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Abstract

Indices of relative abundance do not control for variation in detectability, which can bias

density estimates such that ecological processes are difficult to infer. Distance sampling

methods can be used to correct for detectability, but in rainforest, where dense vegetation

and diverse assemblages complicate sampling, information is lacking about factors affect-

ing their application. Rare species present an additional challenge, as data may be too

sparse to fit detection functions. We present analyses of distance sampling data collected

for a diverse tropical rainforest bird assemblage across broad elevational and latitudinal gra-

dients in North Queensland, Australia. Using audio and visual detections, we assessed the

influence of various factors on Effective Strip Width (ESW), an intuitively useful parameter,

since it can be used to calculate an estimate of density from count data. Body size and spe-

cies exerted the most important influence on ESW, with larger species detectable over

greater distances than smaller species. Secondarily, wet weather and high shrub density

decreased ESW for most species. ESW for several species also differed between summer

and winter, possibly due to seasonal differences in calling behavior. Distance sampling

proved logistically intensive in these environments, but large differences in ESW between

species confirmed the need to correct for detection probability to obtain accurate density

estimates. Our results suggest an evidence-based approach to controlling for factors influ-

encing detectability, and avenues for further work including modeling detectability as a func-

tion of species characteristics such as body size and call characteristics. Such models may

be useful in developing a calibration for non-distance sampling data and for estimating

detectability of rare species.
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Introduction

Worldwide, many bird species may be at risk of decline or extinction [1]. This problem is par-

ticularly acute in the montane tropics, where high levels of diversity and endemism are coupled

with increased vulnerability to changes in climate and land use [2,3]. Detecting and under-

standing changes in population size and distribution is crucial to planning appropriate conser-

vation strategies, and depends on accurate information on patterns of density in space and

time [4,5]. As a complete census of animal populations is typically unachievable in natural sys-

tems [6], most monitoring programs and ecological studies use fixed area or effort counts that

generate an index of relative abundance [7]. While such indices are popular and relatively sim-

ple to apply, detection probability may vary widely between individuals, survey locations, or

times [8], biasing estimates of density such that underlying ecological processes are difficult to

infer [6,9].

A variety of survey approaches have been proposed to model detectability, i.e. to correct the

number of animals detected accounting for those present but missed (reviewed in [6]). Line

transect distance sampling uses the distribution of the n detected distances x perpendicular to

the transect to model detectability as function of perpendicular distance, referred to as the

detection function g(x) [10]. The detection function is usually modeled via dedicated software

[11] and used to estimate the average detection probability P, which allows to scale up the

number of detected animals to the total number of animals (see [10] for details). Density in the

covered area of size a, D, is then estimated by n/aP. An equivalent expression is n/2 L ESW,

where ESW is the effective strip (half)-width. If all animals up to distance ESW were detected

we would detect on average as many animals as were actually detected up to a truncation dis-

tance w [11]. This makes the correspondence between the actual distance sampling survey and

an equivalent strip transect leading to the same number of detections. Given a set of transects

randomly distributed in the environment, unbiased distance sampling estimates require a set

of assumptions to hold to a reasonable extent: 1: probability of detection along the midline is

certain, 2: accurate measurement of distances, and 3: that the observation process is instanta-

neous. The later assumption is essentially about animal movement, and provided the observer

speed is not significantly lower than the animal speed, no problems should arise. If animal

speed is faster than observer speed and especially if undetected or responsive movements

occur, problems can be anticipated [10]. Whereas surveys in open environments and of large

taxa may satisfy these assumptions [12], in more complex environments and with more cryptic

taxa problems might arise [13,14]. High diversity, complex habitats and difficulty in access can

also add additional challenges in tropical rainforests [14–16].

There is a substantial literature on optimizing Distance survey methods, from point counts

to line-transects (see e.g.: [6,13,17]) Much of the debate surrounds the trade-off between maxi-

mizing detection probability, optimizing the ratio of survey to transit time, and minimizing the

influence of movements and/or double counting. In fact there is no single optimal approach

for all cases; some recommend short counts to reduce bias from animal movements [17], while

others have shown point counts may give more biased estimates than line transects [14,18] or

that the latter increase detection probability [19]. The ratio of survey to transit time is also

increased in line transect designs [17] which may thus be the most efficient and least biased

method. However, regardless of the duration and length of the survey, whenever the ultimate

goal is accurate estimation of population density, the relationship between a) what is present in

the survey area and b) what is actually detected, is of critical importance. Rather than adding

further to the debate on which survey distance or duration is optimal in a particular case, here

we focus on identifying some factors that influence detectability in tropical forests.
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A sustained program of biodiversity monitoring, including extensive avian count data to

which this study contributed, has established the Australian Wet Tropics among the better-

studied tropical rainforest systems, facilitating a range of ecological studies (see e.g. [20,21]).

High levels of bird diversity and endemism have also contributed to the listing of montane

rainforests in the region among Australia’s “Important Bird Areas” [22], while recent projec-

tions of climate change impacts on distributions [23] and populations [24] have highlighted

the importance of understanding and monitoring vulnerable species in the region [25]. How-

ever, these studies have relied on estimates of relative abundance only, so that covariates of

detectability and resulting biases among species, sites and surveys remain unknown. A substan-

tial literature also exists describing such covariates of detectability in bird surveys, in which

four main classes can been identified: (1) the characteristics of the objects being detected, (e.g.

size of individuals and characteristics of detection cues, [26,27]); (2) the conditions of the sur-

vey (e.g., weather; [28]); (3) the characteristics of the location (e.g. habitat structure; [29]); and,

(4) the characteristics of the observer (e.g., experience; [30]). Here we focus on covariates appli-

cable to the first three of these, and evaluate the application of distance sampling in the diverse

avian assemblage of the Australian Wet Tropics. We identify some important covariates of

detection probability and sources of bias in density estimation, and suggest some improve-

ments to protocols for avian surveys in rainforest based on our findings.

