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Abstract: This paper is related to the stochastic smoking model for the purpose of creating the effects of

smoking that are not observed in deterministic form. First, formulation of the stochastic model is

presented. Then the sufficient conditions for extinction and persistence are determined. Furthermore, the

threshold of the proposed stochastic model is discussed, when noises are small or large. Finally, the

numerical simulations are shown graphically with the software MATLAB.
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1 Introduction

Epidemiology is used for understanding the spreading nature of infectious disease in a society. The

epidemic models are mostly based on the similarity of the models but not necessary that all practical

models possess all probable properties but somewhat include the mechanisms in the simplest probable

mode so as to contain major constituents that influence disease spread. The prediction of real sensations

in epidemic models must be carried out very carefully [1]. The first epidemic model was introduced by

Kermack and McKendrick [2], in which they divided the whole population into three classes based on

different aspects of spreading of disease. The work presented in [1,2] is the groundwork of epidemic

models. First, two epidemic models were studied: one is SIS (susceptible; infected; susceptible) model and

the other is SIR (susceptible; infected; recovered) model [3,4]. After that, many authors studied different

epidemic models based on different types of diseases by including linear, bilinear, saturated incidence

rates and similarly using delay differential equations, fractional differential equations and partial

differential equations [1–6]. A major health concern is a social habit of smoking, which is common in

people. Both preventable and premature type of deaths occur in the US and also worldwide due to

smoking. According to a previous report, in a year over 4,40,000 deaths occur due to smoking-related

disease in the US annually and 1,05,000 at UK [7]. The risk of heart attack is 70% more for smokers rather

than nonsmokers. There is 78% chance of lung cancer and 24% of heart disease for smokers. Similarly,

throat, mouth, stomach, cervix, breast and pancreas cancers are somehow related to smoking because one

cigarette contains more than 4,000 chemicals. According to the third edition of cancer atlas jointly

released by International Agency for Research on Cancer, American Cancer Society and Union for

International Cancer Control on October 16, 2019, smoking causes more preventable cancer deaths than

any other risk factors and in 2017 alone, 2.3 million people worldwide died of smoking, which accounts for
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24% of all cancer deaths. On the other hand, based on the WHO global report on trends in the prevalence

of tobacco use 2000–2025 [8,9], every year, more than 8 million people die of tobacco use, accounting for

about half of its users. More than 7 million of them died of direct smoking, while about 1.2 million

nonsmokers died from exposure to second-hand smoke. For this purpose, mathematicians are trying to

present the nature of smoking and classify the populations with the help of modeling. From the first

smoking model presented by Castillo-Garsow et al. [7], many researchers tried on different aspects to

develop smoking models [7,10–14]. In recent years, the authors formulated different forms of smoking

models with linear incidence rate [15,16], saturated incidence rate [17,18], square root-type incidence rate

[12,19,20] and harmonic mean-type incidence rate [21]. The environmental white noise has great effect on

the epidemic models but due to simplicity in deterministic models the authors ignore these terms. For

more realistic models, several authors studied the stochastic models by introducing white noise [22–26].

The effects of environment in the AIDS model were studied by Dalal et al. [22] using the method of

parameter perturbation. Tornatore et al. [23–25] studied the stochastic epidemic models with vaccination.

In these studies, they proved the existence, uniqueness and positivity of the solution. A stochastic SIS

epidemic model with vaccination is discussed by Zhu and Hu [26]. They obtained the condition of the

disease extinction and persistence according to noise and threshold of the deterministic system. Similarly,

several authors discussed the same conditions for stochastic models [27–35]. In this research, first

formulation of a stochastic mathematical smoking model is presented. Then the sufficient conditions for

extinction and persistence are determined. Furthermore, the threshold of the proposed stochastic model is

discussed, when noises are small or large. Finally, numerical simulations are presented graphically using

the software MATLAB.

The rest of the paper is organized as follows: Section 2 is related to the smoking model with random

perturbation formulation. Section 3 is related to the unique positive solution of the proposed model.

Furthermore, the exponential stability of the proposed model is investigated in Section 4. The persistent

conditions are shown in Section 5. Finally, in Section 6 conclusion is given.

