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Detailed study of complex flow fields of aerodynamical 
configurations by using numerical methods 
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Abstract. The mathematical physics of fluid flow in a compressible 
medium, leads to nonlinear partial differential equations or their equivalent 
integral versions. For the solution of these equations one has generally 
to resort to numerical methods using mostly finite difference or finite 
volume schemes, which are well established now. These field methods are 
very suitable for studying the physical features of complex flows. The 
present paper gives at first a short sketch of the numerical procedure and 
thereafter goes into the detailed analysis of the flow fields of delta wings, 
double-delta wings, delta shaped wing-canard combinations and space 
vehicles. Further examples include long span wings and wing-bodies at 
supercritical on flows, flows around propellers and rotors and finally some 
unsteady flows. The examples cited are selected topics from the extensive 
studies undertaken in the department of numerical aerodynamics of the 
DLR in Braunschweig in the course of the last few years. 

Keywords. Complex flow fields; aerodynamical configurations; numerical 
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1. Introduction 

For the study of complex flows in compressible media it is essential to work with 
the field solutions of Navier-Stokes equations, or else with the Euler equations when 
the effects of viscosity and heat conductivity are small, especially at high Reynolds 
number of the flow. In both cases one has to solve nonlinear partial differential 
equations, generally by resorting to numerical methods. These methods are well 
established now and are widely implemented, mostly by using finite-difference or 
finite-volume schemes. The efficiency of a numerical method is measured by three 

criteria- good accuracy with robustness, acceptable computing time and easy 
applicability to complex flow fields. Since the numerical methods for solving nonlinear 
partial differential equations (Courant et al 1928, 1952; Lax & Wendroff 1966) have 
been established, some basic schemes for solving the Euler equations were introduced 
thereafter (Beam & Warming 1976; Steger & Warming 1979; Pulliam & Steger 1980; 
Jameson et al 1981; Roe 1981; Whitfield & Janus 1984; Van Leer 1985; Eberle 1987), 
and numerical schemes for solving Reynolds-averaged Navier-Stokes equations have 
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also been developed (Beam & Warming 197.8; MacCormack 1982, 1985; Jameson 
1985; Pan & Lomax 1986; Van Leer et al 1987). These basic methods needed however 
considerable efforts for improved efficency with respect to the three criteria as stated 
above and the contributions on this line in recent years have been very significant 
(some selected papers being Radespiel & KroU 1985; Kroll & Jain 1987; Rossow 
1987, 1989, 1991; Kroll et al 1989, 1991; Kroll & Rossow 1990; Radespiel & Kroll 
1990; Radespiel et al 1990; Blazek et al 1991; Swanson & Radespiel 1991; Blazek 
1992). For solving the Reynolds-averaged Navier-Stokes equations for turbulent 
flows it is essential to model the turbulent exchanges producing viscous stresses. A 
unified and simple approach is the classical eddy-viscosity modelling, which is now 
being put in an extended version as outlined (Baldwin & Lomax 1978; Degani & 
Schiff 1983; Johnson & King 1984). One prerequisite for improved efficiency of 
numerical schemes is the generation of surface and field grids of outstanding quality, 
as regards smoothness, orthogonality and proper grid fineness especially in regions 
of high flow gradients. The technique of grid generation is also well established and 
is applied for producing body fitted grids of various topologies. The basic methods 
of grid generation and their implementations are discussed (Eriksson 1982; Thompson 
et al 1985; Schwarz 1986; Sonar & Radespiel 1986; Radespiel 1988; Sonar 1989; 
Findling & Herrmann 1991; Pahlke & Kroll 1991; Rossow & Ronzheimer 1991). 

The numerical solutions of Euler and Navier-Stokes equations yield abundant 
field data in the physical domain around a moving aerodynamical configuration, 
which can be used for analysing the main features of the flow, both over the boundary 
surface and in the surrounding space. Such a study is of great importance for complex 
flow fields involving vortical flows, shock waves and shock boundary layer 
interactions. 

It is well known that slender delta wings moving with moderate to high angles of 
incidence produce spiralling vortical flows over their upper surface thus causing an 
appreciable additional lift force, which is termed vortex-lift. This leads to improved 
aerodynamic properties of the delta-wing aircraft. The flow in the spiralling vortices 
is complex, being characterized by two special features- loss of total pressure in 
the spiralling flows and the breakdown of the vortices at high angles of incidence. 
For some years extensive efforts have been made to study the physics of the vortical 
flows and to find means for stabilizing them to still higher angles of incidence. Some 
selected contributions on these lines are cited in the literature (Eriksson & Rizzi 1983; 
Murman & Rizzi 1986; Rizetta & Shang 1986; Newsome & Kandil 1987; Kumar & 
Das 1988; Longo 1988, 1992; Raj et al 1988; Scherr & Das 1988; Krause & Liu 1989; 
Agrawal et al 1990; Hilgenstock 1990; Hilgenstock & Vollmers 1990; Longo & Das 
1990; Das 1991; Das & Longo 1994). 

In case of space vehicles using round-nosed wing-body configuration one has to 
deal with complex flows at subsonic to hypersonic speed regimes involving vortical 
flows at low speeds and multi-shock flow fields in supersonic and hypersonic velocities. 
Some interesting studies on these configuration have been made (Risk & Chaussee 
1981; Chaussee et al 1984; Pfitzner & Weiland 1987; Sch6ne et a11990, 1991; Radespiel 
& Swanson 1991; Sch6ne & Bidault 1991). 

Modern transport aircrafts operating with transonic cruising speeds possess long 
span wings with supercritical aerofoils, thus producing supersonic zones on the upper 
surface with shock waves and shock induced boundary layer separation. Besides these 
the wings of a complete aircraft experience interference effects of the fuselage and jet 
engine nacelles. Again the field solutions using Navier-Stokes and Euler equations are 
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well suited to study these effects (Chaussee 1986; Deese & Agarwal 1987; Volpe & 
Jameson 1988; Radespiel 1989; Rossow & Ronzheimer 1991; Rudmik 1991; Longo 
1992; Rossow et al 1992; Wichmann 1992). 