Materials and Methods

Study area

The study was conducted in the Australian Wet Tropics World Heritage Area (hereafter

“AWT”) between 15°45'32.69"S 145°1'53.87"E and 19°18'0.65"S 146° 9'41.17"E. The study

region is described in detail in [20] but briefly, rainforests in the AWT occur on coastal ranges

of the Great Divide and adjacent lowlands, giving a broad elevational gradient (200 m to

~1600 m above sea level). The structure and floristics of these forests varies from complex

mesophyll vine forest in the coastal lowlands to notophyll vine forest and microphyll fern

thicket on high peaks and plateaus, though most surveys were conducted in simple to complex

notophyll vine forests [31]. Basal area of forests also declines towards the lowlands [32], creat-

ing gradients in the structural complexity of vegetation. AWT climate is characterised by

warm average temperatures (lowlands: 23.33°C uplands: 19.16°C) and high rainfall (lowlands:

2510 mm, uplands: 2757 mm), concentrated in the summer (based on modeled climate sur-

faces from BIOCLIM [33]).

Data collection

All fieldwork was conducted under Queensland Department of Environment and Resource

Management research permits, numbers WISP04061506 andWITK04061406. In this study we

consider a line transect survey method employed since 1997 to conduct some 1500 surveys

during the course of a program of long-term monitoring of rainforest biodiversity in the study

region [20,21,24,25]. Line transects have been shown to both maximise the detection of species

[19] and minimise bias in density estimation in forest bird surveys [18]. The sampling design is

described in detail in [20] but briefly, we surveyed 1000 m sampling routes (“sites”) established

in contiguous montane and lowland rainforest. The AWT protects more than 100,000 hectares

of steep, mountainous tropical rainforest, in places entirely lacking vehicle access. As in many

such studies in the montane tropics [15], this challenging terrain and vegetation often necessi-

tated that long-term monitoring sites be associated with roads and tracks for practical and fre-

quent access. Climate change impacts are also primary focus of the monitoring program, so

that the most efficient sampling of the relevant environmental gradients (temperature, rainfall)
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is achieved by placing surveys at regular intervals across altitude and latitude [20]. Provided

care is taken to control or sample for variation in other factors (e.g. vegetation, slope, aspect)

stratifying locations in this way provides both efficiency advantages over random placement

[10] and statistical advantages over uniform transect placement [34], both critical consider-

ations in designing optimal and cost-effective monitoring.

In this study, 30-minute, 150-metre audio-visual line-transect surveys were conducted at

these sites on suitable days between 0600 and 0930 h, in both summer and winter, by a single

experienced observer (A. A.). Survey transects were usually placed at 200 m intervals along the

1km site route, and perpendicular to it. In some cases (~25%, see n values in Table 1) steep ter-

rain or dense vegetation meant surveys were conducted along the access road or track, and

potential road-induced biases in density estimates (see e.g. [35]) are discussed below.

The distance sampling methods we use have previously been described in [36,37] but briefly,

we measured perpendicular distance from the transect midline to each bird sighting, to the

nearest meter, using an Opti-Logic LH400 Laser Range finder (Opti-logic, Tullahoma, TN

http://www.opti-logic.com/lh_series.htm). Distances to sighted individuals located ahead of

the observer (and therefore not measurable as perpendicular from the transect midline) were

estimated, with frequent calibration checks by range finder, as suggested in [38]. Distances

were also estimated to all individuals detected by their calls, to the best of the observer’s ability

(see schematic in supplementary material, S1 Fig). Importantly, in audio-visual bird surveys

the visual detection function tends to decrease more steeply than the aural [39]. This effect is

magnified in rainforest, as visual cues rapidly attenuate in their characteristic low light condi-

tions and dense foliage [15,40]. Consequently, audio detections may account for more than

Table 1. A comparison of models incorporating likely detection covariates.

Model Model factors AICc ESW (and 95% CI) N value per covariate level

1 Species 30995.5 35.14 (34.49, 35.81) max = 608, min = 6, mean = 46.23

2 Detection cue 31321.71 38.80 (38.04, 39.58) seen = 2126, heard = 8286

3 Body size 32148.70 38.85 (38.20, 39.51) small = 2258, med = 5843, large = 2763

4 Distance-only model 33223.65 44.13 (42.40, 45.92) n = 10412

5 Survey site 33259.37 41.60 (40.95, 42.26) max = 1267, min = 28, mean = 254

6 Site elevation 33340.83 42.05 (41.41, 42.71) upland = 2395, lowland = 8017

7 Survey temperature 33350.42 42.09 (41.44, 42.74) cool = 3879, warm = 5292

8 Survey route 33372.28 42.14 (41.50, 42.80) forest = 6379, road = 2207

9 Survey wetness 33373.07 42.16 (41.51, 42.81) dry (1) = 4501, wet (2) = 5911

10 Bird diversity 33378.77 42.17 (41.53, 42.83) high = 6157, low = 4255

11 Bird abundance 33381.01 42.18 (41.53, 42.83) high = 5210, low = 5202

12 Habitat complexity 33382.97 42.18 (41.54, 42.84) high = 3053, low = 7259

13 Wind 33383.48 42.19 (41.54, 42.84) high = 1752, low = 8660

14 Noise 33384.69 42.18 (41.54, 42.84) noisy = 1905, quiet = 3472

15 Canopy density 33385.20 42.19 (41.54, 42.84) high = 8363, low = 2049

16 Shrub density 33385.41 42.19 (41.55, 42.85) high = 8375, low = 2037

17 Survey season 33385.43 42.19 (41.54, 42.85) “Wet” = 3319, “Dry" = 7093

18 Survey rain 33395.04 42.22 (41.57, 42.87) high = 1817, low = 8595

19 Cluster size 33395.77 42.22 (41.57, 42.87) single = 9673, group = 775

Models incorporating habitat, weather, temporal and species covariates of the detection function are shown ranked in order of their AICc score, along with

their associated ESW estimates. The model without covariates and all better-performing models are shown in bold. N values for each factor level are

shown, except in the case of factors with many levels, in which case the range and mean values are indicated.

doi:10.1371/journal.pone.0128464.t001
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80% of the total [41], and though distances estimated to acoustic cues are more error prone

[42], combining data across cue types may be necessary to achieve sufficient sample sizes, espe-

cially for rarer species. However, as visual detections may cluster close to the observer [39], the

distance/detectability response may thus differ between these and aural cues, so that the result-

ing “composite” detection function must be fitted with care. In fact, because calls often provide

the cues to later locate individuals by sight, audio cues may be even more important in forest

bird surveys than suggested by the simple ratio of “seen” versus “heard” detections [43]. As is

standard in such surveys, whenever possible we prioritised identification and distance estima-

tion accuracy by visually locating individuals that were heard, especially those nearby the tran-

sect. This leads to some initially acoustic detections being “upgraded” to sightings. While here

we do not distinguish “heard, then seen” as category (but for an analysis that does so see [43]),

we analyzed the detection functions of “heard” and “seen” cue types separately to check for

bias resulting from their attenuation patterns (see results below). This indicated whether or not

pooling audio and visual detections together produced a reliable estimate of the composite

detection function. Birds in flight through the survey area when first detected were excluded

from the analysis, while birds flushed by the surveyor were recorded at their estimated original

position only. Lastly, where birds were detected in clusters, we also recorded cluster size. When

group membership was difficult to assign, we considered each individual as the unit for analy-

sis, instead of a loosely defined group.

