±25 µm square,

• Inner Cut dimensions: 95692±25 µm square, and

• no cracks or chips at the dicing line to extend further in-

wards than 50 µm.

For visual inspection and evaluation of the above proper-

ties, a non-contact optical Coordinate Measurement Machine

(CMM) was used, with a precision better than 2 µm in x, y,

and 4 µm in z. A coordinate system is defined, with the ori-

gin (0,0,0) at the centre of the sensor, with the axes in right-

handed orientation with the z axis pointing upwards, and the

scratch pad located in the bottom right. For measuring outer
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Fig. 2: Measured space points (left), and net bow interpolated plot (right) for

sensor VPX12519-W745.
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Fig. 3: Histogram of the maximum bow of the sensors from batches VPX12318,

VPX12518 and VPX12519.

and inner cut sensors within a reasonable timespan, measure-

ments were taken on a 11×11 grid with 9.440 mm spacing. To

compensate for tilt of the freely suspended sensor, a flat plane

is fitted to, and subtracted from the space points measured. The

measurement points, and an interpolated net bow result for a

typical sensor are plotted in Fig. 2. The difference between the

highest and lowest points from the net bow is taken as the max-

imum bow. A histogram of the maximum bow of sensors from

batches VPX12318, VPX12518 and VPX12519 is plotted in

Fig. 3, the resulting average is 51.7 µm, with an RMS deviation

of 12.4 µm, which is well within specification.

4. Bias Voltage and Frequency dependence of parameters

4.1. Leakage Current
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Fig. 4: Leakage currents versus Vbias for ATLAS12 sensors at 21◦C, grouped

per batch.

Development of the leakage current against bias voltage

(Vbias) for all 120 sensors is plotted in Fig. 4. The data was

taken at T=21◦C, and at a relative humidity (RH) of 40±10%.

Since the ATLAS12 sensors are very sensitive to the ambient

humidity, the initial batch VPX12318 was tested in a dry N2 en-

vironment. As can be observed from the graphs on VPX12318

however, a considerable number of sensors exhibit early, soft
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) at V2I(nA/cm
1 10
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Fig. 5: Histogram of the normalised leakage current at Vbias=-600V, at T=21◦C.

breakdown. The two subsequent batches were stored in dry at-

mosphere, and measured in standard cleanroom conditions at

T=21◦C, and 40±10% RH, and fewer soft breakdowns occur.

Measurements were carried out using Keithley 2410 and 6517

Source Measure Units (SMUs), with 10V step increases with

a 10s delay from 0V to -1000V unless the compliance limit of

100 µA was exceeded. In some cases, the sensors were trained

by increasing the bias voltage very slowly, after which a normal

IV measurement was recorded.

With a 2 µA/ cm2 specification for leakage current, and the

area inside the bias ring spanning 91.8 cm2, the maximum al-

lowed leakage current at -600V bias and T=21◦C, is 184 µA.

Two sensors exhibited early breakdown, and were excluded from

all further measurements. A histogram containing the leakage

currents at Vbias=-600V of the remaining 118 sensors is plot-

ted in Fig. 5. It shows that the sensors examined sit well below

1 µA cm2, comfortably within specifications.

4.2. Bulk Capacitance

The sensor bulk capacitance (Cbulk) was measured as a func-

tion of bias voltage to determine the sensor depletion, and ver-

sus frequency to verify the validity of the measurement. Using

a Wayne-Kerr 6440B LCR meter in R-C series network mode,

the frequency dependence of Cbulk for various Vbias values of

sensor VPX12519-W748 is plotted in Fig. 6. As can be ob-

served, the Cbulk is constant between 0.5 and 6 kHz for a wide

range of Vbias. Cbulk measurements were carried out with fre-

quencies between 1 and 2 kHz.
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Figure 7 contains plots of 1/Cbulk
2 versus Vbias for 33 sen-

sors of batch VPX12519. As can be seen from the plot, be-

haviour is very consistent within the batch. The full depletion

voltage (VFD) is determined by taking the intersection point of

straight line fits to the sloped, and flat region. Histogrammed

VFD for 98 sensors of batches VPX12318, VPX12518 and

VPX12519 are plotted in Fig. 8: the distribution is narrow, with

an average of VFD=365V, and a RMS of 8.6V.
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Fig. 9: Histogrammed doping concentrations Neff , extracted from the data plot-

ted in Fig. 7. The blue line histogram is extracted from the flat region, the red

line histogram is from the sloped region.

Assuming a parallel plate capacitor model for the sensor,

with the area defined as the inside of the bias ring, the active

thickness is estimated at 301 µm. With the area and thickness

known, the doping concentration can be calculated both from

the sloped region as well as the saturated region of the Cbulk

data. For both methods, the calculated doping concentrations

are plotted with blue and red lines respectively in Fig. 9. The

resulting values of 5.3±0.12 ×1012cm−3 are consistent with a

wafer bulk resistivity of 2.5 kΩ cm, which is, although the VFD

is higher than the desired value of <300V, in accordance with

specification.

