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ABSTRACT
Radial velocity surveys are beginning to reach the time baselines required to detect Jupiter
analogues, as well as sub-Saturn mass planets in close orbits. Therefore, it is important to
understand the sensitivity of these surveys at long periods and low amplitudes. In this paper, I
derive analytical expressions for the detectability of planets at both short and long periods, for
circular and eccentric orbits. In the long-period regime, the scaling of the detection threshold
with period depends on the desired detection efficiency. The 99 per cent velocity threshold
scales as K ∝ P2 ∝ a3, whereas the 50 per cent velocity threshold scales as K ∝ P ∝ a3/2.
I suggest an extension of the Lomb–Scargle statistic to Keplerian orbits, and describe how to
estimate the false alarm probability associated with a Keplerian fit. I use this Keplerian peri-
odogram to investigate the effect of eccentricity on detectability. At short periods, detectability
is reduced for eccentric orbits, mainly due to the sparse sampling of the periastron passage,
whereas long-period orbits are easier to detect on average if they are eccentric because of the
steep velocity gradients near periastron. Fitting Keplerian orbits allows the lost sensitivity at
short orbital periods to be recovered for e � 0.6. However, there remain significant selection
effects against eccentric orbits for e � 0.6, and the small number of highly eccentric planets
discovered so far may reflect this. Finally, I present a Bayesian approach to the periodogram
which gives a simple derivation of the probability distributions of noise powers, clarifies why
the periodogram is an appropriate way to search for long-period signals, and emphasizes the
equivalence of periodogram and least-squares techniques.
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1 I N T RO D U C T I O N

Precise radial velocity surveys have made the detection of Jupiter
mass companions to nearby stars routine, with more than 100 such
‘exoplanets’ now known (see Marcy et al. 2003 for a review). As
these surveys continue, the accessible parameter space grows to-
wards lower masses and longer orbital periods. For example, recent
observations have led to the discovery of Saturn mass planets in
close orbits (Fischer et al. 2003), and a population of Jupiters with
nearly circular orbits at distances �1 au (Vogt et al. 2002; Carter
et al. 2003; Jones et al. 2003). In addition, it is now possible to study
the statistical occurrence rate and distributions of mass, period and
eccentricity of exoplanets (Vogt et al. 2000; Tabachnik & Tremaine
2002; Butler et al. 2003; Fischer et al. 2003; Lineweaver & Grether
2003; Jones et al. 2003; Udry, Mayor & Santos 2003), and how these
depend on the metallicity of the host stars (Fischer & Valenti 2003).
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These distributions contain important information about the planet
formation process (Armitage et al. 2002; Ida & Lin 2004).

This recent work emphasizes the need to understand the sen-
sitivity of radial velocity surveys at long periods and low ampli-
tudes. The sensitivity of radial velocity surveys has been discussed
previously by several authors, mostly for circular orbits. The Lomb–
Scargle (LS) periodogram (Lomb 1976; Scargle 1982) is a com-
monly used technique for searching for periodic sinusoidal signals
in unevenly sampled data, and allows analytical estimates of the de-
tection threshold to be written down for periods less than the duration
of the observations (Horne & Baliunas 1986). This was applied to
planet searches by Cochran & Hatzes (1996) and Nelson & Angel
(1998). Endl et al. (2002) briefly investigated the detectability of
eccentric orbits with the LS periodogram, finding that detectability
was significantly reduced for e � 0.5. The detectability of long-
period planets, with orbital periods longer than the duration of the
observations, was studied by Nelson & Angel (1998) and Eisner &
Kulkarni (2001). Rather than use the LS periodogram to measure
the significance of the χ2 fit, Nelson & Angel (1998) adopted the
square of the best-fitting amplitude K2. Eisner & Kulkarni (2001)
pointed out that this leads to reduced sensitivity at long periods,
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because when fitting sinusoids to noise only, one finds that the am-
plitude is strongly correlated with the fitted phase. They adopted
an ‘amplitude–phase’ analysis to account for this correlation, and
showed that the sensitivity was significantly improved.

In this paper, I revisit the question of the sensitivity of radial
velocity surveys. The main motivations are first to address how to
assess the false alarm probability (FAP) associated with a Keplerian
orbit fit to radial velocity measurements, and secondly to derive
simple analytical formulae for detection thresholds, including long
orbital periods and non-zero orbital eccentricities. I show that sig-
nificant selection effects operate against highly eccentric orbits, and
that, at long periods, a separate analysis of amplitude and phase is
not required; the definition of the LS periodogram in terms of �χ2

automatically accounts for the correlations between fitted parame-
ters at long periods. In addition, I discuss a Bayesian approach to
this problem, which will provide a useful basis for future study of
the statistical distributions of extrasolar planet properties, as well as
emphasizing the fundamental equivalence of periodogram and least-
squares techniques. This equivalence, and the idea of extending the
periodogram to non-sinusoidal signals have also been discussed in
the literature on Bayesian statistics (see Bretthorst 1988, 2001a,b,c;
Scargle 2002; Loredo & Chernoff 2003).

An outline of the paper is as follows. In Section 2, I review the
LS periodogram, and suggest an extension to Keplerian orbits. In
Section 3, I outline a Bayesian approach to the periodogram. In
Section 4, I calculate the detection thresholds for short and long
periods, and including non-zero eccentricity. The conclusions are
presented in Section 5.

2 L E A S T- S QUA R E S F I T T I N G A N D
T H E P E R I O D O G R A M

2.1 Sources of radial velocity variability

We are interested in detecting the radial velocity wobble due to an
orbiting planet given a set of measured radial velocities, observa-
tion times, and measurement errors. Often the first indication of the
presence of a planet is excess scatter in the radial velocities over
the expected amount. A simple way to check for this is to calculate
the probability that χ2

mean = ∑
j (v j − 〈v〉)2/σ 2

j is drawn from a

χ2 distribution – the �(ν/2, 1/2) distribution (Hoel, Port & Stone
1971; Press et al. 1992). Here, σ i is the expected variability for data
point i, and 〈v〉 is the mean of the data. A reduced χ 2 much greater
than 1 (the exact threshold depending on the desired FAP) indicates
excess variability.