In order to optimize the shapes of propeller blades, propfans and helicopter rotors 
both in regard to aerodyn~lmics and aeroacoustics it is essential to analyse their 
flow fields and evaluate the load distributions quite in detail. The outer parts of the 
blades operating at transonic speeds need to have supercritical aerofoil-shapes, as 
they are involved in producing supersonic zones and shock waves. Recent investigations 
(Bober et al 1983; Deese & Agarwal 1988; Kroll 1989) report the advancements in 
numerical aerodynamics. 

Further topics of numerical study are the unsteady flow fields as are involved due 
to oscillating or plunging wings and due to helicopter rotors in forward motion, 
producing supercritical flow conditions with oscillating shock waves on the upper 
surface. Some preliminary studies using numerical solutions of Euler equation8 are 
undertaken (Whitfield et al 1987; Nixon 1989; Carstens 1990; Lin & Pahlke 1991). 

In order to validate the results of the numerical solutions of the Euler and 
Navier-Stokes equations it is necessary to have enough experimental data. With this 
aim extensive wind-tunnel measurements have been carried out in recent years as 
are reported (Maynard & Murphy 1950; Caradonna & Phillipe 1976; Bornemann & 
Surber 1978; Schmitt & Charpin 1979; Caradonna & Tung lff81; Brennenstuhl & 
Hummel 1982; Lambourne 1982; Redeker et al 1987; Drougge 1988; Hummel 1988; 
Esch 1989; Radespiel & Quast 1989; Bergmann et al 1990; Elsenaar & Hoijemakers 
1990; Oelkar 1990; Goodard et al 1991). 

In the present paper some essential features of complex flows around wings, 
wing-bodies, propellers and rotors as obtained from numerical solutions of Euler- 
and Navier-Stokes equations are illustrated. The underlying physics helps to 
understand many of the findings already known from experimental investigations. 

2. Basic equations of flow fields and their numerical simulation and solution 

The disturbance fields arising from the motion of wings and bodies in a compressible 
viscous medium are adequately described by the Navier-Stokes equations, being 
based on the conservation laws of mass, momentum and energy in an elementary 
volume moving with the coordinate system. If the flow is concerned with turbulent 
exchanges of momentum, a major task is to model these viscous stresses in order to 
have a complete formulation of the mathematical physics. The usual procedure is to 
use the classical eddy-viscosity modelling or an equivalent kinematic-dynamical 
relation. 

2.1 The field equations in viscous and nonviscous medium 

For a fluid medium at standard pressure and temperature having negligible body- or 
external field-forces the physics of the flow can be fully described by the Navier- 
Stokes equations in the following form: 

Dp 
---  + pdiv V = O, 
Dt 
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where 

D(pV) 

Dt 

D(pE) 

Dt 

- -  + (pV)div V + gradp -- {die oo} = 0, 

- -  + (pE) div V + div(pV) - {div(k grad T) + div(V.o~)} = 0, (1) 

D 
- -  = --  + V.grad; E = e + (V2/2), 
Dt t~t 

V = iu + j r  + kw; ov --- stress tensor. 

The set of equations forming (1) contains the unknowns u, v, w, p, p, T and the viscous 
stress tensor 6v, thus having more unknowns than the number of equations. An 
auxiliary relation can be made use of by including the equation of state, which reads 

p = p R T  = (~c -- 1)piE -- (u 2 + v 2 + w2)/2]. (2) 

While the components of the stress tensor 6vt for laminar flows are easily modelled 
when the molecular coefficient of viscosity #m is known, the corresponding stress 
tensors art for turbulent flows can be based on the Reynolds averaged turbulent 
stresses expressed as: 

f f i i l t  ~-" "[iilt  : - -  PUri 2 << P '  (normal s t r e s s )  

¢ij[, = zi~[t = - pu'iu'j, (tangential stress) (3) 

! p 
where u~, uj etc. are the turbulent fluctuations of the velocities u, v, w. 

Using the concept of eddy-viscosity these two stress-terms can be written in general 
a s  

,, [-aui c~uj1 2 c~uk 

with 

I~t= p ~ =  p-Pltb I, 

where Tdenotes the length scale and ~ the velocity scale of the turbulent fluctuations, 
2 ~,2)1/2 is the vorticity in the viscous region. Thus (4) has the while I c31 = (~2 + ~j + k 

same expression as for laminar flows with #m replaced by #,, which can be determined 
by using the Baldwin-Lomax (1978) model. The molecular viscosity #m is yielded by 
the classical Sutherland formula. 

The coefficient of heat conduction k in the (1) is given by 

k = {(#m/Pr,) + (/z,/Pr,)} Co, (5) 

where Prz and Prt are the Prandtl numbers in laminar and turbulent flows. 
For  analysing some details of the flow fields containing spiralling flows and vortices 

it is often convenient to work with the momentum equation in Lambs'  version, which 
reads 

DV OV V 2 gradp diver 
- + g r a d - - + T x V =  - - + - -  (6) 

Dt Ot 2 p p 
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where o = - pl + ~ denotes the stress" dyad, with 6~ as viscous stress tensor. Using 
the second law of thermodynamics (6) can be rewritten in the Lamb-Crocco version 
yielding 

(~ V/Ot) + grad(V2/2) + 7 × V = Tgrad s - grad h + (div o~/p), (7) 

CO V/Ot) + ¥ x V = - grad h o + Tgrad s + (die o~/p). (8) 

Furthermore, it may be necessary to use cylindrical coordinates for evaluating the 
terms of (6) to (8), thus defining 

g r a d = i ~ + j l  d +k~---~, 
Or 

l ~ ~(~v,'r) ~(~va'r) d(~ .r) ~, 
(9) 

with V = iv, + Jva + kvx and V = iv, + jv a + kvx. 