4.3. Strip Coupling Capacitance
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Fig. 10: Frequency dependence of Rimplant (top plot), and Ccoupling (bottom

plot), for various Vbias values.

The capacitance and resistance of the R-C network formed

by the strip implant resistance (Rimplant) and the capacitance be-

tween the implant and the top metal readout strip (Ccoupling) are

plotted as a function of measurement frequency for various bias

voltages in Fig. 10. It has been measured directly between the

strip implant and top metal using an LCR in R-C series net-

work mode. As can be seen from the plots, the behaviour of the

capacitance, and implant resistance both show little variation

across a 2-100 kHz range. At higher frequencies, the resistance

and capacitance drop, as expected from the implant resistance

and the transmission line formed between the strip implant and

top metal. The nominal value of Ccoupling is 25.7 pF/ cm, which

is well within the specification of >20 pF/ cm. More results are

presented and discussed in Section 5.

4.4. Bias Resistance

The bias resistance (Rbias) for a small sample of channels

was measured directly, as part of the DC measurement of the

Punch-Through Protection circuit behaviour, see Section 4.7.

The current between the implant and the bias rail was moni-

tored while the voltage was increased from 0V to 10V in 0.25V

steps. The results lie within 1.5±0.03 MΩ, which is well within

the specification of Rbias=1.5±0.5 MΩ. More results on many

individual strips probed are presented and discussed in Section

5.
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4.5. Inter-Strip Capacitance
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Fig. 11: Inter-strip capacitance Cis result for a few sample strips versus Vbias.
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Fig. 12: Behaviour of the inter-strip capacitance Cis versus measurement fre-

quency for various Vbias values.

The inter-strip capacitance (Cis) dominates the input capaci-

tance contributions to the front-end electronics, and determines

the noise levels of the detector. Its value is one of the main

input parameters to the design process of new revisions of the

front-end preamplifier, and should be kept as low as possible.

The specification states it should be <0.8 pF/ cm, measured at

100 kHz with both neighbouring strips grounded. For ATLAS12

sensors with 23.9 mm strip length, Cis<1.91 pF. The develop-

ment of Cis versus Vbias for 4 sample channels is plotted in

Fig. 11. The Cis value is largely determined by the strip metal

geometry, and sensor surface layout. Its frequency dependence

is plotted in Fig. 12, results suggesting the measurement fre-

quency should lie in the 50 kHz to 1 MHz range. The average

value measured is 0.77 pF/ cm, confirming findings from other

institutes.

4.6. Inter-Strip Resistance

The inter-strip resistance (Ris) was measured by applying a

master voltage (VM) to a strip implant, and measuring the in-

duced current (ic) on the neighbouring strip by sampling the

voltage developed across its bias resistor VS. VM is applied in

1V steps in the interval [-5V,+5V]. Even though instruments

with high input impedance and excellent isolation were used

(Keithley 6517, Keithley 2000), it is likely that above 10-20 GΩ

the accuracy is limited due to setup systematics. Nonetheless,

from the plot of VS against VM in the top plot in Fig. 13, it
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Fig. 13: Top plot: measured voltage induced by ic against the applied voltage

VM for various values of Vbias (see text). Bottom plot: extracted Ris against

bias voltage.

shows that there is a clear linear dependence of the two proper-

ties. The bottom plot contains summary results on extracted Ris

for sample strips for a range of Vbias.

4.7. Punch-Through Protection

To protect the strip implants and front-end electronics from

excessive charge liberated in the bulk, for example as the result

of a beam splash, a Punch-Through Protection (PTP) structure

is incorporated in the sensor. It embodies an elongation of the

strip implant under the bias resistor, leaving a 8 µm gap to the

bias rail. Soft breakdown will occur across this gap as soon as

a threshold potential is exceeded. The PTP structure is of the

”fully gated” design, where the bias rail implant extends over

the gap, covering the PTP gap entirely, see [5].
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Fig. 14: Plot showing the apparent resistance ∆V/∆I against the voltage applied

to the strip implant Vstrip.

A static measurement to determine the threshold voltage

consists of monitoring the current whilst increasing the volt-

age imposed on the strip implant. To limit the power dissipa-

tion, voltage and current are limited to 50V, 50 µA respectively.
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Typical results for sample channels of the differentiated dV/dI

plot, showing the resistance against applied voltage are plot-

ted in Fig. 14. A threshold at 13V is clearly visible, with the

apparent resistance dropping sharply from the 1.5 MΩ bias re-

sistance to tens of kΩ. As expected, the sharper drops are ob-

served when the voltage is applied on the implant end nearer to

the PTP structure.