However, there is some uncertainty in predicting the expected
variability in the radial velocities. Scatter in the radial velocities
is expected from statistical and systematic measurement errors, and
from intrinsic stellar radial velocity variations, or ‘jitter’. The typical
measurement error depends on the survey, but is typically 3–5 m
s−1, and promises to improve towards ∼1 m s−1 in the near future
(Mayor et al. 2003; Butler et al. 2004). Jitter is thought to arise
from a combination of surface convective motions, magnetic activity
and rotation (Saar & Donahue 1997). The amount of jitter depends
on stellar properties such as rotation rate and spectral type, but is
typically 3–5 m s−1 for chromospherically quiet stars (Saar, Butler
& Marcy 1998; Santos et al. 2000). Saar et al. (1998) used data from
the Lick survey to find a rough relation σ V ≈ 5 m s−1(23 d/Prot)1.1

for G- and K-type stars (Cumming, Marcy & Butler 1999, hereafter
CMB99).

In this paper, we will generally ignore these uncertainties by as-
suming that the noise level is unknown, and looking for the best

partitioning of the data into Gaussian noise plus a single planet on a
circular or Keplerian orbit. However, we will also discuss the case
where the noise σ can be predicted in advance. As we will show, this
issue is only important for small N, when the noise level is difficult
to accurately determine from the data.

2.2 Circular orbits: the Lomb–Scargle periodogram

We first discuss the LS periodogram (Lomb 1976; Scargle 1982).
Because it involves fitting sinusoids to the data, this is particularly
appropriate for circular orbits. Given a set of observation times {tj},
velocities {vj}, and measurement errors {σ j }, and a trial orbital
frequency ω = 2π/P , we fit the function

f j = A cos ωt j + B sin ωt j + C (1)

to the data by minimizing χ2, which we write as χ2
circ = ∑

j (v j −
f j )2/σ 2

j . The number of degrees of freedom is ν = N − 3, be-
cause there are three parameters (A, B, C) in the model. Here, we
have extended the original LS periodogram by allowing the mean to
float at each frequency (Walker et al. 1995; Nelson & Angel 1998;
CMB99), rather than subtracting the mean of the data prior to the fit
(the importance of this is discussed by CMB99 and Black & Scargle
1982).

The goodness of fit is measured by the LS periodogram power z,
defined as

z(ω) = �χ2/2

χ2
circ/ν

, (2)

where �χ 2 = χ 2
mean − χ2

circ, and χ 2
mean = ∑

j (v j − 〈v〉)2/σ 2
j is the

χ 2 of a fit of a constant to the data. The periodogram power z(ω)
measures how much the χ 2 of the fit improves when a sinusoid of
frequency ω is included. As emphasized by Walker et al. (1995),
this is similar to a classical F-test for comparing fits of different
models to data (e.g. Bevington & Robinson 1992). To search for a
periodicity, we evaluate z(ω) for a range of frequencies, and look
for the maximum value z0.

The significance of the best fit depends on the FAP, or how often
a periodogram power as large as the observed power would arise
purely due to noise alone. For a single-frequency search, the prob-
ability that the power at a given frequency exceeds the value z0 is
well determined analytically for Gaussian noise; it is

Prob(z > z0) =
(

χ2
mean

χ2
circ

)−ν/2

=
(

1 + 2z0

ν

)−ν/2

, (3)

which is the cumulative probability arising from the F 2,N−3 distri-
bution (Schwarzenberg-Czerny 1998; see also CMB99, appendix B
for a summary). This distribution takes the simple form

Prob(z > z0) = exp(−z0) (4)

for large N.
Scargle (1982) defined the periodogram as z(ω) = �χ2/2, in

which case equation (4) is valid for all N. This definition is appro-
priate when we know the noise level σ in advance, and is attractive
because of the very simple probability distribution of equation (4).
However, in general the noise level is not known in advance as we
discussed in Section 2.1, and must be estimated from the data (e.g.
Horne & Baliunas 1986). In this case, the periodogram must be
‘normalized’ by an estimate of the noise obtained from the data. In
equation (2), the normalization factor is the χ 2 of the best-fitting
sinusoid. The ‘normalized’ periodogram acts to partition the data
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Detectability of extrasolar planets 1167

into two pieces, signal plus noise, and determines the best-fitting
amplitude for each.1

For a search of many frequencies, each ‘independent frequency’
must be counted as an individual trial. The FAP is then

F = 1 − [1 − Prob(z > z0)]M (5)

where M is the number of independent frequencies, and z0 is the
observed power. For small F,

F ≈ M Prob(z > z0) (F � 1). (6)

The detection threshold zd is the periodogram power corresponding
to some (small) value of F (e.g. F = 0.01 for a 99 per cent detection
threshold), i.e. the value of z exceeded due to noise alone in only a
small fraction F of trials. An observed power larger than zd indicates
that a signal is likely present.

The remaining task is to determine the number of independent
frequencies M. Whereas sines and cosines are orthogonal functions
for evenly sampled data, leading to a statistically independent set of
frequencies, this is no longer the case for unevenly sampled data.
The separation between peaks in the periodogram is 1/T , giving
a simple estimate of the number of independent frequencies M ≈
T � f , where � f = f 2 − f 1 is the frequency range searched. Often
f 2 � f 1, in which case M ≈ f 2T .

A better determination of M is to use Monte Carlo simulations,
in which data sets of noise only are generated, with velocities either
drawn from a Gaussian distribution, or selected with replacement
from the residuals about the mean (the so-called ‘bootstrapping’
method; e.g. Press et al. 1992). The fraction of trials for which the
maximum periodogram power exceeds the observed value gives the
FAP.2

It is worth emphasizing the effect of the uneven sampling on
the number of independent frequencies. For evenly spaced data, the
number of independent frequencies is N/2, ranging from 1/T to the
Nyquist frequency, f Ny = N/2T . For unevenly sampled data, Horne
& Baliunas (1986) found that M ∼ N for a search up to the Nyquist
frequency (see also Press et al. 1992). This agrees with our simple
estimate above because M ≈ f 2T ≈ N/2. However, uneven sam-
pling allows frequencies much higher than the Nyquist frequency to
be searched (see discussion in Scargle 1982 and Bretthorst 2001a).
In general, M � N , by a factor of f 2/ f Ny. For example, a set of
30 observations over 7 yr has f Ny ≈ 1/(6 months). A search for
periods as short as 2 d then has M ≈ 85N ≈ 2500.