2.2 The Euler equations of  a flow field in a perfect medium 

For flows in a compressible medium with vanishingly small effects of viscosity and 
heat conductivity, the terms in the brackets of (1) can be neglected. Using the relation 
of the first equation in the other two (1) can be expressed in a reduced version, which 
is commonly known as the classical set of Euler equations for a flow in a, perfect 
medium. They read 

oD 
--" + pdiv V = 0, 
Dt 

DV 
p - : -  + grad p = 0, 

Dt 

P DE + div (pV) = 0, (10) 
Dt 

with p = (r, - 1)pe = pRT, thus having six equations for the six unknowns p, u, v, w,p 
and T. 

The field equations described in this section are well suited to study complex flow 
fields as depicted in figure 1 and are applicable for all flow regimes from subsonic 
to hypersonic velocities. 

2.3 The generation of  field orids around aerodynamical confiourations 

The numerical field methods using finite difference or finite volume formulations need 
suitable field grids around the moving b o d y -  the grid spacings should conform to 
the physical requirements of good flow resolution in regions where high flow gradients 
are expected and must enable the capture of flow details in the viscous layer close 
to the body surface. In contrast to this, the grids near the far field boundary can be 
sparse by having wider stretchings. The quality of the field grids is measured by the 
smoothness and primarily by the orthogonality to each other and also to the frictional 
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Transonic Flow 
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Figure 1. Some complex flow fields in subsonic to hypersonic speed regimes. 

surface. The grid topologies to be used depend usually on the nature of the body 

geometry - they being commonly classified under the notations O-, C-, and H-grids 
for a given plane, thus leading to the combinations O - O ,  C-O,  C - H  etc. for two 

orthogonal planes, as are shown in figure 2. The grid generation follows three essential 

steps comprising the following. 

o 

W i n g  

" /i 
// 

C-H 

J 
C-O -H 

Figure 2. Standard grid topologies for numerical solution of the field equations 
of bodies moving in an unbounded medium. 
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• Analytical description of the surface geometry of the moving body, by using inter- 
polation techniques based on cubic splines or Bezier-polynomials. A very elegant 
procedure is the method described as Coon's surface using linear interpolation 
with specified pairs of opposite edge points and the corner points of the smface 
boundary. This scheme is based on Lagrange polynomials. 

• Generation of surface gri~!s comprising the distribution of grid points of the solid 
body, the far field and on the inner cuts introduced in the field. It is essential to 
have grid clusterings in regions, where high flow gradients are expected. This is 
realized by using suitable stretching functions. 

• Generation of field grids between the solid surface and the far field, for which one 
of the two basic methods can be followed, both being quite well esfablished and 
widely implemented till now. These are: 
a) Initial layout of body-fitted curvilinear coordinates based on algebraic transfinite 

interpolation schemes with subsequent refinement of the grids for smoothness 
and orthogonality. For achieving this, the spacings in physical- and computatignal- 
domains are interrelated by the solution of elliptic system of equations with 
source terms, being expressed as Poisson equations V2X i=  Pi, where 

0 2 0 2 0 2 
V 2 = ~ + - - +  - 

0r/2 0~ 2" 

b) Use of numerical schemes based on biharmonic equations having the expression 

V4 X i = 0, 

o r  

v 2 - V 2 X  i = O. (I 1) 

Setting V2X i =P~, (11) decomposes into two elliptic systems of equations for the 

whole field 

V 2 X i = pi, 

V 2 pi = 0. (12) 

In both the methods for generating field grids one is to prescribe the first grid 
spacings normal to the solid surface, 'which will then yield the P~-values at the inner 
boundary. While in method (b) the pi-values in the whole field are yielded by the 
solution of the Laplace equation V 2 P i=  0, the method (a) needs an interpolation of 
the source terms pi from the initial data at the solid surface and at the far field, the 
latter being usually assumed to have zero sou fee strengths. 

Generation of surface grids and field grids around a wing-body combination has 
been depicted in figure 2. Depending on the storage capacity of the computer it is 
normally necessary to subdivide the grid space in multiblocks and handle the blocks 
in turn. 

2.3 Numerical simulation of the field equations and the method of solution 

The Navier-Stokes equations describing the physics of flow in a compressible viscous 
medium, as expressed in (1), can be written in divergence form in the following way: 

0p 
- - +  div(pV) = O, 
Ot 
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a(pv) 

Ot 

a(pE) 

Ot 

- -  + div(V; pV) + div(pI) - {div 6~ } = O, 

+ div(pEV) + div(pV) - {div(k grad T) + div(V.~)} = 0, (13) 

with I --- (i:i +j:j + k:k) as a unit dyad. The divergence of the momentum flux in the 
second expression contains a dyadic product comprising all the nine components of 
the flux in the three coordinate directions. For  a perfect medium the terms in the 
curly brackets drop out and (13) reduces then to the Euler equations in divergence 
form. 

For numerical simulation of (13) it is essential to rewrite it in a universal vector 
form as: 

(au/at) + v . z  = o, (14) 

where the solution vector U and the flux tensor X are defined as 

W=lPV|, x=|pvV+pi,+~.+,,x+,. |, (15) 
pw ] pwV+Pi:+~:z+~:x+T:y i 

bE] mPEV+pl+,.'V-kgradT_.J 
with the viscous flux tensor 

G v" V : Ty x 6yy 

Tzx T=y f i g  

In the Cartesian system of coordinates the flux tensor of (15) can be split as: 

X = Fix + Giy + Hi=, (16) 

so that (14) can be rewritten as 

a u  0E 0G OH 
0t + O x  +-~y + 0--z =0" (17) 

For a finite volume element fl  enclosed by a surface S, (14) can be expressed in 
integral form. If the volume integral of the flux tensor is converted to surface integral 
by using the Gauss-theorem, one obtains: 

0U 
l fs t--- z ' n d S  =0 ,  (18) 

t~t 

1 I n  U d ~  and dS is a surface element of S with n as its unit outer-normal where U = 

vector. 
In case of small effects of viscosity and heat conductivity the corresponding terms 
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in (15) can be dropped, thus leading to the integral version of the Euler equations. 
The Navier-Stokes equations for unsteady flows as expressed in (13) being basically of 
hyperbolic type need the specification of the following conditions for the solution of 
a given problem. 