Survey duration is an important consideration in the design of distance sampling surveys

[10]. For density estimation using the Distance approach, totals ideally represent a snapshot of

individuals using the survey area [17], but in practice it is usually impossible to simultaneously

enumerate all individuals present, especially in forested habitats [44]. As a result of this delay,

movements of individuals during sampling can bias estimates by 1: accumulation of detected

individuals as they move into the survey area, 2: double counting of previously detected indi-

viduals that have moved ahead to a new location, and 3: attraction or avoidance movements by

individuals prior to detection, resulting in non-uniform patterns of density relative to the tran-

sect midline. In practice, it may also be difficult to address one of these sources of error without

increasing another [44], or compromising other aims of the survey. Here we use a slightly

slower rate of movement than in many temperate studies, but one not unusual in tropical forest

bird surveys, where difficult terrain and high species diversity demand more time from observ-

ers in order to survey sites accurately and thoroughly. Line transects are certainly less prone to

bias from the above sources than point counts [44], and we use a “look-ahead” sampling proto-

col [45] to further reduce bias from movement by 1: allowing birds to be “mapped” ahead of

the observer and 2: recorded before they move. We use a ~25 metre visual window and ~60

metre audio window ahead of the observer, and are conservative in recording detections as

new individuals. We discuss the consequences of these choices below.

Distance analysis

Here we are interested in the development of methods that both identify key influences on

detection distances in rainforest birds, and maximise the utility of audio-visual surveys for esti-

mating density. For this reason we wish to explore both 1: the importance of covariates overall

(a model selection question), and 2: the significance and magnitude of their effect on estimated

density for each species. We used Distance software, version 6 [11] to identify important survey

and habitat covariates (described below) using an information theoretic approach to model

selection, as a precursor to estimating densities and comparing the magnitude of their influence

on a per-species basis. While 60 or more observations have been recommended for reliable

inferences [10], there are examples of published studies with sample sizes as low as 32 [17], or
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20 [46]. As a compromise between including sufficient distances to fit an accurate detection

function, or including more species across which to compare covariate effects, here we used a

lower threshold of 35 individuals per factor level in each comparison. In the case of transect

placement, low numbers of road surveys meant that fewer species met this minimum detection

requirement. As we were interested nonetheless to explore the effect of placing surveys along

roads, we used a lower threshold of 25 detections per species, but interpret these results with

caution. Distance frequency histograms for each species were inspected, and detections closer

than 40m binned into 10-m intervals to minimize the effect of “heaping” around commonly

estimated distances. To reduce the influence of false precision from larger distances (and hence

less accurate distance estimates [42]) detections at distances greater than 40 metres were

binned into into 20-m intervals. Histograms were truncated at 100 m to avoid problems in fit-

ting the tail of the detection function [10], which also excluded the least accurate distance esti-

mates. The Akaike Information Criterion adjusted for small sample sizes (AICc) was used to

select the most parsimonious model from all possible combinations of Uniform, Half Normal

and Hazard Rate models with Cosine, Simple Polynomial and Hermite Polynomial adjustment

keys, except in the case of the species covariate models, where we constrained the models to a

Half Normal function with Cosine adjustment to achieve consistent convergence.

The cue type covariate compared detections from audio cues against those from visual cues.

The body mass covariate compared small (<10 g), medium (10–50 g) and large (>50 g) bodied

species, based on mean weights for species from the Handbook of Australian, New Zealand

and Antarctic Birds [47]. Species was also analysed as a factor covariate. Cluster size was ana-

lysed as a continuous covariate based on observed group sizes. Binary factor covariates for tem-

perature, rain, wind, wetness, and noise were analysed using high or low scores for each survey,

relative to the mean value for that site. We avoided surveying in heavy or persistent rain, but

nonetheless, “wet” conditions, independent of rain, are a feature of field surveys in rainforest,

and here this term refers to moisture in the soil, on leaf surfaces, and dripping from the canopy.

The noise covariate was derived from numeric categorical scores for the contribution to back-

ground noise levels from wind, rain, canopy drip, nearby streams, and from calling birds and

insects. The scoring system we employed is included in the supplementary material (S1 Table).

The total number of individuals and total species recorded per transect were calculated to give

a covariate for bird species diversity and abundance, which may influence detectability due to

observer “swamping” [17,48,49]. Finally, the effect of site habitat structure was examined by

including elevation as a factor covariate (upland versus lowland), as well as shrub and canopy

layer foliage density scores for each site (high and low density), indexed using a modified

Braun-Blanquet method [50]. The need for the inclusion of covariates was assessed by AICc.

Having identified the important covariates of detection, we then analysed data across all

species, surveys and sites with the Multiple Covariates Distance Sampling (MCDS) analysis

engine [51] in Distance to compare the influence of these covariates on ESW. Here, the number

of species compared differs between covariates because sample sizes were determined by the

numbers of available detections within each factor level. For each species, we divided the data

into subsets for each factor level and fitted separate detection functions to quantify the effect of

interactions between species and covariates on ESW. This overcomes a constraint of the

MCDS implementation in Distance that limits covariates to influence solely the scale of the

detection function, and not its shape [52]. As a non parametric test of the null hypothesis that

ESW is the same across factor levels, we conducted Mann-Whitney U-tests (based on the dif-

ference in ranking of species’ ESW estimates between factor levels) across all species under

each factor level. Since a difference in ESW of a few metres can have proportionally larger

impact on density estimation for species with small detection distances, we also expressed dif-

ferences between factor levels as a proportion of the larger estimate, and compared their
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means. Lastly, we compared the ESW for each species/factor level combination to look for sig-

nificant sources of bias, defined as non-overlapping 95% confidence intervals between the esti-

mates of ESW for each level. Non-overlapping 95% confidence intervals are a conservative test

of difference [53], which we considered an appropriate gauge of covariate influence in the con-

text of multiple comparisons. Taken together these analyses yield; 1: from AICc scores, a series

of model comparisons (over all species) indicating each covariate’s importance, 2: fromMann-

Whitney U-tests, a non-parametric test of this difference, 3: an illustration of the mean magni-

tude of any bias in density estimation caused by that covariate (as a proportion of ESW) and 4:

an indication of the prevalence and magnitude of significant factor effects per species (from

95% confidence intervals). Statistical tests not performed in the Distance software were carried

out within the R framework for statistical analysis version 2.13.1 [54].