2.3 Generalization of the periodogram to Keplerian orbits

The definition of the LS periodogram in equation (2) suggests an
immediate generalization to eccentric orbits (which have two extra
parameters, the longitude of pericenter � and eccentricity e)

ze(ω) = �χ2/4

χ 2
Kep/ν

, (7)

1 In fact, there has been a debate in the literature over the appropriate way to
‘normalize’ the periodogram, whether by the variance of the data (Horne &
Baliunas 1986; Walker et al. 1995), or by the variance of the residuals to the
best-fitting sinusoid (Gilliland & Baliunas 1987). Schwarzenberg-Czerny
(1998) showed that in fact these normalizations are statistically equivalent,
and we will return to this issue in Section 2.4.
2 For Gaussian noise, the number of trials necessary to calculate F can be re-
duced by using the analytical form of the distribution given by equation (5).
First, using M as a free parameter, fit the analytical distribution to the distri-
bution of noise powers from a small number of trials N trials. Then, equation
(5) with the fitted value of M allows extrapolation to F � (1/N trials).

where χ2
Kep is the χ 2 of a fit of a Keplerian orbit to the data (with

ν = N − 5 degrees of freedom), χ2
mean is the χ 2 of a fit of a constant to

the data, and �χ 2 = χ2
mean − χ2

Kep. Again, the normalization factor
in the denominator of equation (7) can be dropped if the noise is
known in advance.

The complication in implementing equation (7) is that Keplerian
fits are non-linear, involving relatively slow searches over a complex
χ2 space. Therefore, we use the period and amplitude of the best-
fitting sinusoid obtained from the LS periodogram as an initial guess
for the Keplerian fit. We then use a Levenberg–Marquardt scheme
(e.g. Press et al. 1992) to find the χ2 minimum, trying several initial
starting values for the phases and eccentricity. The minimum χ2 is
then used to calculate ze from equation (7).

2.4 False alarm probability of a Keplerian fit

Given the redefinition of the periodogram power for Keplerian or-
bits, the search for significant fits proceeds in a similar way as for
circular orbits. For a given data set, we perform a wide frequency
search with the LS periodogram, and then use the best-fitting si-
nusoids as starting points for Keplerian fits, calculating the peri-
odogram power from equation (7). The significance of the resulting
best-fitting orbit is determined by a Monte Carlo method in which
we make fake data sets containing noise only, and ask how often ze

exceeds the observed value. A similar calculation allows the detec-
tion threshold corresponding to a given FAP to be determined.

As in the circular orbit case, there is an analytical estimate for the
distribution of noise powers at a single frequency. The distribution
of powers for Gaussian noise at a single frequency is given by the
F 4,N−5 distribution (Hoel et al. 1971). Integrating this, we find3

Prob(z > z0) =
(

1 + ν + 2

2

4z0

ν

)(
1 + 4z0

ν

)−(ν+2)/2

, (8)

where ν = N − 5.
The analytical distribution is compared to numerical calculations

in Fig. 1. The symbols are the results of numerical calculations for
data sets with N = 16. The top panel is for a search at a single fre-
quency, and the bottom panel is for a wide frequency search between
periods of 1 d and 10 yr. The results for the LS periodogram (circles)
and the corresponding analytical distribution (dotted curves) agree
extremely well. For the Keplerian periodogram, we show results
with the period held fixed during the fit, and with the period allowed
to vary during the fit. The solid curves are the analytical distribution
of equation (8). The agreement is good for the case where the period
is held fixed. When the period is allowed to vary during the fit, the
powers are systematically larger, because the search algorithm is
able to step off the period grid and find a better fit. For this example,
the best-fitting number of independent frequencies is M ≈ 6000 for
the LS periodogram, and M ≈ 1500 for the Keplerian periodogram.
This is roughly three times or equal to the simple estimate M =
T � f , respectively.

The analytical distribution allows a simple method for estimating
the significance of a Keplerian fit to radial velocity data. First, given
χ 2

Kep from the Keplerian fit and χ2
mean from the fit of a constant to

the data, we calculate the power z0 using equation (7). An estimate
of the FAP is then F ≈ M Prob(z > z0) (equations 5 and 6), where

3 Equation (8) becomes Prob(z > z0) = (1 + 2z0) exp(−2 z0) for N � z0.
Because this is also the cumulative distribution of �χ2/4, this limit applies
to the case where the noise is known in advance, with zs defined without the
normalizing χ2

Kep/ν factor.
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1168 A. Cumming

Figure 1. Distribution of periodogram powers for Gaussian noise. We take
N = 16 and search at a single frequency (top panel) and for periods in the
range 1 d to 10 yr (bottom panel). Symbols are the results of numerical
simulations with 10 000 trials (top panel) or 2000 trials (bottom panel):
circles are for the LS periodogram; open triangles are for the Keplerian
periodogram, fixing the period during the fit; solid triangles are the Keplerian
periodogram with the period allowed to vary during the fit. Dotted and solid
curves show the analytical distributions from equations (3) and (8). For
the lower panel, the number of independent frequencies needed to fit the
numerical results is M = 6000 for the LS periodogram, and M = 1500 for
the Keplerian periodogram. The duration of the data set is ≈1750 d, giving
M ≈ 3T � f and ≈T � f , respectively.

Prob(z > z0) is the probability distribution given by equation (8).
The number of independent frequencies is roughly M ≈ T � f ,
where T is the duration of the observations and � f is the orbital
frequency range searched during the fit.

Fig. 2 shows the FAP as a function of N for different values of
χ 2

mean/χ
2
Kep. Solid curves are for M = 3000, and dotted curves are for

M = 1000. This figure can be used for a quick assessment of the FAP
associated with a particular Keplerian fit. For example, consider a
set of radial velocity measurements with N = 30 and χ 2

mean = 116
(or a reduced χ 2 of 4), and with the best-fitting Keplerian having
χ 2

Kep = 30 (reduced χ 2 of 1.2). Inspection of Fig. 2 shows that,

Figure 2. The FAP associated with a Keplerian fit to N observations. Each
curve shows the FAP from equation (8), labelled by the value of χ2

mean/χ
2
Kep.

Solid curves are for M = 3000, and dotted curves are for M = 1000.

in this case, with N = 30 and χ 2
mean/χ

2
Kep ≈ 4, the FAP is ≈5 ×

10−4.