(a) The initial condition as prescribed by the onflow at the time t = to. 
(b) Boundary condition on the solid surface 

pressure: t~p/an = 0, in the viscous layer close to the solid boundary; 
velocity: V = 0, no slip at the solid surface; 

~k(dT/dn) = 0, adiabatic condition at the wall; 
temperature: I T  = Tw, isothermal condition at the wall. 

(In case of inviscid flows the boundary condition at the solid surface simplifies to 
V.n = V~.n + AV.n = Vs'n, where Vs denotes unsteady motion of the body surface). 
(6) Boundary condition at the far field is based on the characteristic relations, so 

that the propagation of information from inside and outside are properly matched, 
thus preventing spurious reflections into the enclosed domain. 

(d) Condition of periodicity at the inner cuts used in the solution and also of matching 
of the flow variables at the block boundaries of multiblock grid topologies. 

The numerical simulation of the unsteady Navier-Stokes or Euler equations in 
conservation law form can be undertaken by converting into a finite difference 
equation, preferably by using body-fitted coordinates. 

If curvilinear coordinates are used based on the coordinate transformations 

~ = ~ ( x , y , z ) ;  ,7 = ,t (x, y, z); ( = ( ( x , y , z ) ,  

then the unit vectors and the flux tensors are to be redefined in the ~, t/,( coordinates, 
by using the metric coefficients and the determinant J of the Jacobian matrix. 

V = i ~ + i  ~ +" a ~--~ ] ~ ,  

L ax ~ az/J(~i~,~)' 

.a,ll 1 a 
L a x  ay 

-a-xx + ~ +  azJJ(~,~l,~)' 

and 0 = U/J(~, rl, ~), while the volume ~ = ~.J(~, r/, ~). Hence (17) takes the following 
form 

dO aP a~ a#z 
- -  + : 0 ,  ( 2 0 )  

thus retaining the conservation law form. 
The numerical simulation of (20) in finite-difference form can be undertaken by 

using explicit or implicit formulations. 
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Explicit scheme 

U~.+.=U,.)_A.~D_ ,~,.> D_ 6'") D- H''~ (21) 

Implicit scheme 

[ 3 ( . +1 )_  u( . ,  At[{Do ( . , .  DOGt.,+DoH(.)~ 

+~O°F'"+I' +D°G'"+') +D°H'"+"}], (22) 
~A~ ~j~ At/ ,jk A( uk 

with (n + 1) denoting the time step t + At-= (n + 1)At. While D_ denotes upwind 
differencing, D o stands for central differences, as are elucidated in figure 3. 

For numerical simulation of (18) in finite-volume formulation one can use arbitrary 
meshes, thus yielding 

v'"+ ~-t  f (~ s), + ~j,~ + (~ s),_~ j,~ + (~ s),j ÷ ~ 1 ) . ~ .  U(.)_ 
ijk ijk ijk ~- 

+ (~'S)i,j_½. k + (~'S)i,j,k+½ 4;- (~'S)i,j,k_½~ (n). (23) 

Using the flow variables and flux vectors in transformed coordinates (~, ~/, 0 as defined 
in (19) the numerical simulation of the flow equations reduces to the following 
expression: 

I ~  D°G D ° -  q'"' t~(.+ x) = [?,.) _ At  Fok + "" + ~ -~H, jkJ  " (24) 
ijk ~jk At/ uk 

I 

Cel l -Centred Schemes Cel l -Vertex S c h e m e s  

J- , -  u~ J 

- 

i - "F 
1-1 

Upwind  S c h e m e s  , -  1 i i .1  

m 

g - Po in t  

- -  S t e n c i l  

i i ,.,_p ! 

C e n t r a l - A v e r a g e  S c h e m e  
i - 1  i i + 1  

Figure 3. Standard numerical schemes for simulating the equations of flow fields. 
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Thus (24) reproduces (2.1) exactly with "D replaced by D o, confirming the equivalence 
of finite-difference and finite-volume methods. 

The basic solution scheme of the viscous and nonviscous flow equations, which 
has been used in the present study, is a finite volume discretization with a Runge-Kutta 
integration in time, as is described by Jameson et al (1981). The original cell-centred 
code (Radespiel & Kroll 1985) has been extended now to a cell-vertex code (Rossow 
1989). Since the finite difference discretization for numerical simulation.is based on 
the central difference scheme, which is insensitive to sensor sawtoothed spatial 
waviness of the field quantities, that may creep in due to odd-even point decoupling, 
an artificial dissipative term is added to the equation to damp out the ~gh frequency 
oscillations. Hence, the numerical approximation to the integral equation (18) as 
expressed in (13) becomes extended to the form 

where 

At 
n%¢") (25) U¢"+1) =tr¢") - {Qc + Qo +- , i ik ,  

i jk  ~ i j k  f ~ i j k  

Qc = ~ 6h(zc'S), Qv = ~ c~h(z~'S), with (h =- i,j, k), 
h h 

denoting the balance of convective flux and of viscous flux, while D is an artificial 
dissipative term. For the method of evaluation of the three flux terms of an elemental 
volume at a grid point i, j, k of the flow field, one may refer to the details of the 
discretization procedure discussed by Radespiel & Rossow (1990). In case of Euler 
equations for inviscid flows the flux term Qv in (25) drops out. 