Results

A total of 284 distance sampling surveys in the AWT yielded 10,341 bird records across 41

sampling sites. Of these, 8,698 were individual animals and 1,220 clusters of animals. The most

often detected species was the Yellow-spotted Honeyeater (Meliphaga notata, 608 records),

and the rarest was the Russet-tailed Thrush (Zoothera lunulata, 6 records), with a mean of 46.2

records per species. A total of 70 species were recorded, 52 of which had 35 or more records

which we consider sufficient for analyses at the species level. The number of species with suffi-

cient records per factor level was naturally lower, and varied between factors. Model key func-

tion, adjustment terms, and estimates of the ESW, density and mean cluster size across all sites

and surveys for each species are provided in S2 Table.

Characteristics of detected objects

Pooling across all species, surveys and sites, the best performing model in terms of AICc was

one incorporating species as a factor covariate (Table 1), substantially better than the basic

model without covariates. Correlated with species, body mass was also an important driver of

differences in detectability, with smaller species (Fig 1a) showing a steady decay over shorter

distances and no detections at greater distances; larger species (Fig 1c) showing the pro-

nounced “shoulder” and long tail suggesting limited decay in detection probability over short

to moderate distances, and medium-sized species showing an intermediate function (Fig 1b).

In contrast, cluster size proved to have little influence on ESW in this study, both overall and

on a per-species basis (see Figs C-D in S5 Fig, p-value = 0.25). Audio versus visual cue type was

suggested as a more important covariate than body mass (Table 1) with ESWs tending to be

much larger for audio records (Fig 1, right, mean difference = 21.64m, s.d. = 14.85m). As

expected in audio-visual surveys [39], and even more so in closed forest, detection functions

differed between audio (Fig 1d) and visual (Fig 1e) cue types. The apparent deficit of audio

detections between 0 and 10 metres from the midline (arrow in Fig 1e) is attributable to the

fact that, as is standard in such surveys, audio cues to nearby individuals where often tracked to

their source. As described in the methods, this maximises the accuracy of both identification

and distance estimation, but creates an apparent deficit of audio detections at small distances.

Density estimated from audio data alone would be biased low as a result of this effect, but since

combining audio and visual data (Fig 1f) removed any deficit of detections at small distances,

we take the composite function to best represent the true shape across both cue types, and con-

tinue this treatment in all subsequent analyses. The importance of species as a covariate is

driven by the pronounced variation in ESW evident between species (Fig 2), ranging from

11.62m to our truncation distance at 100m. A histogram of all ESWs (Fig 1, inset) showed also

that while ESWs for most species cluster within 30 to 60 m (mean = 49.08m), variation was
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Fig 1. A comparison of the distance histograms and fitted detection functions between cues (right), and between body sizes (left). The arrow in (e)
indicates the apparent deficit in audio detections at short distances resulting from the prioritisation of visual cues for accuracy of distance estimation during
surveys.

doi:10.1371/journal.pone.0128464.g001
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Fig 2. The distribution of estimated Effective Strip Width (ESW) 95% confidence intervals across all species examined, ranked in order of their
estimated ESW fromDistance analysis. An inset histogram shows the distribution of ESWs across all species, overlaid with with the probability density
function for this distribution.

doi:10.1371/journal.pone.0128464.g002
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substantial (s.d. = 20.24m). Estimated ESW’s are given for each species in the supplementary

material, S2 Table, along with their respective model adjustments, AIC values, estimated den-

sity and detection probability. Relative to the area surveyed for a hypothetical species whose

ESW lies at the mean value for the assemblage, the shortest ESW equated to a reduction in

ESW for that species from the assemblage mean of 75.6% (mean reduction 33%), while the

largest equated to an increase of 100.6% (mean increase 35.6%). While the influence of size is

apparent from the coarse categories shown in Fig 1a, 1b and 1c, and implied in the rankings of

species along the y axis in Fig 2, plotting ESW against body mass as a continuous variable (Fig

3) illustrates this effect of size on detectability in more detail; ESW is significantly correlated

with body mass (Adjusted R2: 0.2514, F: 17.79, p-value: 0.0001). Outliers to this pattern can be

seen both above the trend line, e.g. Pied Currawong (Strepera graculina), Superb Fruit-dove

(Ptilinopus superbus), and below it, e.g. Australian Brush Turkey (Alectura lathami), Topknot

Pigeon (Lopholaimus antarcticus), Yellow-throated Scrubwren (Sericornis citreogularis) and

Atherton Scrubwren (Sericornis keri).

Characteristics of surveys and habitat

The importance of species as a covariate, and the influence of body size on both the scale and

shape of the detection function, reinforced the necessity of analysing covariate effects for each

species separately. Overall, species-specific ESWs in summer surveys tended to be significantly

shorter (Mann-Whitney U-test results in Table 2), than those during the winter (Fig 4a). Based

on 95% confidence intervals, this seasonal effect on ESW was significant for four of the 33 spe-

cies examined (Fig 4b): with lower wet-season ESW for (left to right) Silvereye (Zosterops later-

alis), Wompoo Fruit-dove (Ptilinopus magnficus) and Superb Fruit-dove, and lower dry-season

ESW for Victoria's Riflebird (Ptiloris victoriae). As an indication of the magnitude of the effect

from a population estimation perspective, these species showed differences in the size of the

effective strip width of + 34.8%, +25.3%, +40.6% and_-26.5% respectively. While we did not

survey in heavy or persistent rain, “wet” surveys (when leaf litter is wet and foliage is dripping,

a common feature in this and other rainforest field studies), had significantly shorter ESWs

overall (Fig 4c), though the decrease was significant for only five of 25 species (Fig 4d): Large-

billed Scrubwren (Sericornis magnirostris), Rufous Fantail (Rhipidura rufifrons), Brown Gery-

gone (Gerygone mouki), Varied Triller (Lalage leucomela) and Superb Fruit-dove. These species

showed differences in the size of the effective strip width of +25.7%, +33.8%, +28.6% +33.6%

and +25.1 respectively. High shrub layer density was also associated with reduced ESW overall