2 Model formulation

In this section, a smoking model with random perturbation is formulated as follows:

( ) = − ( ) ( ) − ( ) + ( ) − ( ) ( ) ( )

( ) = ( ) ( ) − ( + ) + ( ) ( ) ( )

( ) = ( ) − ( ) − ( )

P t

t
Λ βP t S t μP t δQ t ρP t S t B t

S t

t
βP t S t γ μ S ρP t S t B t

Q t

t
γS t μQ t δQ t

d

d
d ,

d

d
d ,

d

d
,

(1)

and the description of parameters and variables is given in Table 1.

Table 1: Parameters and description

Notations Description

P t( ) Susceptible (potential) smokers

S t( ) Series (chain) smoker class

Q t( ) Smokers who quit smoking

Λ The membership rate to susceptible class by birth or migration

β Rate at which the potential smokers move to chain smoker class

μ Natural death

γ The quitting rate

B t( ) The standard Brownian motion, with ρ 02 > and with intensity of white noise

δ The relapse rate
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In deterministic form, model (1) is as follows:

( ) = − ( ) ( ) − ( ) + ( )

( ) = ( ) ( ) − ( + )

( ) = ( ) − ( ) − ( )

P t

t
Λ βP t S t μP t δQ t

S t

t
βP t S t γ μ S

Q t

t
γS t μQ t δQ t

d

d
,

d

d
,

d

d
,

(2)

and

= −N

t
Λ μN

d

d
, (3)

where ( ) = ( ) + ( ) + ( )N t P t S t Q t represents the total population and ( ) = ( ) + ( ) + ( )N P S Q0 0 0 0 . Eq. (3) has

the exact solution:









( ) = ( ) +−N t e N

Λ

μ
e0 .μt μt (4)

Also, we have

( ) ≥ ( ) ≥ ( ) ≥   ⇒ ( ) ≥ ( ) ≥ ( ) ≥P S Q P t S t Q t0 0, 0 0, 0 0 0, 0, 0.

So the solution has the positivity property. For stability analysis of model (2), the reproductive number is

=
+

R
β

γ μ
N .0 (5)

If <R 10 , then system (2) will be locally stable and will be unstable if ≥R 10 . Similarly, for =Λ 0, system

(2) will be globally asymptotically stable (see [12]).

3 Existence and uniqueness of the positive solution

Here, first we make the following assumptions:

• Set = { ∈ > ≤ }+R χ R χ d, 0, 1 .d
i

d
i

• Suppose a complete probability space F F( { } )≥ PΩ, , ,t 0 with filtration F{ } ≥t 0 which satisfies the usual

conditions.

Generally, consider a stochastic differential equation of n-dimensions as

( ) = ( ( ) ) + ( ( ) ) ( ) ≥x t F y t t t G y t t B t t td , d , d , for ,0 (6)

with initial value ( ) = ∈y t y Rd
0 0 . By defining the differential operator L with Eq. (6)

∑ ∑= ∂
∂
+ ( ) ∂

∂
+ [ ( ) ( )] ∂

∂ ∂= =
L

t
F y t

y
G y t G y t

y y
,

1

2
, , .

i

d

i

i i j

d
T

ij

i j1 , 1

2

(7)

If operator L acts on a function � � �= ( × )+ +V ˜ ; ˜d , then

( ) = ( ) + ( ) ( ) + [ ( ) ( ) ( )]LV y t V y t V y t F y t G y t V y t G y t, , , ,
1

2
trace , , , .t y

T
yy (8)

Theorem 3.1. There is a unique positive solution ( ( ) ( ) ( ))P t S t Q t, , of system (1) for ≥t 0 with

( ( ) ( ) ( )) ∈ +P S Q R0 , 0 , 0 3, and solution will be left in +R
3, with probability 1.
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Proof. Since the coefficient of differential equations of system (1) is locally Lipschitz continuous for

( ( ) ( ) ( )) ∈ +P S Q R0 , 0 , 0 3, there is a unique local solution ( ( ) ( ) ( ))P t S t Q t, , on ∈ [ )t τ0, e , where τe is time for

noise caused by an explosion (see [6]). For demonstration, the solution is global, it is sufficient that = ∞τe

a.s. Suppose that ≥k 00 be sufficiently large that 



( ( ) ( ) ( )) ∈P S Q k0 , 0 , 0 ,

k

1
0

0
. For each integer ≥k k0,

define the stopping time









= ∈ [ ) ( ( ) ( ) ( )) ≤ ( ( ) ( ) ( )) ≥τ t τ P t S t Q t
k

P t S t Q t kinf 0, : min , ,
1

or max , , ,e e
0

where we set ( ) = ∞ϕinf empty set throughout the paper. For → ∞k , τk is clearly increasing. Set

=∞ →∞τ τlimk k where ≤∞τ τe. If we can show that = ∞∞τ a.s., then = ∞τe . If false, then there is a pair of

constants >T 0 and ∈ ( )ε 0, 1 such that

{ ≤ } >∞P τ T ε.