For the solution of (25) a five-stage Runge-Kutta time stepping scheme is used in 
the following way: 

U(o) = u~n) 
i jk  - -  i jk  ~ 

At 
U")ijk = "~okr r¢o) _ ~,~... i'Q¢ + Qv + O]~:f 1) , j  (26) 

i jk  

u ( n +  1) 1] ' (5)  
i jk  ~ ~ i jk ' 

where r = 1 to 5 and the stage coefficients ~, are 

• 1 = 1 /4 ;  ~2  = 1 /6 ;  g3  = 3 / 8 ;  "4  = 1 /2 ;  g s  = 1. 

The artificial~ dissipation D C'- 1~ may be evaluated only for the 1st, 3rd and 5th stages 
of fhe scheme. The artificial dissipation model is based on the fluctuation of pressure 
as a sensor (Jameson 1981) defined by 

~ijk Pi-  1,j,k - -  2pijk + Pi + 1,j.k (27) 

Pi-1,j,k + 2Pijk + Pi+ 1,j ,k  

For the evaluation of the dissipative operators in regions of normal grid structures 
and for highly stretched grids in the viscous layer one may refer to the details discussed 
by Radespiel (1989). The inclusion of the dissipative fluxes leads to the convergence 
of the procedure to a smooth solution. The stability of the numerical scheme was 
assured by choosing a CFL-no. of 9.5 both in the inner and outer block. 

As steady state solutions are sought for, the use of several accelerating techniques 
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is allowed to advance the solution. They are successive grid refinements, local time 
stepping, enthalpy damping, implicit residual averaging and finally the multigrid 
technique. 

3. Numerical study of complex flow fields around aerodynamical configurations 

The nonlinear partial differential equations describing the physics of a flow field are 
inherently complex and the physics itself becomes more complex when vortical flows, 
shock-waves or shock-viscous layer interactions come into being-  especially in 
transonic and hypersonic speed regimes. Further cases of complex flows arise when 
the aerodynamical configurations themselves have involved geometries, as in the case 
of a complete aircraft configuration with wing, fuselage, nacelle and pylon and possibly 
with contrarotating propfans with highly swept blades. Numerical studies and analysis 
of sgch flow fields are becoming more and more common now. While the numerical 
solution of Euler equations is widely used to study the global features of complex 
flow fields, more effort is needed to analyse the details of the viscous effects, especially 
in regions of high flow gradients, which the solution of the Navier-Stokes equations 
depends on. The following examples will elucidate the findings from a number of 
interesting studies. 

3,1 Vortical flow fields around delta wings and a delta shaped wing-canard 
combination 

The flow field of a slender delta wing moving in a compressible medium offers an 
ideal example for the study of complex flows, extended over a speed range from 
subsonic through transonic to supersonic onflow velocities. This is due to the fact 
that at moderate to high incidence angles of the wing a large part of the flow field 
is involved with the formation of vortices spiralling over the upper surface of the 
wing, thus contributing substantially to an additional vortex-lift which is useful for 
an outstaLding flight performance. The spiralling flow is established by calling in a 
loss of total pressure thus giving rise to vorticities in the flow. Besides which shock 
waves and shock viscous-layer interactions are common at high subsonic to supersonic 
onflow velocities. A further interesting feature is the breakdown of the spiralling 
vortices at high incidence angles, causing a loss in the vortex-lift. Thus a detailed 
study of the physics of such flows can lead to many interesting findings. 

The delta wings selected for the numerical studies are depicted in figure 4, their 
having undergone extensive experimental wind-tunnel tests (Brennenstuhl & Hummel 
1982; Drougge 1988; Bergmann et al 1990; Elsenaar & Hoijemakers 1990; Oelker 
1990). While for the delta wings O - O  grid topologies have been used, it proved to 
be simple to provide H - H  grid topology for the wing-canard combination and 
maintain the same grid structure for canard-on and -off configurations. 

The numerical study with the simple delta wing has been undertaken by using the 
Euler equations, the solution of which yields all the essential field data which can be 
plotted and depicted as cross-flow fields or surface distributions of velocities and 
pressure, as have been shown in figure 5. The trace of the spiralling vortices and the 
isolines of total pressure at a cross-cut reveal further details. In order to validate 
the computational data more closely with those of experiments the c~-distributions 
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. | I =  

0-0 Grids 

¢ !~ O.S I o ------~ J-~---- ~ H-H Grids 

Figure 4. Delta wing configurations for numerical study of vortical flow fields 
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on the wing surface are compared in figure 6 and it was observed that the total lift 
and drag forces confirm very good agreement. 

Having now the field data one can take up interesting analysis on the physics of 
the flow, regarding the setting in of the spiralling motion with loss of total pressure 
in it and on the changes in the structure of the vortical flow till its breakdown at 
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Figure 7. Pressure-, temperature- and velocity-distrLbution in the spiralling 
vortical-flow of a delta wing. 
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Figure 8. The pressure forces (a) and loss in total pressure (b) required for setting 
in the spiralling flow. 

high incidence (Das 1991). With the imposed boundary conditions on the wing surface, 
and at the symmetry section of the wing the velocity and pressure distributions in the 
vortex take their typical runs, as are shown in figure 7 for a cross-flow plane ~ = 0.6. 
It is evident that an isentropic pressure distribution corresponding to the velocity V 
can by no means bring up the required accelerating forces to establish the 
spiralling- the flow has to be rotational, thus causing loss in total pressure for 
adjusting the radial forces which are needed. The nature of the accelerating forces 
and loss of total pressure along a radial line from the vortex core are depicted in 

figure 8. 
From the upper surface isobars of (he delta wing as shown in figure 5 one can 

observe that an adverse pressure gradient appears in the rear part of the wing, which 
increases significantly at higher angles of incidence. The loss of total pressure and 
the adverse pressure gradient in the spiralling flow both increasing with the angle of 
incidence of the wing leads to the formation of two saddle points along the vortex 
axis-  the one causes a reverse flow and the other contributes to high radial flow 
outward as has been depicted in figure 9 and is well elucidated (Das 1991). As a result 
the spiralling structure of the vortex breaks down, now causing a drop in the 

vortex-lift. 
In order to improve the aerodynamic properties of delta wings various planforms 

have been investigated in the past, - one promising configuration being the strake - or 
double-delta wing. Numerical study on the strake wing shown in figure 4 was 
undertaken by using the Navier-Stokes equations and turbulent eddy viscosity 
modelling. A comparison of the pressure distributions and of the total forces and 

moments with the experimental values, as are shown in figure 10, confirm the 
validation of both the results. Further comparisons of the surface flow and cross-flow 
of the wing as yielded by the numerical and experimental results in figure 11 prove the 
reliability of the method of calculation. For more examples of such studies one can 
refer to the cited literature (Das & Longo 1994a). 