(Fig 4e), and had a significant negative effect for five of 30 species (Fig 4f): Yellow-throated

Scrubwren, Grey Fantail, (Rhipidura albiscapa), Silvereye, and Eastern Spinebill (Acanthor-

hynchus tenuirostris). These species showed differences in the size of the effective area surveyed

of + 34.7%, +41.1%, +37.1% and 31.4% respectively. Interestingly, in each of these cases, the

factor level associated with an increase in ESW was also associated with an increase in the pro-

portion of detections from audio cues (data not shown). In contrast, lowland versus upland

surveys had no overall significant difference in ESW, though ESW was significantly longer for

two of 14 species in upland surveys (Figs A-B in S2 Fig, see captions for these and subsequent

species details). Survey temperature relative to the site mean also had no overall significant

influence, though ESW was significantly shorter for two of six species in warmer surveys (Figs

C-D in S2 Fig). Transect placement on roads versus in forest had no overall significant influ-

ence on ESW, though significantly reduced ESW for one of 17 species, and increased it for two

species (Figs E-F in S2 Fig). Neither high diversity of birds encountered on surveys (Figs A-B in

S3 Fig, increase for three of 36 species, decrease for one) nor high abundance (Figs C-D in S3

Fig, increase for two of 35 species, decrease for three) appeared to have systematic influence on
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ESW. Habitat complexity (Figs E-F in S3 Fig), also showed no significant effect on ESW overall,

and significant increased ESW for only one of 22 species. Wind during surveys had no overall

significant effect on ESW at the intensities allowed by our sampling protocol, but significantly

reduced ESW in one of 21 species, with "still" surveys showing greater ESW for 2 species (Figs

A-B in S4 Fig). Noise level had no overall significant influence on ESW, though significantly

reduced ESW for two of 15 species (Figs C-D in S4 Fig). Canopy density also did not affect

ESW significantly overall, only slightly reducing ESW for one of 22 species (Figs E-F in S4 Fig).

Rain during surveys at the intensities allowed by our sampling protocol had little systematic

influence on ESW (Figs A-B in S5 Fig, one of 39 species), and nor did group size (Figs C-D in

S5 Fig) with increase in ESW for detections of single individuals over clusters for only one of

11 species.

Fig 3. Estimated Effective Strip-widths plotted against log(bodymass) for each of the 52 species
compared here. See text for regression results. The shaded area shows 95% confidence intervals for the
model including all species. Labelled points indicate species outlying to this trend: above the line two species
with distinctive and penetrating calls CURR = (Pied Currawong (Strepera graculina), SFD = Superb Fruit-
dove (Ptilinopus superbus). Below the line two species which rarely or only softly call (ABT = Australian
Brush Turkey (Alectura lathami), TPIG = Topknot Pigeon (Lopholaimus antarcticus), one species more
difficult to separate from congeners by call alone (ASW = Atherton Scrubwren (Sericornis keri), and one
species more likely to call when close to the observer ((per. obs.) YTSW = Yellow-throated Scrubwren
(Sericornis citreogularis)).

doi:10.1371/journal.pone.0128464.g003
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Discussion

Characteristics of detected objects

We show that interspecific differences in detectability with distance are critical for density cor-

rection in our region-wide and multi-species surveys of montane tropical rainforest birds,

potentially resulting in substantial over- and under-estimates of survey area if a fixed width is

used, and hence corresponding under- or over-estimates of density respectively. These differ-

ences were correlated to body size, and affected both the shape and scale of detection functions,

highlighting the importance of species-specific corrections for detectability. This also suggests

a primary goal of sampling designs in these conditions should be achieving adequate replica-

tion of distance samples for fitting individual detection functions to taxa of interest. Using both

audio and visual cues helps by maximising the available detections in rainforest, but as

expected, cue types showed markedly different detection functions in this study. In such cases

Buckland et al. [6] recommend analyzing data from calls and sightings separately, but we

prioritised sightings for their increased confidence in identification and distance estimation,

resulting in an apparent deficit of aural detections at and near the transect midline when these

are analysed separately. Combining audio and visual cues, however, gave both a plausible

detection function with an adequate shoulder, and sufficient data for ~70% of species, justifying

pooling of data for both cue types. We suggest our pooling approach as a practical alternative

to the more complex protocol of noting when birds are both seen and heard (but see, e.g. [43]).

Given the wide variation in morphology, call characteristics and behaviour among birds, it

is unsurprising that after cue type, species was the primary influence on detection probability.

Both the magnitude of the observed variation and the fact that it is roughly continuous makes

it difficult to justify using the mean value of ESW to characterise the area surveyed for all spe-

cies in this community: using the mean here would result in an average ~30% overestimate of

ESW, and hence underestimate of density, across all species. This inflates to as much as ~310%

percent ESW overestimate (or density underestimate) for some smaller and less detectable spe-

cies, or conversely a ~50% ESW underestimate (or density overestimate) for larger-bodied

Table 2. Results of overall and per-species analyses of the effects of each factor covariate on ESW.

Model factor Mean ESW Difference Influence on ESW Mann-Whitney p-value Proportion of significant differences N

1 Elevation -9.08 Negative 0.50 0.14 14.00

2 Temperature 1.23 Positive 0.19 0.17 17.00

3 Route 3.59 Positive 0.12 0.18 6.00

4 Wetness 4.14 Lower when wet 0.03 0.20 25.00

5 Bird diversity 0.17 Positive 0.46 0.06 36.00

6 Bird abundance 0.97 Positive 0.257 0.14 37.00

7 Complexity 3.21 Positive 0.10 0.05 20.00

8 Wind 2.71 Positive 0.29 0.14 21.00

9 Noise 2.79 Positive 0.17 0.13 15.00

10 Canopy density 2.58 Positive 0.10 0.05 22.00

11 Shrub density 4.48 Positive 0.01 0.17 23.00

12 Season -2.13 Lower in Summer 0.05 0.12 33.00

13 Rain -1.16 Negative 0.25 0.03 39.00

14 Cluster size 8.19 Positive 0.25 0.09 11.00

Shown are significant covariate effects on Effective Strip Widths, based on Mann-Whitney U tests. The proportion of tested species showing non-

overlapping 95% confidence are indicated in bold.