3 A BAY E S I A N A P P ROAC H
TO T H E P E R I O D O G R A M

In this section, we show how to understand the LS periodogram in
terms of basic probabilities, i.e. a Bayesian approach. This leads
naturally to the LS statistic for sinusoid fits, and gives a different
way to think about the number of independent frequencies. A com-
prehensive and detailed discussion of these issues can be found in
a series of papers by Bretthorst (1988, 2001a,b,c) on the applica-
tion of Bayesian techniques to spectral analysis, as well as Scargle
(2002) and Loredo & Chernoff (2003). In addition, Ford (2004)
discusses the advantages of using likelihood functions to calculate
uncertainties in orbital parameters. Those readers interested only in
the practical results on detection thresholds should skip ahead to
Section 4.

3.1 Likelihood function and detection threshold

We start with the likelihood functions with and without a signal
present (Sivia 1996). For a sinusoid fit to the data with parameters
a = (K , φ, P , c), the probability of the data given the sinusoid model
is

P(d | K , P, φ, c) = 1

(
√

2πσ )N
exp

[
−χ 2

circ(K , P, φ, c)

2

]
, (9)

which comes from drawing each observed velocity from a Gaussian
distribution. Here, χ 2

circ is not the minimum value of χ2, but is the
value of χ 2 for a particular choice of the parameters (K , P , φ, c).
Because we also have Keplerian fits in mind, we generalize to m
parameters, and marginalize or integrate over them to obtain the
probability of the data given the presence of a signal:

P(d|1) =
∫

dma
1

(
√

2πσ )N
exp

(
−χ 2

circ

2

)
. (10)
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Detectability of extrasolar planets 1169

Similarly, without a signal present, we may write

P(d|0) =
∫

dc
1

(
√

2πσ )N
exp

(
−χ 2

mean

2

)
, (11)

where we integrate over the constant term c, the only parameter in
this case. In these expressions, the notation ‘1’ or ‘0’ indicates the
presence or absence of a planet, and d represents a particular set of
radial velocity measurements.

We now follow the detection theory approach of Wainstein &
Zubakov (1962). We write the total probability of the data as

P(d) = P(1)P(d|1) + P(0)P(d|0), (12)

where P(1) and P(0) are the prior probabilities that there is or is not
a signal present. We assume here that the only possibilities are that
zero or one planet is present in the data. In this framework, the FAP is
the probability that there is no signal present given the data, P(0|d).
Combining the Bayes theorem, P(0|d) = P(0)P(d|0)/P(d), with
equation (12), this is

F = P(0|d) = 1

1 + 

, (13)

where we have defined an odds ratio


 = P(1|d)

P(0|d)
= P(1)P(d|1)

P(0)P(d|0)
. (14)

For 
 � 1, the FAP is the inverse of the odds ratio, F = P(0|d) ≈

−1. Therefore, the detection threshold corresponds to a critical
value of 
. As in the usual frequentist application of the peri-
odogram, the choice of detection threshold represents a compromise
between the desired number of false alarms versus false dismissals
of real signals (see the appendix of Wainstein & Zubakov 1962 for
a detailed discussion of this issue).

3.2 Evaluation of the odds ratio and relation
to the LS periodogram

We now calculate 
 and show that it has a direct relationship to
the periodogram. The integrals in equations (10) and (11) may be
evaluated by expanding the integrand around its maximum in terms
of the parameters a. We consider the two cases in which the noise
σ is known or unknown. In the first case, expanding χ 2 near its
minimum gives χ2 ≈ χ 2

min + δa · α ·δa, where the curvature matrix

αi j = 1

2

∂2χ2

∂ai∂a j

∣∣∣∣
a=a0

(15)

is the inverse of the correlation matrix of the χ 2 fit, C = α−1 (e.g.
Press et al. 1992). The integral over the parameters is then a standard
multidimensional Gaussian integral, giving

P(d|1) = 1

(
√

2π)νσ N

1√
det α

exp

(
−χ 2

circ,min

2

)
, (16)

where ν = N − m. Evaluating P(d|0) in a similar way, and taking
the ratio, gives


 = (2π)�m/2

[
det C1

det C0

]1/2
P(1)

P(0)
exp

(
�χ 2

2

)
(17)

where C0 (C1) is the covariance matrix of the fit without (with)
a signal present, �m is the number of parameters describing the
signal, and �χ2 = χ2

mean,min − χ2
circ,min.

When σ is unknown, we integrate or marginalize equation (10)
over σ , taking limits of integration to be 0 to ∞. This gives

P(d|1) ∝
∫

dma
(
χ2

circ

)−(N/2)
, (18)

with a similar result for equation (11). The integrals over parameter
space are performed as previously, by making a Gaussian approxi-
mation near the peak of the integrand. This gives


 = (2π)�m/2

[
det C1

det C0

]1/2
P(1)

P(0)

(
χ2

mean

χ2
circ

)ν/2

. (19)

To see the relation of this result to the periodogram, we write

M = (2π)−�m/2

[
det C0

det C1

]1/2
P(0)

P(1)
, (20)

giving

F ≈ 
−1 = M Prob(z > z0), (21)

identical to equation (6), with Prob(z > z0) given by either equa-
tion (3) or equation (4) depending on whether σ is known or un-
known.4

For sinusoid fits, we have recovered the LS periodogram, but
with a new interpretation of M. For independent parameters, the
covariance matrix is diagonal, so that det C ≈ ∏

i δai , where δai is
the uncertainty in parameter i (e.g. Press et al. 1992). For circular
orbits, this gives an estimate

M ≈ �P

δP

�K

δK δφ

P(0)

P(1)
. (22)

The first term is the estimate for M that we gave in Section 2.2, the
range of frequencies searched divided by the frequency resolution.
However, we see that, in a Bayesian approach, M also includes the
range of amplitudes and phase considered and the prior probability
of a signal being present. This corresponds to a different picture in
which rather than making many trials searching for the lowest χ 2,
we have instead integrated over all possible values of the parameters,
weighting each choice by its relative probability. For fits of Keplerian
orbits, the probability distribution of ze is given by equation (8),
which is similar to but slightly different from equations (17) and
(18). The significance of this difference is not clear.

The most useful application of this method is as a powerful tool for
population analyses. Here, we have discussed the choice between de-
tection and non-detection so that the connection to the periodogram
can be seen. However, the advantage of the Bayesian approach is
that no decision regarding detection needs to be made. Instead, both
possibilities can be included, with the probability of each calculated
as P(1|d) and P(0|d). For example, integrating equation (9) over
the ‘nuisance’ parameters φ and c gives Prob(P , K |d) for each star.
This can be used to study the underlying mass and orbital period
distribution. Further integration of Prob(P , K |d) gives Prob(P|d),
equivalent to the periodogram, or Prob(K |d) from which limits on
K can be derived. Extension of this approach to eccentric orbits,
or multiple planets, is straightforward in principle, but in practice
involves more complex integrals (see Ford 2004 for a suggestion of
how to evaluate them).