376 A Das 

= 1 9 . 5  o 

/ 
°~. 

2.0 

1.0 

-1.( 

Num. Comp.  Moo = O.L 

vo,,,=.,,,, 1.0. 

u.~, 0.8 
U. 

= 25  ° 

11, (b) 

~ I  jexpt . 

200 C~ 300 

2 . 0  m 

- C p  

1.2 

0.8 

0A 

ExpI.(M== 01) 

Figure 9. Analysis of the flow condition leading to vortex breakdown and loss 
of vortex-lift. (a) Flow reversal with saddle points and (b) vortex breakdown. 

(a) 

0.2 0.6 1"1, 1.0 

1.6 

C L  

C D  

1 . 2  

0 . 8  

0 . 4  

C M (i ~ - 0 . 0 8  - 

- 0 . 1 6  

- 0 . 2 4  " 

0 

~Nt® 

6 12 18 2 4  

@-@' 

(b) 
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The field quantities in the cross-flow plane of a wing-canard 
configuration as yielded by the solution of Euler equations. 

It is known from wind tunnel measurements as well as flight tests that a delta 
shaped wing-canard configuration distinguishes itself through outstanding aero- 
dynamic properties, primarily by maintaining its vortex-lift up to high incidence 
angles. Thus it offers an ideal example to analyse the complex flows due to multi- 

vortices spiralling over the wing. 
So one can take up similar studies as with the simple delta wing already described 

above. The numerical field data have been plotted and depicted in a similar way, 
one example being shown in figure 12. The canard imparting downward momentum 
to the air particles ahead of the wing produces canard-lift and a decrease in the 
wing-lift due to the downwash created by it. Because of this and due to the canard 
vortex spiralling over the wing, the wing vortex becomes weaker having less loss in 
total pressure and also less adverse pressure gradient in the rear region. The loss of 
total pressure in the vortex core with the canard off and on has been compared in 
figure 13. Consequently, the spiralling vortex structure and the vortex-lift are 
maintained without breakdown up to high incidence angles, as is evident from the 
curves of total forces in figure 14. With a closely coupled canard the drop in the 
wing-lift is just compensated by the canard-lift; however, the lift curve cL(~q continues 
its rise with the same slope up to higher incidence angles than the win~ alone. 
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Figure 13. Loss of total pressure 
in the vortex core of a wing-canard 
configuration with the canard on 
and off. 

Extensive analysis of the physics of the complex flow around this wing-canard 
combination has been presented in Das & Longo (1994b). 

3.2 Flow fields around space vehicles 

Further studies on flow fields of slender delta wings at subsonic up to supersonic and 
hypersonic speeds concern the configurations used for space vehicles - the two present 
examples being the American space-shuttle and the European space-project HERMES, 
as are shown in figure 15, both have extensive experimental data, as cited in the 
literature (Bornemann & Surber 1978; Esch 1989; Radespiel & Quast 1989). The 
recent measurements on a space shuttle model (Radespiel & Quast 1989) comprise 
detailed investigations of surface flows and pressure distributions, as well as of total 
forces and moments. In order to reproduce all these the numerical studies were based 
on the Navier-Stokes equations with eddy-viscosity modelling of the turbulent viscous 
stresses (Baldwin & Lomax 1978). A comparison of the numerical and experimental 
results is shown in figure 16 confirming excellent agreement. The details of the 
numerical method have been discussed by Das & Longo (1994a). 
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Figure 14. Aerodynamic coefficients of total lift, drag and moment of a wing- 
canard configuration with the canard on and off. [-- numerical (Das & Longo 
1994a); - - -  numerical (Longo & Das 1990); • O experimental (Elsenaar & 
Hoijemakers 1990).1 

Numerical studies on the HERMES-configuration were undertaken for flight conditions 
at supersonic Mach number Moo = 2-5 to 8"0 for symmetrical and unsymmetrical 
onflows. Because of the complex flows over the wing and body, especially at unsym- 
metric onflows, it was essential to base the investigations on the solution of the 
Euler equations. The field data have been plotted as cross-flow velocities, cross-flow 
isobars and iso-Mach-lines as well as surface plots of isobars and streamlines. Finally 
the force coefficients Cz, cD and cu have been evaluated for symmetrical onflow as 
well as the stability derivatives at unsymmetrical flow conditions, as are depicted in 
figures 17 and 18. Comparison with the experimental results proves the outstanding 
reliability of the numerical methods used. For further details on this work one may 
refer to the paper by Schrne and coworkers (Schbne & Bidault 1991; Schfne et al 
1991). 