doi:10.1371/journal.pone.0128464.t002
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Fig 4. Left: Box-plots showing the relative effect of each covariate, expressed as the proportion of total ESW. Right: Biplots of each species showing the
distribution of shifts in ESW. An “x” indicates those species with non-overlapping 95% confidence intervals (see text for details of species). Solid lines are
linear regressions of the relationship, with 95% confidence intervals shaded.

doi:10.1371/journal.pone.0128464.g004
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species. However, collecting the necessary species-specific data to account for these differences

may be a costly process in the diverse bird communities of tropical rainforest, where some spe-

cies are rarely encountered. As an alternative, Alldredge et al. [55] recommend borrowing

information about detectability from species with similar maximum detection distance. For

these problematic rare species, Mackenzie et al. [56] also suggested sharing data between those

with similar visibility, activity patterns, size and behaviour. Some field studies have considered

this a priori [46,57], using subjective assessments of habitat use or activity level, assumed to

influence detectability. Our results indicate that body size is a potentially important grouping

covariate for sharing detectability information, with the advantage of being both objective and

readily available in the literature. Importantly, this is despite the fact that here about 80% of

detections were aural. We suggest this may be due to correlation between body size and call

characteristics, since larger species may call more loudly [58] and at lower frequencies than

smaller species, resulting in calls which attenuate less rapidly [40], and remain distinguishable

at greater distances from the observer (A.A. pers. obs). Differences in calling behaviour, includ-

ing timing (both annual and diel), frequency, volume, and reactions to observers, however,

may drive outliers from this relationship. Here, outliers tended to be species with unusual call

characteristics, either calling loudly and often (species well above the trend line in (e.g. Pied

Currawong (Strepera graculina), Superb Fruit-dove (Ptilinopus superbus)), or quietly and/or

infrequently (species well below the trend line, e.g. Australian Brush Turkey (Alectura

lathami), Topknot Pigeon (Lopholaimus antarcticus)). Additionally, ESW is lower than

expected from body size for one species that is more difficult to separate from congeners by call

alone (Atherton Scrubwren (Sericornis keri), and for one which may be more likely to call

when close to the observer ((A.A. pers. obs.) Yellow-throated Scrubwren (Sericornis citreogu-

laris)). We suggest that a detailed study of grouping covariates for detectability should there-

fore also include a treatment of species’ call characteristics and behaviour.

Characteristics of surveys

Time of season may be an important influence on density estimation in bird surveys [59,60].

All three species which showed here an increase in ESW during the dry season are canopy fru-

givores, two of which (Wompoo Fruit-dove and Superb Fruit-dove) were noted by Crome

[61] to have a peak in calling activity during the dry season when they breed, synchronous

with maximum fruit availability. In contrast, Victoria's Riflebird, which displays and breeds

from September to January [47], showed higher ESW during the wet season. This suggests

that some seasonal differences between ESWmay stem from variation in rates of audio cue

production, and hence the proportion of audio detections. While surveying in both seasons

mitigates any bias in overall density estimates, the inclusion of a season covariate for such spe-

cies would be recommended where the spread of sampling is not sufficient to capture tempo-

ral variation in detectability.

Here as in [20] sampling was not conducted on excessively rainy or windy days, or in peri-

ods of substantial background noise, and the lack of systematic influence of these covariates on

ESW suggests that our protocol eliminates most of the effects of poor weather conditions,

which may otherwise influence detectability [28]. The lack of observer “swamping” in this

study, even at high diversity and abundance, would also suggest only a weak effect, and/or suf-

ficient observer training and experience to overcome it. Wetness however remained a signifi-

cant influence on ESW for some species. Canopy-drip in rainforest is common both after rain

and in cloudy conditions at high elevations, and we suggest that in addition to a decrease in

bird activity and hence availability for detection, increased background noise from dripping

foliage may also decrease detection distances. Comparisons of density estimates between sites
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where wetness varies systematically, for example across large climatic gradients, may therefore

be biased. In these cases, care should therefore be taken to ensure sampling is either a) con-

ducted extensively in optimal conditions, or b) that relevant weather measures are included as

covariates.

Characteristics of habitat

In contrast to surveys in open habitats in Australia’s tropical north (e.g. [62]) a reduced role for

the attenuation of visual cues could be expected in audio-cue dominated surveys characteristic

of rainforest [14]. Nonetheless, shrub-layer foliage density had a significant negative influence

on ESW overall, and a significant negative effect for five species. This effect was concentrated

over shorter distances (and hence disproportionately influenced detection of smaller species),

and translated to a mean decrease of 40% in ESW in sites with dense understory. If uncor-

rected, relative abundance estimates may therefore be biased where shrub-layer density varies

substantially. While sighting birds in dense foliage is difficult, this effect may also involve

increased attenuation of call sounds by reverberation and reflection [63]. Regardless of its

cause, this result suggests that where site-specific density estimates are not made directly, a

shrub layer covariate should be included to correct for detectability differences between sites

with substantial vegetation structural differences in the understorey. Overall, covariates of

detectability in the rainforest bird surveys we analyse therefore appear to influence detectability

through two interacting pathways: firstly through rates of cue production, and hence differ-

ences in the proportion of visual versus audio cues, and secondly via attenuation of cues.

Importantly however, we note that cue production will also have an influence on availabil-

ity: the probability of individuals present producing a detectable cue. As we have shown, avail-

ability may vary between species, season, or under different weather or site conditions. Birds

may not call when observers are within range, or may not be heard amongst other sounds

[14,64]. An observer's field of view on the forest floor is often limited, and birds close to the

transect may be 40 m above in the canopy, or obscured in dense foliage. In such cases where

availability is less than 1, a key assumption of distance sampling is not met: that probability of

detection at g(0) (the transect midline) is also equal to 1 [6,11].]. In our study, combining

audio and visual cues and surveying at dawn maximises availability, but potential remains for

individuals even at the transect midline to go undetected, especially in tall forests. Despite the

fact that this problem may be common [65], especially in the tropics [14], relatively few studies

treat availability separately. We suggest that quantifying the prevalence and magnitude of

underestimates in forest bird densities that result from availability being less than 1 should be a

priority in future studies. Gale et. al. [14] suggest territory mapping as a possible, albeit labour-

intensive solution. Another approach may be to compare conventional survey results with

those made by accessing the canopy, which may yield detections of individuals and species not

possible otherwise [66]. A longer sample duration may also serve to increase availability for

species that call infrequently or are canopy dwelling, but may come at cost of upward bias from

double counting. Pooling consecutive surveys for these species may also be an alternative.