4 There is a small difference, which is that ν = N − 4 here for a circular orbit
rather than N − 3. The loss of one degree of freedom comes about because
of the integration over period. We also mention here that this derivation of
the probability distributions applies to either choice of periodogram nor-
malization. Using an analysis of variance approach, Schwarzenberg-Czerny
(1998) showed that normalizing the periodogram by the variance of the data
or by the variance of the residuals was statistically equivalent, but led to a
different form for Prob(z > z0) in each case (see table 9 in CMB99). In fact,
both these distributions are a direct rewrite of the last term in equation (19),
using the respective definition of z.
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1170 A. Cumming

4 V E L O C I T Y T H R E S H O L D S

In this section, we use the LS periodogram and the Keplerian pe-
riodogram discussed in Section 2 to derive analytical expressions
for the velocity thresholds. We discuss orbital periods P shorter and
longer than the duration of the observations T separately.

4.1 Short periods (P<T )

We first consider circular orbits, and use the LS periodogram. Fig. 3
shows the signal-to-noise ratio K/σ required for 50 and 99 per cent
detection probability as a function of the number of observations.
The squares show numerical calculations for sets of N observations
with realistic spacing between observation times. For each set of
observation times, we use a Monte Carlo method to determine the
detection threshold, generating sequences of velocities drawn from
a Gaussian distribution, and finding the power exceeded in 0.1 per
cent of trials (the 99.9 per cent detection threshold). We search for
periods between 2 d and 10 yr. We then make fake data sets with
increasing signal amplitude K until the signal is detected in either
50 or 99 per cent of trials.

To obtain an analytical estimate, we first write down the detection
threshold zd corresponding to a critical FAP F (where F � 1).
Equations (3) and (6) give

zd = ν

2

[(
M

F

)2/ν

− 1

]
, (23)

for a given number of independent frequencies M. When a signal of
amplitude K is present, the periodogram power zs has a distribution
of values because of noise fluctuations. For large signal amplitude or
N, the distribution of periodogram powers when a signal is present
is Gaussian with mean 〈 z s〉, and variance 2〈z s〉 (Groth 1975), where
〈z s〉 = (ν/2) (K 2/2σ 2) (Scargle 1982; Horne & Baliunas 1986). In

Figure 3. Signal-to-noise ratio K/σ that can be detected with N obser-
vations, and 99 per cent (upper curve) and 50 per cent detection efficiency
(lower curve). We assume short-period (P < T ) circular orbits, and use the
LS periodogram. The solid lines show the analytical result for M/F = 106.
The points show numerical calculations for data sets with the indicated val-
ues of N, and a realistic spacing of observation times. The dotted lines show
the result when the noise level is known in advance. The dashed curve shows
the 50 per cent detection efficiency curve for a χ2 test for excess variability.

this limit, the probability of detecting a signal with mean amplitude
〈z s〉 for a given detection threshold zd is

Pdetect(〈zs〉; zd) ≈ 1

2

[
1 + erf

( 〈zs〉 − zd

2
√〈zs〉

)]
. (24)

Setting zd = 〈z s〉 gives the signal-to-noise ratio needed to detect the
signal 50 per cent of the time,

K0√
2σ

=
[(

M

F

)2/ν

− 1

]1/2

, (25)

or, for large N,

K0 = σ√
N

[
4 ln

(
M

F

)]1/2

(N � 1), (26)

which shows the expected 1/
√

N behaviour.5 The solid lines in
Fig. 3 show this analytical estimate for M/F = 106. We include
a multiplicative factor of 1.7 for the 99 per cent detection proba-
bility curve – this factor is given by equation (24) with P detect =
99 per cent.

Fig. 3 shows that N � 10 –20 is required to be able to detect an
orbit with K ≈ 2–4σ , with N � 50 required to reach amplitudes as
small as K ∼ σ . How does this compare to the case where we know
the noise level σ? The appropriate formula is then equation (26)
for all N. The dotted curves in Fig. 3 show the 50 and 99 per cent
detection probability curves in this case. Knowing the noise level in
advance gives a significant improvement, allowing a detection of the
signal for N < 10. The sparse sampling of the data may increase the
detection threshold somewhat over this estimate (Nelson & Angel
1998). It is also interesting here to compare the detection threshold
of the LS periodogram with a χ 2 test for variability. The dashed line
in Fig. 3 shows the signal-to-noise ratio that gives a χ2 exceeding
the expected value 50 per cent of the time, assuming that the noise
level σ is a known quantity. Here we choose the detection threshold
to correspond to a FAP of 0.1 per cent. Excess variability at the ≈2σ

level is apparent with only a handful of observations.
We next discuss the effect of non-zero eccentricity. Fig. 4 shows

the detection probability as a function of eccentricity for signal-
to-noise ratios of K/σ = 2, 5, 10 and ∞, where ∞ means that
we sample the velocity curve without adding noise. The top panel
shows results for a data set with 16 observations, the lower panel for
39 observations. The dotted curves show the detection probability
using the LS periodogram. The solid curves show the detection
probability using the Keplerian periodogram defined in equation (7).
Not surprisingly, the LS periodogram fails to detect orbits with large
eccentricities, particularly for small N, whereas fitting Keplerian
orbits increases the detection probability for eccentric orbits.

Fig. 4 shows that even when fitting Keplerian orbits, detectability
decreases for e � 0.5. There are two reasons for this. First, even for
K/σ � 1, we find detection efficiencies <1 (≈80–90 per cent) for
e =0.9. In the cases that are not detected, the Keplerian fitting routine
fails to find the correct solution. This emphasizes the difficulty of
finding the global minimum in the complicated χ 2 space for these
non-linear solutions. The second effect, dominating at lower K/σ , is
the uneven sampling of the data, which can lead to a poorly resolved
periastron passage. An example is shown in Fig. 5, in which we show
two sets of observations of an orbit with e = 0.5. Both fitted light
curves (solid curves) have a lower χ2 than the true solution (dotted
curve), but whereas the data in the upper panel lead to a detection,

5 To derive this limit, write (M/F)2/ν = 1 + x , where x � 1.
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Detectability of extrasolar planets 1171

Figure 4. Detection efficiency (DE) as a function of eccentricity for a time
series with N = 16 (top panel) and N = 39 (bottom panel). We use a period
P = 100 d, and show signal-to-noise ratios K/σ = 2, 5, 10 and ∞ (top panel)
and K/σ = 2, 10, and ∞ (bottom panel). Dotted lines show the results using
the LS periodogram (fitting sinusoids); solid lines use Keplerian fits.

the data in the lower panel do not. In the lower panel, only a single
measurement has been made during the periastron passage. This
greatly reduces the � χ2 when the Keplerian orbit is included in the
fit. An additional danger is that a single discrepant data point might
arise due to a systematic error, perhaps making the fit in the lower
panel of Fig. 5 worrying in a real-life example.