5. Strip Scan Results

5.1. Measurement Techniques

To evaluate properties of individual strips, study the unifor-

mity of electrical characteristics over the entire sensor surface,

and compare against other sensors, full scans of individual sen-

sor channels were made. A relatively simple Strip Test proto-

col, see the following Section 5.2, was used to check for strip

shorts and pinholes, and measure the Ccoupling and Rbias for each

individual strip. A single probe needle was used for probing

the initial 31 sensors in batch VPX12318, after that a custom

32 channel probecard and associated multiplexing equipment

were used, reducing the sensor measurement time from 14 to

under 3 hours

During the test, the sensor was held in place by a low-force

spring rather than a vacuum jig to minimise stress and strain on

the sensor that could lead to early breakdown or influence strip

test results, with the bias provided by wirebonded contacts to

the edge metal and bias rail. Additional needles on the probe-

card provide a edge-sense feature, breaking a contact as soon

as the needles touch the sensor surface. After detecting touch-

down, the z-height is recorded and a pre-defined probestation

chuck overdrive is applied to ensure a good contact between

the probecard needles and the sensor. This procedure was re-

peated for every touchdown, providing uniform and consistent

contact quality across the entire sensor. In contrast, for the

single-needle measurement such functionality does not exist,

resulting in variable contact quality due to the non-planarity of

the prober chuck, jig or sensor.

5.2. Strip Test Description

A “Full Strip Test” refers to the following sequence for test-

ing a single strip on a sensor that is biased at -150V to achieve

full strip isolation:

• Connect to the strip metal using a probe needle.

• Connect an SMU set to 10V to the strip metal through a

1 MΩ current-limiting series resistance, and measure the

current.

• If the current exceeds 1 µA, the strip is marked as having

a short, and the measurement proceeds to the next strip.

• The SMU voltage is increased to 100V, and the current is

recorded after a short time delay.

• The strip is connected to GND, and subsequently to the

LCR meter.

• The LCR meter measures the R-C series network formed

by Rbias and Ccoupling, and results are recorded.

• The strip metal is connected to GND and the measure-

ment proceeds to the next strip.

5.3. Strip Test Results Summary

Histograms of accumulated data of strip metal current (top

plot), Ccoupling (middle plot), and Rbias (bottom plot) are plotted

in Fig. 15. Data from almost 500000 channels from 97 sen-

sors from batches VPX12318, VPX12518, and VPX12519 is

included. One sensor exhibited high leakage current and was
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Fig. 15: Accumulated strip test results for 97 sensors from batches VPX12318,

VPX12518, and VPX12519.
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Sensor Property Specification Measured values

Maximum Bow <200 µm 51.7±12.4 µm

Leakage current at Vbias= 600V <2 µA/ cm2 <1 µA/ cm2 for 118 of 120 sensors

Depletion Voltage <300V, wafer resistivity allowing 365±8.6 V

Bias Resistor Value 1.5±0.5 MΩ 1.49±0.111 MΩ

Coupling Capacitance >20 pF/ cm at Vbias=300V 27.2±0.62 pF/ cm

Inter-Strip Capacitance <0.8 pF/ cm 0.77 pF/ cm

Inter-Strip Resistance >15±5 MΩ >30 GΩ

Percentage Good Strips >98% per segment >99.97

Table 1: Comparison of ATLAS12 specification and summarized measurement values for various sensor properties.

excluded from the measurement. Ignoring defective channels,

the measured values fall well within specification, see Table 1.

A geometrical map of accumulated defective channels is

displayed in Fig. 16. There seems to be no obvious correla-

tion with sensor geography, although segment 3 seems to have

significantly more defects than the other segments. Of the 132

recorded faulty channels across 97 sensors probed, 79 have a

short or pinhole, 10 fail the Ccoupling requirement, and of 43

strips the Rbias is out of range. The total fraction of good strips

is 99.97%, comfortably exceeding the 98% requirement.

6. Summary and Conclusion

Detailed studies on ATLAS12 sensors produced by Hama-

matsu Photonics has been presented in this paper. Results from

the evaluation are summarized in Table 1, and compared to the

specifications set out in the ATLAS12 Technical Specification

Document. 118 of 120 sensors tested satisfy the specifications

for non-irradiated sensors for maximum bow, leakage current.

Only 0.03% of probed strips were measured as defective; all

other strips satisfied the requirements for Ccoupling and Rbias.

The values of the Inter-Strip Capacitance and -Resistance mea-

sured for sample channels are well within specification. The

conclusion of examination of 120 sensors is that they are of

high quality, have good consistency between sensors in three

different batches, and excellent uniformity across channels on a

sensor. They satisfy the requirements, and are considered suit-

able for use in the barrel of the ATLAS Upgrade ITk.
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