3.3 Flow fields of large span wings including wing-fuselage and wing-nacelle 
interference 

Most of the present transport airplanes with large span wings fly at transonic Mach 
numbers, such that the onflow velocity to the wings lies in the supercritical regime, 
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Figure 16. Pressure distributions and total forces and moments of the US-Space 
Orbiter at Moo = 0.4 as yielded by the solution of N-S equations. (a) Cross-wise 
cp distribution (ct = 21°; - -  experiment; -o-numerical); (b) forces and moment 
[Mo~ = 0.176; Re = 9 x 106; Q) numerical; • experimental (Bornemann & Surber 
1978); 27 experimental (Radespiel & Quast 1989)]. 

thus creating local supersonic zones on the wing upper surface. As a result, shock 

waves and shock boundary layer interactions are very common at the cruising 

condition. The transonic flow being extremely sensitive to any changes in the boundary 

condition, also to the formation of boundary layer thickness, it is essential to consider 

the effect of viscosity on the surface flow of the wing. This can be realized by basing 

the numerical studies on the solution of Navier-Stokes equations or else combining 
the solution of Euler equations with iterative correction of boundary layer 

displacement thickness. 
In the case of the wing alone it is essential to base the numerical studies on the 

solution of the Navier-Stokes equations with eddy-viscosity modelling of the viscous 

stresses, as has been undertaken by Radespiel (1989). Two examples are considered 
in the paper cited, one being the transonic flow around an aerofoil (RAE-2822) at 

Moo = 0"73, ~ = 2"79 ° and Re = 6"5 x 106, depicting the cp-distribution on the wing 

surface as well as the skin friction on the suction side. The calculated values are in 

excellent agreement with the experimental results. The second example concerning 

the flow around an ONERA-M6 wing at Moo = 0-84, Reoo = 1-1 x 106 and ct = 3.06 ° and 
6.06 °, will be taken up here to demonstrate the complex physics which may become 

involved. 
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Figure 17. Numerical study of aerodynamic force and moment coefficients of the 
space orbiter Hermes by using Euler equations. [& (Sch6ne & Bidault 1991); © 
(Esch 1989).] 

While for attached flow the numerical calculations performed with Baldwin-Lomax 
viscous modelling (Baldwin & Lomax 1978) reproduce the cp-distribution of the wind 
tunnel tests very closely, as shown in figure 19 for ~ = 30 °, one has to use the more 
complex Johnson-King (1984) modelling to have reliable results with separated flows 
as is evident from the results for ~ = 60 °. Both the numerical schemes prove themselves 
to be reliable and robust, the second method being however more complex and time 
consuming. 

It will be now interesting to look into the interference effects of wing-fuselage 
configurations at high subsonic and transonic Mach numbers - at first by using the 
Euler equations. Extensive analysis has been undertaken for studying the flow fields 
of three basic configurations, which are shown in figure 20. The flow field data are 
used to reproduce the surface flows and isobars as well as the lift distributions and 
total forces. Systematic variations of geometric and aerodynamic parameters have 
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Figure 18. Analysis of the aerodynamic properties of the HERMES at the condition 
of side-slip (a) and rudder-deflection (b). [& numerical (Sch6ne & Bidault 1991); 
O experiment (Esch 1989).] 

been undertaken for studying the nature of changes in the interference effects, 
especially for having higher aerodynamic efficiency of the configurations. Some 

• essential results are depicted in figures 21 to 23. It is important to note that at transonic 
speeds one has to consider the viscous effects on the surface flows to get reliable 
results, for which some boundary-layer code has to be coupled to the numerical 
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Figure 19. Numerical study of the flow-field of a transonic wing by using N-S 
equations. [B-L-  Baldwin & Lomax (1978); expt.- Schmitt & Charpin (1979); 
J-K - Johnson & King (1984).] 

scheme treating inviscid flows. For all details of the numerical methods which have 
been followed in the above examples one can refer to the thesis by Wichmann (1992). It 
is evident that numerical studies using Navier-Stokes equations can give more reliable 
results quite directly - they are however more time consuming and hence expensive 
for comprehensive studies. A few test cases have been performed (Longo 1992) yielding 
very good results. 

The numerical studies are finally aimed at determining optimum aerodynamic 
configurations of complete aircraft, including wings, fuselage, engines, nacelles and 
pylons, especially for achieving high values of lift to drag ratios for maximizing the 
parameter Mo~CL/CD at transonic speed regimes. Although the effect of viscosity 
brings in significant changes in the surface flow of a super-critical aerofoil and thus 
to the upper surface pressure distributions, it was decided to make the numerical 
calculations by using the Euler equations as a preliminary study of the global features 
of the flow around the complex configurations. The viscous corrections for the sensitive 
wing surface flow can be done by coupling a numerical code for boundary layer flows. 

The aircraft configuration with enginp, nacelle and pylon is shown in figure 24 
along with the sectional marking for close study of the cp-distributions. The 
computational studies also yield extensive results as surface streamlines and isobars 
as well as field values of pressures and velocities as isoline plots. From the surface 
%-values some plots of spanwise lift distributions are demonstrated showing the 
aerodynamical interference effects resulting from the engine, nacelle and pylon. For 
further results one may refer to Rossow & Ronzheimer (1991), Rudnik (1991) and 
Rossow et al (1992). 
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4. Numerical study of flow fields around propellers and helicopter rotors 

The modern aircraft-propellers and helicopter-rotors having transonic onflow 
conditions at the outer regions of the blades need extensive analysis for improved 
layout of the blade sections as well as of the blade shapes. In order to capture all 
the details of the flow, especially the appearance of shock waves, shock-boundary 
layer interactions and the vortical flow round the tips, it is essential to undertake 
numerical studies by using the Navier-Stokes equations. However, as a preliminary 
step the computational analysis was based on the Euler equations and two cases 
have been taken up, for which enough experimental data were available for validating 
the numerical results. These are a two-bladed propeller having tip advance ratio of 
A = 0.73 with tip helical Mach number Mh = 0.56 and a hovering helicopter rotor 
with tip Mach number of Mh = 0.79. 
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From the numeric~d computations using 0-0 field grids round the blades one obtains 
all the necessary field data for undertaking plots of blade loadings and blade surface 
flows, as well as of the tip vortices. The cp-distributions on the blades are shown in 
figures 25 and 26 confirming very good agreement between the computed and 
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Figure 23. Numerical analysis of the maximum lift to drag ratio of wing-body 
combinations at the transonic Mach number of Moo = 0.8. (Numerical values in 
(iii) from Wichmann 1992.) 

measured data. For the details of the computational method using rotating reference 
frame for the Euler equations one can refer to the original thesis work (Kroll 1989). The 
above analysis will be useful both for aerodynamics and aeroacoustics. 