Fig. 6 summarizes the effect of eccentricity. We plot the signal-
to-noise ratio needed for a detection efficiency of 50 or 99 per cent
as a function of eccentricity. The solid curves are for the Keplerian
periodogram, and the dotted curves are for the LS periodogram. The
rapid increase in K/σ for the 99 per cent detection efficiency solid
curve at e ≈ 0.7 is due to the failure to detect even high signal-to-
noise orbits for e ∼ 1. For e � 0.6, the effect of eccentricity on the
amplitude needed for detection is small.

Figure 5. Examples of velocity curves with e = 0.5 that are (top panel)
and are not (bottom panel) detected. The dotted line in each case shows the
true orbit; the points are the observed velocities; and the solid curve shows
the best-fitting orbit. In both cases, the solid curve gives a lower χ2 than
the dotted curve. The lower panel has only a single measurement during the
periastron passage, and is not a significant detection.

Figure 6. The effect of eccentricity on the velocity threshold for N =
39. The dotted curves are for the LS periodogram; the solid curves are for
Keplerian fits. The rapid increase in the 99 per cent detection efficiency solid
curve at e ≈ 0.8 is due to the fact that very eccentric orbits are not always
detected even when the signal-to-noise is very large.

We have not yet discussed the dependence of the velocity thresh-
old on orbital period. Fig. 7 shows the amplitude needed for 50 and
99 per cent detection efficiencies for N = 39 as a function of period.
We discuss the long-period behaviour (P > T ) in the next section.
The dotted lines are the analytical result for M/F = 106, and com-
pare well with the numerical calculations. This figure shows that
the amplitude threshold is not very sensitive to period for P < T .
There is some loss of sensitivity at periods related to a month and a
year, and particularly at P = 1 d, introduced by the time sampling
of the data; however, this is a small effect even for N ∼ 10. This
insensitivity can also be seen in the curves of Walker et al. (1995),
Nelson & Angel (1998) and CMB99. It is a result of the uneven sam-
pling which gives good phase coverage for many frequencies (Press
et al. 1992). Therefore, the velocity threshold K0 characterizes the
short-period detectability for most periods <T .
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1172 A. Cumming

Figure 7. Velocity threshold for a star with N = 39, and detection effi-
ciency 50 per cent (lower curve) and 99 per cent (upper curve). The vertical
dashed line shows the duration of the observations (≈2600 d). The detection
threshold is set at 99 per cent significance for a search down to 1-d period.
The dotted lines show the analytical result for M = 5000 and F = 0.01. The
50 per cent curve scales as K ∝ P for P > T ; the 99 per cent curve scales
as K ∝ P2 for P < (π/8F d)T ≈ 40T , and K ∝ P thereafter.

4.2 Long periods (P>T )

At long periods, the detection sensitivity drops because the obser-
vations cover only part of an orbit. For circular orbits, Eisner &
Kulkarni (2001) pointed out that there is a correlation between the
fitted phase and amplitude at long periods, and derived analytical
expressions for the velocity threshold. Here, we adopt a slightly dif-
ferent approach. It is useful to think of ‘sine-like’ and ‘cosine-like’
phases, depending on whether the orbit is close to a velocity maxi-
mum/minimum or to a zero crossing. These two cases are illustrated
by Fig. 8. For T � P , the velocity variation due to the signal is �v =
K sin(2π T /P) ≈ K (2πT /P) for a sine-like variation, or �v =
K cos(2πT /P) ≈ (K/2)(2πT /P)2 for a cosine-like variation. Set-
ting �v = 2K 0 then gives an estimate for the velocity amplitude
needed for detection.

Averaging over phase introduces slightly different numerical fac-
tors. We find that a good approximation to the velocity threshold
is

K = K0

sin (πT /2P)
≈ K0

(
2P

πT

)
P > T (27)

for εD < 3/4, or

K =
{

2K0
1−cos(πT /2P) ≈ K0

(
2P
πT

)2
T < P < πT

8(1−εD)

K0
2(1−εD)

(
P

πT

)
P > πT

8(1−εD)

(28)

for εD > 3/4, where εD is the detection efficiency. The scaling K ∝
P corresponds to M p ∝ a2; the scaling K ∝ P2 corresponds to M p

∝ a7/2.
The reason that the scalings depend on the detection efficiency

is that a sine-like phase gives a larger �v than a cosine-like phase.
So, for a 50 per cent detection threshold (εD = 0.5) the amplitude
must be large enough that sine-like phases are detected, but cosine-
like phases do not have to be. However, for a 99 per cent threshold
(εD = 0.99), almost all phases must be detected, requiring a large
amplitude. Eventually, at very long periods, almost all phases are

Figure 8. Example of ‘cosine-like’ and ‘sine-like’ velocity variations for
observations covering 1/10 of an orbital period. For the cosine case (upper
panel), the variation in radial velocity is �v ≈ (K/2)(2πT /P)2; for the sine
case (lower panel), the variation is �v ≈ K (2πT /P). If K0 is the velocity
amplitude that can be detected at short periods, the detection threshold in
each case is given by �v = 2K 0 (see text).

sine-like, and the scaling changes to ∝P once more. Fig. 7 com-
pares the analytical and numerical results at long periods. For this
particular example, the change in scaling of the 99 per cent threshold
from ∝P2 to ∝ P can be seen at P ≈ 105 d.