Other limitations and sources of error

Error in density estimation may also arise from inaccuracy in the measurement of distances

[41,42]. Since distances to audio cues are often estimated, this source of error may be more

important in audio-dominated forest bird surveys [30,43]. Error rates in this localization process

also increase with distance [67] and with increasing call frequency (pitch) [40]. Here we

attempted to reduce the impact of estimation error by increasing bin sizes with increasing dis-

tance but we recognise that an unknown error component remains due to subjective assessment
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of audio cue distances. Unfortunately, the paucity of sightings in rainforest surveys limits the

scope for practical alternatives: if audio cures are excluded, sufficient data will be difficult to

accumulate for all but the most commonly-sighted species, and visual detectability decay may

be too steep to accurately fit a detection function. In some settings, calibration experiments

could be used to characterise the error structure [68]. Newly developed techniques such as

“acoustic spatially explicit capture-recapture”might prove useful [69]. Additional methods such

as radio-telemetry have been suggested [65], but may be impractical and uneconomical to apply

over the spatial and temporal scales required. However, we strongly suggest that measures of the

error structure of distance estimation to audio cues should be incorporated into forest bird sur-

veys in future. One promising avenue may be the use of passive acoustic arrays [70], and some

advances have already been made for single species systems [71,72], suggesting scaling to multi-

ple-species surveys to be the next challenge. If information about the measurement error is

available, it can be readily incorporated into the Distance analysis framework [68,73].

Bird movements relative to the observer can also result in bias if they are more rapid than

about half the observer’s rate of movement [10]. This can occur as a result of either: 1: accumu-

lation of individuals rather than a “snapshot” count [44]; 2 double counting; or 3: actual depar-

ture from uniform density with distance from the midline, due to birds avoiding or

approaching the observer [17]. Moving more rapidly than the objects of the survey is one

method for avoiding the first source of error [17]. In our case, a key goal of the monitoring pro-

gram is to measure diversity at sites. Bird diversity is high in the AWT (as many as 35 species

present on a single transect), so that we found a slower survey rate necessary to detect and iden-

tify all the individuals and species present. As in many montane tropical forest environments,

terrain and vegetation also present challenges. Our strategy, a survey rate of 5 m/min, is slightly

slower than other temperate surveys (e.g [38,48,74–80], mean = 12.19m/min), but not unusual

among tropical bird surveys (e.g [14,20,81–84] mean 7.73 m/min), where high diversity and

complex vegetation and/or terrain may dictate a slower pace [14] than in temperate surveys.

Our “look-forward” survey method, suggested in [45], further minimises bias due to avoidance

or attraction movements by locating individuals in a moving window ahead of the observer

before they react to our presence. This method can, in theory, further increase the period in

which detected individuals have time to either 1: move and be replaced by new individuals

which are added to the count or 2: move ahead to a new location and be spuriously double

counted, so that care must thus be taken to minimise these sources of bias. We employ a com-

promise approach that uses a short survey window ahead of the observer, in fact dictated by

the short visual range in closed forest (approximately 20–30 metres, similar to the limit recom-

mended by [85]), and by the maximum distance from the observer that can be reasonably esti-

mated for audio cues (approximately 60 metres [42]). We further lower the risk of double

counting and accumulation by recording data in 6 sub-segments of 5 minutes duration each.

This allows the observer to build a “spatio-temporal map” of the individuals present. A glance

at the data-sheet gives quick overview of the time (and hence distance along the midline) since

a species was last recorded, allowing an informed decision as to whether or not a detection con-

stitutes a new individual. We are also conservative in this regard, tending to attribute new cues

to previously detected individuals whenever there is some doubt.

In the case of bird movements leading to non-uniform density with respect to the transect,

an advantage of line transect surveys over point counts is that birds on the midline can more

readily be counted either before they are disturbed, or recorded at the point from which they

flush, reducing this bias [4]. Shy species, however, may still be affected if their movements

occur outside the look-ahead window. Here examination of the compound detection functions

for each species shows little deficit at the midline, suggesting this problem is limited in the

current study, but further comparisons with data from surveys using a longer look-ahead
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windows, or from full census sampling, would be useful for quantifying variation between spe-

cies. Fortunately, distance-corrected transects surveys still compare well to alternative methods

[9] and even in complex rainforest environments, line-transect distance sampling surveys

return robust and relatively unbiased estimates when measured against other approaches

[14,18]. Careful and systematic sampling by well-trained and experienced observers may thus

remain remain the most cost-effective solution for reducing error rates in general [28], and for

sound cue localization in particular [42,48]. Where the deviations from critical assumptions

are suspected to be large, more intensive or specifically targeted methods could be applied,

such as double-observer sampling (e.g. [86]).

While cluster size had little influence on detection probability in this study, single-species

clusters made up a relatively small proportion of our records. We were conservative in assign-

ing individuals to clusters, so that individuals in loosely defined groups were treated as single

individuals. We also did not attempt to collect data to distinguish detections of members of

mixed-species flocks. Mixed flocking has been noted frequently in Australian woodland birds

[47], and though it may be a common phenomenon in the region [87], there is little in the liter-

ature for rainforest species,. Since detectability of cryptic members may increase in flocks con-

taining more obvious species, mixed flocking thus remains a potential source of bias that

warrants exploration. Lastly, while distance sampling assumes that transects are placed at ran-

dom in the landscape, access in tropical forests is a challenge, and may depend on roads and

tracks which are not randomly placed. This can influence estimation where density also varies

with distance from roads [35]. For example, some species may be attracted to roads, while are

repelled [88,89]. A secondary effect may arise from influences on habitat structure [90]; in rain-

forests, increased light availability along roads may alter the structure of vegetation [91] and

hence effect the attenuation of survey cues. Here surveys were conducted along roads too infre-

quently to explore their effects in detail, but some species show indication of road influence on

density. The most common effect appears to be attraction, largely restricted to understorey

insectivores (Fig F in S2 Fig), perhaps due to microclimate effects on insect activity. Where sur-

veys commonly use roads, or do so systematically with respect to the overall sampling design,

this effect could bias density estimates for the effected species. We suggest that surveys on

roads be avoided in general, but where unavoidable, information on habitat structure gradients

could be collected and included in the Distance analysis [35].