5. Numerical study of some unsteady flow fields 

Some common examples of unsteady aerodynamics are oscillating and plunging 
motions of aerofoils and wings, both having arbitrary steady forward motion. In 
recent years extensive studies have been undertaken on the unsteady motions of 
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F i g u r e  24. Numerical study of the changes in the spanwise lift distribution of a 
wing-body due to engine-installation. 

aerofoils and wings by using numerical solutions of the Euler equations and validating 
the results with experimental data. Some numerical results on the unsteady forces 
and moment of an oscillating aerofoil are shown in figure 27 demonstrating the 
typical hysteresis effects. 

Both with regard to aerodynamics and aeroacoustics much effort is now focused 
on the detailed study of unsteady flow fields of lifting helicopter rotors in forward 
motion. However, it seems essential to divide the numerical and experimental studies 
into three distinct stages: 

(a) Flow field of a two-bladed nonlifting rotor in forward motion. 
(b) Flow field of a two-bladed lifting rotor in forward motion. 
(c) Flow field of a lifting multi-bladed rotor in forward motion. 

The first case being much simpler than the other two will help to develop the numerical 
technique and some basic concepts before taking up the full problem with complex 
motion of the blades. 
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Figure 27. Numerical study of the unsteady flow field of an oscillating aerofoil 
by using the Euler equations. 

Having the experimental data of cfdistributions at the outer part of a nonlifting 

rotor blade, some comparisons of the numerical and experimental values at three 

sections with r / R  = 0.855 to 0.946 have been undertaken of which a few plots arc 

shown in figure 28 confirming acceptable agreements. This work is being continued 

now as a doctorate thesis for studying the lifting cases (b) and (c). 

6. Conclusions 

The numerical methods for the solution of nonlinear partial differential equations 
being now well established, it has given a big impetus for undertaking detailed analysis 
of complex flow fields, which may arise from involved physics of the flow or due to 
the complexity of the geometrical configurations. Although it is preferable to base 
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Figure 28. Numerical study of the unsteady flow field of a nonlifting helicopter 
rotor in forward motion by using the Euler equations. I-3-D Euler code O-H grids 
(65 x 17 x 31); Expt: Caradonna et al (1984)]. 

the numerical studies on the solution of Navier-Stokes equations, they may not be 
highly useful if the efficiency and accuracy of the algorithms need still further effort 
for further improvement. Especially in case of extensive studies with systematic 
variations of aerodynamical and geometrical parameters it may be quite suitable to 
work with the numerical solutions of the Euler equations to obtain all the global 
features of the flow fields. The viscous effects are primarily confined in the regions 
of surface flows, especially where high cross-gradients come into being. While for 
complex flows around slender delta wings and bodies, as well as for space vehicles 
the numerical analysis based on the Euler equations yields quite acceptable results, 
one has to incorporate the effect of viscosity in the solution of the Euler equations 
when large span wings at supercritical onflows are concerned- and this can be 
usually done by coupling a boundary layer code to correct for the boundary layer 
displacement thickness. 

Detailed analysis of the unsteady flow fields, which arise around counter-rotating 
propfans and helicopter rotors in forward night have been taken up now by using 
the solution of Euler equations. 

When further progress has been achieved, with the multigrid technique, applicable 
also for multiblock body-fitted grids around complex configurations, direct analysis 
with the. Navier-Stokes equations will be more in use. 

List of symbols 

a, a* 

A 
b 

local and critical speed of sound; 
Jacobian matrix; 
span of a wing; 



Numerical study of complex flow fields 395 

CL, CO, C M 

Cp 

~p,~ 
D 
e 

E 
F , G , H  
F , G , H  
h, ho 
i , j , k  
J 
k 
l(~), to 
T 
M, M= 
M* 
n 

P, Po 
Pi 

Q 

r ,  r 0 

R 

Re 
$ 

~(¢), 
S 

t 

T, To 
U 

U, V, W 

Vr, t) 8, Vx 

Va 

Vc, Vh 

V, V~ 
X i 

X, r, 

X, y, Z 

P 

~o 

Y 
W~ 

"P, Po 
Y 

It, #.,, #t 

total-lift, -drag and -moment coefficients; 
pressure coefficient; 
specific heats; 
dissipation operator; 
internal heat energy in unit mass of the medium; 
energy content in unit mass of the medium; 
flux quantities in x, y and z directions; 
flux quantities in ~, t /and ~ directions; 
static and total enthalpy in unit mass of the medium; 
grid notations; 
determinant of Jacobian matrix; 
heat flow coefficient; 
chord length and total length cf a delta wing; 
length scale of turbulent exchanges; 
local and onflow Mach number; 
Mach number based on critical speed of sound; 
normal to a surface; 
static and total pressure; 
source terms for grid generation; 
heat flow; 
flux balance in elemental volume; 
radial distance in the spiralling vortex and to the wing leading edge; 
gas-constant; 
Reynolds number; 
entropy; 
local and maximum half-span of the wing; 
surface area; 
surface area of the wing and the canard; 
time; 
static and total temperature; 
physical variables in a flow field; 
velocity components in Cartesian coordinates; 
velocity components in cylindrical coordinates; 
axial velocity along the vortex core; 
crossflow and helical velocity in the spiralling vortex; 
local and onflow velocity; 
physical coordinates; 
cylindrical coordinates; 
Cartesian coordinates; 
curvilinear coordinates; 
angle of incidence; 
angle of yaw; 
geometric setting angle of the canard; 
sweep angle of the wing leading edge; 
vorticity in the flow field; 
ratio of specific heats; 
static and stagnation medium density; 
kinematic coefficient of viscosity; 
coefficients of viscosity arising from molecular and turbulent exchanges; 
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~V stress tensor due to viscosity; 
volume of a cell element in Cartesian and curvilinear coordinate system; 

flux tensor in the flow field. 
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