In their investigation of detectabilities, Nelson & Angel (1998)
adopted the square of the best-fitting amplitude K2 as their test
statistic. Eisner & Kulkarni (2001) have pointed out that this leads
to reduced sensitivity at long periods, because when fitting sinusoids
to noise only, it is found that the amplitude is strongly correlated
with the fitted phase. The cosine-like phases have much larger fitted
amplitudes than the sine-like phases, and so the velocity threshold
has a K ∝ P2 scaling. Indeed, our results explain well the empirical
scaling found by Nelson & Angel (1998), K ∝ (P/β T )α , with α =
1.86 and β ≈ 1.45. Our formula gives α = 2 and β = π/2 = 1.57.
Eisner & Kulkarni (2001) adopted an ‘amplitude–phase’ analysis
to account for this correlation, in which the detection threshold is
set by an ellipse in the K –φ plane. They showed that the sensitiv-
ity was significantly improved. However, their proposed method is
unnecessarily complicated. The correlation between amplitude and
phase is automatically included in the LS periodogram, which is
much simpler to use because it is defined in terms of the single vari-
able �χ 2. We have implemented the method of Eisner & Kulkarni
(2001) and find that it matches the sensitivity of the periodogram at
all periods. Fig. 9 shows the ratio of the velocity thresholds from the
periodogram to the cosine-like scaling of equation (28). Compari-
son with figs 8–10 of Eisner & Kulkarni (2001) shows that the LS
periodogram has equal sensitivity compared to the amplitude–phase
technique.

Walker et al. (1995) looked for long-term periodicities by fitting a
quadratic to the data v = a + b t + c t2, and checking for a significant
reduction in χ2 using an F-test. CMB99 adopted a similar approach
but with linear fits to the data. How is this related to the long-period
sensitivity of the periodogram? In fact, for periods P � 2πT , the
periodogram is no longer sensitive to the period. A quadratic fit
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Figure 9. Ratio of the 50, 90 and 99 per cent velocity-squared thresholds
to the cosine-like scaling K 2 = 4K 2

0/(1 − cos(π T /2P))2. Comparison
of this plot with figs 8–10 of Eisner & Kulkarni (2001) shows that the
LS periodogram and amplitude–phase analysis have equal sensitivities for
long periods. The strong deviation for the 50 per cent curve is because
this curve follows a sine-like scaling (equation 27) rather than cosine-like
(equation 28).

gives a relation between the amplitude and period

K = P

2π

(
b2 + P2 c2

π2

)1/2

, (29)

so that the best-fitting velocity amplitude is determined for all peri-
ods (>T ) by the fit. We have checked the sensitivity to long-period
circular orbits of an F-test based on quadratic fits to the data, and find
that quadratic fits reproduce the sensitivity of the periodogram for
long periods. In the regime where the detectable amplitude scales
∝ P , a linear fit is adequate to detect the signal.6 However, the FAP
used for the F-test must reflect the number of additional trials that are
carried out at high frequency using the periodogram. For example,
a search for long-period orbits only might adopt a FAP for the F-test
of 1 per cent. However, if short-period orbits are also searched, and
the number of independent frequencies for P < T is ≈1000, then
we should choose a FAP of ∼10−5.

Detection efficiency plots for long-period eccentric orbits are
shown in Figs 10 and 11. Fig. 8 and the related discussion make
it straightforward to understand the detectability in this case. At
very long periods, the number of parameters needed to describe the
data is 1 or 2 as discussed above, and therefore the scalings with
period are the same as the LS periodogram. However, the transition
into the long-period regime occurs at longer orbital periods for ec-
centric orbits, because of the distorted nature of the light curve. The
width of the periastron passage is ≈(1 − e)2 P , so that equations (27)
and (28) still apply, but with the substitution T → T /(1 − e)2. The

6 It is well known, for example in pulsar timing (Joshi & Rasio 1997) that
if an orbit can be measured precisely enough, the parameters of the orbit
can be determined on a time-scale much less than the orbital period by very
accurate measurements of orbital derivatives. For circular orbits, a cubic fit
v = a + b t + c t2 + d t3 gives a period measurement P = 2π

√
b/6d which

can be inserted into equation (29) to find the amplitude K. This implies that
if we could make an accurate enough measurement of the radial velocity
curve, the complete orbital solution could be determined.

Figure 10. For the same data set as Fig. 7, and an orbital period of 50 yr,
the effect of eccentricity on the signal-to-noise needed for detection 50 per
cent (lower curves) or 99 per cent (upper curves) of the time. The solid
curves are for the Keplerian periodogram; the dotted curves are for the LS
periodogram. The dashed curves show an analytical (1 − e)2 scaling.

Figure 11. For data sets with N = 16, the effect of eccentricity on the
50 per cent detection curves. We take e = 0, 0.3, 0.5 and 0.7 (top to bottom at
short periods). The dotted curves show the analytical estimates. The vertical
dashed curve indicates the duration of the observations.

dotted curves in Fig. 11 show the analytical formula with this sub-
stitution. Therefore, at long periods, eccentric orbits are more easily
detected for a given K.

5 S U M M A RY A N D D I S C U S S I O N

The main results of this paper are (i) a method for estimating the
significance of a Keplerian fit to radial velocity data, and (ii) an
analytical expression for the velocity threshold of single planets in
terms of the number and duration of the observations, the number
of independent frequencies and the required FAP. For circular or-
bits, equation (25) (or equation 26 for N � 1) gives the velocity
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1174 A. Cumming

amplitude threshold at short periods (P < T ). Equations (27) and
(28) give the amplitude threshold at long periods (P > T ) as a func-
tion of the required detection efficiency. At long periods, the 99 per
cent detection threshold scales as K ∝ P2 ∝ a3, whereas the 50 per
cent detection threshold scales as K ∝ P ∝ a3/2.

We have presented a straightforward generalization of the LS
periodogram to Keplerian orbits, based on the improvement of χ 2

when a Keplerian orbit is included in the fit, and we have discussed
a Monte Carlo method to calculate the FAP associated with the fit.
A simple analytical estimate of the FAP is as follows. Given χ 2

Kep

from the Keplerian fit, and χ 2
mean from the fit of a constant to the

data, first calculate the power z0 using equation (7). An estimate
of the FAP is then FAP ≈ M Prob(z > z0), where M ≈ T � f is
the number of independent frequencies (� f is the frequency range
searched), and Prob(z > z0) is the probability distribution given by
equation (8). Alternatively, Fig. 2 may be used to find the FAP for
a given N and χ 2

mean/χ
2
Kep ratio. This figure should prove useful for

a quick estimate of the FAP associated with a Keplerian fit.
We have used the Keplerian periodogram to investigate the effect

of eccentricity on detectability. Eccentricity acts to make detection
more difficult at short periods, where the uneven sampling often
results in inadequate phase coverage during the rapid periastron
passage of an eccentric orbit. At long periods, the increased velocity
amplitude and acceleration near periastron increase detectability.
The transition to the long-period regime occurs for orbital periods
≈T /(1 − e)2.