Suggested protocols for rainforest bird surveys, and further work

Based on the analyses presented here, we can outline key features of rainforest bird sampling

protocols that should minimise the influence of important sources of bias. Firstly, species,

habitat structure and survey effects (including season and wetness) suggest distance sampling

will substantially improve estimates of density in rainforests, provided that 1: sampling is suf-

ficient to estimate density for each species of interest, 2: information about habitat structure at

least in the shrub layer is collected, 3: surveys are conducted under optimum conditions

(including seasonal sampling), but that information about environmental wetness is recorded

as a minimum requirement in rainforest surveys. We also suggest incorporating some effort

to evaluate 1: availability for detection (e.g. call rates), and 2: distance estimation error. This

might be done in a calibration subset of surveys where calling individuals are monitored, and

their position is more accurately mapped (see e.g., [42]). It is also important to note that in an

assemblage-wide study, species differences may be the more significant contributors to bias in

density estimates, particularly were assemblage composition changes across the study region.

Studies concerned with differences between sites or time periods within a single species
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however, such as monitoring of population changes, will likely need to counter the bias intro-

duced by site and survey differences instead.

The results presented here also indicate approaches that may be useful where data are too

sparse for Distance analysis, or where formal distance sampling may not be practicable in all

surveys (as in large-scale or volunteer-based surveys). In the absence of ESW estimates for

important covariates (including species), to be comparable surveys should at minimum: 1; pool

data across sites with regard to averaging out variation due to habitat structure, especially in

the shrub layer, 2: pool data across surveys with regard to averaging out variation due to survey

wetness and season, and 3: share detectability information across species data based on shared

characteristics (e.g., body size). Lastly, the importance of species as a covariate shown here also

suggests a data-driven approach to modelling abundance of rare species: a challenge often

encountered in distance sampling, and indeed whenever it is important to account for detect-

ability in survey data. To guide the sharing of detection data for rare species, or those for which

distance data are lacking, we suggest that a useful starting point will be a proper consideration

of the influence of body size and call characteristics, followed by examination of other covari-

ates related to species behaviour or morphology. In combination with distance sampling and

the minimum survey requirements we suggest here, such an approach may prove especially

useful in addressing some of the challenges faced in the urgent task of monitoring bird popula-

tions in tropical forest environments.

Supporting Information

S1 Fig. Schematic of the audio-visual bird survey method with distance sampling. Transects

were walked for 30 minutes, and the distances to all birds seen or heard were estimated or mea-

sured directly where possible. 1) Distances to birds seen close to the transect were measured

with a laser rangefinder. 2) Birds on the transect midline were recorded at zero meters before

they move to avoid the observer. 3) Distances to birds calling from concealment within 50m of

the transect were estimated, later binned to 10m intervals. 4) and 5) A single distance to groups

of birds was measured or estimated to the group centre, and number of individuals counted or

estimated. 6) Birds heard calling at distances estimated to be greater than 100m were excluded

from later analyses, as distance estimation becomes unreliable at larger distances. 7) Distances

to birds estimated to be calling from between 50m and 100m were later binned in 20m catego-

ries. 8) Distances to birds heard calling from close to the transect well ahead of the observer

were estimated accordingly, and later confirmed visually were possible. Estimated heights to

seen individuals were also recorded.

(PDF)

S2 Fig. A comparison of the relative effect of elevation, temperature and route covariates

on Effective Strip Width (ESW). Box-plots on left (Figs A,C,E) show the median, 25th and

75th quantile of the range of ESW relative differences between treatments, expressed as the

proportion of each species’ total ESW. Biplots (Figs B, D, F) on the right show the distribution

among species of shifts in ESW associated with each covariate. N values refer to the number of

species compared and an “x”marks those with non-overlapping 95% confidence intervals. For

elevation (Fig B) these are (left to right within plots): Large-billed Scrubwren (Sericornis mag-

nirostris) and Spotted Catbird (Ailuroedus melanotis), for temperature (Fig D) Mistletoebird

(Dicaeum hirundinaceum), and for survey route (Fig F), Large-billed Scrubwren, Spotted Cat-

bird and Superb Fruit-dove (Ptilinopus superbus). Solid lines indicate a simple linear regression

of the relationship, upper and lower 95% confidence intervals are shaded, relative to zero differ-

ence (dashed line).

(PDF)
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S3 Fig. A comparison of the relative effect of bird diversity, bird abundance and habitat

complexity covariates on Effective Strip Width (ESW). Box-plots on left (Figs A,C,E) show

the median, 25th and 75th quantile of the range of ESW relative differences between treat-

ments, expressed as the proportion of each species’ total ESW. Biplots (Figs B, D, F) on the

right show the distribution among species of shifts in ESW associated with each covariate. N

values refer to the number of species compared and an “x”marks those with non-overlapping

95% confidence intervals. For diversity (Fig B) these are (left to right within plots): Silvereye

(Zosterops lateralis), Eastern Spinebill (Acanthoryhnchus tenuirostris) and Victoria’s Riflebird

(Ptiloris victoriae), for abundance (Fig D) Yellow-throated Scrubwren (Sericornis magniros-

tris), Silvereye, Mistletoebird (Dicaeum hirundinaceum), Superb Fruit-dove (Ptilinopus

superbus) and Victoria’s Riflebird and for habitat complexity (Fig F) Superb Fruit-dove. Solid

lines indicate a simple linear regression of the relationship, with upper and lower 95% confi-

dence intervals shaded, relative to zero difference (dashed line).

(PDF)

S4 Fig. A comparison of the relative effect of wind, noise and canopy density covariates on

Effective Strip Width (ESW). Box-plots on left (Figs A,C,E) show the median, 25th and 75th

quantile of the range of ESW relative differences between treatments, expressed as the propor-

tion of each species’ total ESW. Biplots (Figs B, D, F) on the right show the distribution among

species of shifts in ESW associated with each covariate. N values refer to the number of species

compared and an “x”marks those with non-overlapping 95% confidence intervals. For wind
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