We have also discussed the statistics of the LS periodogram, in-
cluding a derivation of the periodogram from basic probability the-
ory. This Bayesian approach gives a simple derivation of the sta-
tistical distribution of periodogram powers for Gaussian noise, and
clarifies the nature of different periodogram normalizations. The
best statistic to use at both short and long orbital periods is �χ2,
the improvement in χ 2 when the planet is included in the velocity
fit. Using the square of the fitted amplitude K2 (Nelson & Angel
1998) results in decreased sensitivity at long periods. A separate
analysis of K and phase φ recovers this sensitivity at long periods
(Eisner & Kulkarni 2001), but is unnecessary if � χ 2 is adopted as
the statistic.

Both Nelson & Angel (1998) and Eisner & Kulkarni (2001) argue
for the superiority of a ‘least-squares’ rather than ‘periodogram’
approach to this problem. Partly, this is based on a preference for
dealing directly with the parameters of the fit (amplitude K and
phase φ for circular orbits) and the resulting χ2, rather than a ‘black
box’ periodogram. For example, the original LS periodogram must
be ‘modified’ to include a constant term as a free parameter at each
frequency (Walker et al. 1995; Nelson & Angel 1998; CMB99),
whereas this arises naturally when thinking about a χ2 fit of a model
to the data. In addition, because the form of the signal is exactly
known, i.e. a Keplerian orbit, the argument is that Fourier or spectral
analysis of the data is not the most efficient way to look for the signal.
We hope in this paper to have clarified the equivalence of the least-
squares and periodogram approaches when �χ 2 is used as the test
statistic.

We have considered only single planets in this paper, whereas
multiple systems of planets are common. In cases where planets
are well separated in period or in amplitude, our results may be
applicable. For example, a linear trend in the velocities is often
included in orbit fits to subtract any long-term velocity variations
due to a long-period companion. Our results apply to this case if
the number of degrees of freedom is reduced by 1, so that N −
1 becomes N − 2, N − 3 becomes N − 4 etc. (see Walker et al.
1995 and CMB99 for discussion of linear and quadratic ‘background

models’). Of course, this correction is only relevant for small N;
for large N, the results carry over directly. Another case in which
two planets are close in period, but well separated in amplitude is
discussed by Narayan, Cumming & Lin (2004).

In many situations when looking for a periodic signal, it is possi-
ble to detect signals with amplitudes much less than the background
noise level. In the case of planet searches, this is not the case, because
of two factors. The first, which we have discussed in this paper, is
statistical. The small number of observations limits the detectable
amplitude to ≈2–4 σ for N≈20–30 (e.g. see Fig. 1). Here, σ refers
to a combination of measurement errors, both statistical and system-
atic, and intrinsic stellar ‘jitter’. When the number of observations is
less than ∼10, it is impossible to characterize an orbit, as previously
pointed out by Nelson & Angel (1998). Detection of signals <1σ

requires N � 50.
The second factor that limits detectability is uncertainty sur-

rounding the stellar jitter. This may arise from convective inho-
mogeneities, or rotational modulation of magnetic features on the
surface (Saar & Donahue 1997), all processes with characteristic
time-scales comparable to extrasolar planet orbital periods. There-
fore, although the magnitude of the stellar jitter can be estimated
based on stellar properties (Saar et al. 1998), its time variability
is a significant source of uncertainty. Planet detections with K <

σ require a much better understanding of jitter. Observations of
magnetic activity indicators simultaneous with the radial veloc-
ity measurements offer some hope of correcting for these effects
(Saar & Fischer 2000; Paulson et al. 2002), but this work is in
its early stages. Improvement in measurement errors to the ∼1 m
s−1 level will help to disentangle systematic errors and stellar jitter
effects.

Understanding the distribution of planet orbital period, mass and
eccentricity at low masses, long orbital periods and large eccentric-
ities requires careful analysis of the radial velocity data for each
survey (e.g. Walker et al. 1995; CMB99; Cumming et al. 2003;
Santos et al. 2003). None the less, it is interesting to compare the
detection thresholds we find in this paper with the observed planet
properties. For a mass MP, the velocity amplitude is

K = 28.4 m s−1

√
1 − e2

(
MP sin i

MJ

)(
P

1 yr

)−1/3 (
M�

M�

)−2/3

, (30)

where P is the orbital period, MP is the mass of the planet and M �

is the mass of the star. In Figs. 12 and 13, we show the mass, peri-
ods and eccentricities of known planets compared to the detection
curves. In Fig. 12, we show curves of 50 and 99 per cent detec-
tion efficiency for σ = 5 m s−1 and 3, 6 and 12 yr of observations
with five observations per year. These curves roughly match the
observed cut-offs at low masses and long periods. Jupiter’s posi-
tion is indicated by a black square for comparison, indicating that
Jupiter analogues will be detectable in the near future. In Fig. 13, we
show 50 and 99 per cent detection efficiency curves for short-period
orbits, and compare them with the observed K–e distribution. The
lack of observed highly eccentric orbits is possibly due to physical
effects which limit their survival (e.g. Ford, Havlickova & Rasio
2001). However, our results emphasize that there remain significant
selection effects against eccentric orbits for e � 0.6, and the small
number of highly eccentric planets discovered so far may reflect
this. In this regard, it is worth noting that the most eccentric orbit
discovered so far, with e = 0.93 (HD 80606; Naef et al. 2001),
also has one of the largest amplitudes K = 411 m s−1(M sin i =
4 M J). Future observations may reveal lower mass planets in highly
eccentric orbits that have hereto gone undiscovered.
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Figure 12. Known companions (circles) and detection thresholds. 99 per
cent detection thresholds are dotted lines; 50 per cent detection thresholds
are the solid lines. In each case, we make five observations per year for 3,
6 and 12 yr (N = 15, 30 and 60), and take σ = 5 m s−1 and M � = 1 M�.
From top to bottom, the short-period amplitude thresholds are K0 = 28, 20,
13, 9.5, 8.2 and 5.8 m s−1. We assume M = (T /d). The solid square shows
the location of Jupiter.

Figure 13. Velocity amplitude and eccentricity of known companions. The
curves show 50 per cent (solid) and 99 per cent (dotted) detection thresholds,
for (top to bottom) N = 16, and N = 39, assuming σ = 5 m s−1.
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