So there is an integer ≥k k1 0, which satisfies

{ ≤ } ≥ ≥P τ T ε k kfor all .k 1

Define a C2-function � �→+ +V : ˜3 by








( ) = − − + ( − − ) + ( − − )V P S Q P c c
P

c
S S Q Q, , ln 1 ln 1 ln . (9)

By applying Itô’s formula, we obtain that
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2
2

(10)

where � �→+ +LV : ˜3 is defined by
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By choosing = +c
γ μ

β
, it follows

≤ + + + + + + + ≜LV Λ cμ γ μ μ δ ρ S ρ P B
1

2

1

2
.2 2 2 2 (12)

Further proof follows from Ji et al. [28]. □

4 Extinction

In this section, we investigate the condition for extinction of the spread of smoking. Here, we define

∫〈 ( )〉 = ( )y t
t

y s s
1

d

t

0

(13)
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and

R








 ( )=
( + ) +

β
Λ

μ
γ μ ρ

˜ 1
.

Λ

μ

1

2
2

2 (14)

A useful lemma concerned to this work is follows.

Lemma 4.1. [26] Let = { } ≥M Mt t 0 be a real value, continuous, local martingale and vanishing at =t 0. Then

〈 〉 = ∞
→∞

M Mlim ,
t

t

a.s. implies that

〈 〉
=
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M

M M
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,
0

t

t

t

and also

〈 〉 < ∞ ⇒ =
→∞ →∞

M M

t

M

t
lim sup

,
lim 0.

t

t

t

t

Theorem 4.1. Let ( ( ) ( ) ( ))P t S t Q t, , be the solution of system (1) with initial value ( ( ) ( ) ( )) ∈ +P S Q R0 , 0 , 0 3. If

1. ( )> ( + + + )ρ max ,
β

γ δ μ α

βμ2
2 Λ

2

or

2. < ≤R and ρ˜ 1
βμ2
Λ
.
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(15)
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t
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In addition,

( ) = = ( ) = ( ) =
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P t
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t t t
0

Proof. Taking integration of system (1) □
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By applying →limt 0









〈 ( )〉 = − ( + )( + ) −

+
〈 ( )〉P t

Λ

μ μ

γ μ μ δ γδ

μ δ
S t

1
, (17)








( ) = − ( + ) − + ( )d S t βP γ μ ρ P t ρP B tlog
1

2
d d ,2 2 (18)

∫( ) − ( ) = 〈 ( )〉 − ( + ) − 〈 ( ) 〉 + ( ) ( )S t S

t
β P t γ μ ρ P t

ρ

t
P r B r

log log 0 1

2
d

t

2 2

0

(19)

∫≤ 〈 ( )〉 − ( + ) − 〈 ( )〉 + ( ) ( )β P t γ μ ρ P t
ρ

t
P r B r

1

2
d .

t

2 2

0

(20)

By putting the value of 〈 ( )〉P t from Eq. (17)



























































































































































































































































































































{ }( )

∫

∫

∫

∫

∫

∫

( ) − ( ) ≤ − ( + )( + ) −
+

〈 ( )〉 − ( + )

− − ( + )( + ) −
+

〈 ( )〉 + ( ) ( )

= − +
+
〈 ( )〉 − ( + )

− − +
+
〈 ( )〉 + +

+
〈 ( )〉 + ( ) ( )

= − ( + ) − − ( + )
+
〈 ( )〉

+ +
+
〈 ( )〉 − − +

+
〈 ( )〉 + ( ) ( )

= − ( + ) + − ( + )
+
〈 ( )〉

+ +
+
〈 ( )〉 − − +

+
〈 ( )〉 + ( ) ( )

= −
( + ) +

− ( + )
+
〈 ( )〉

+ +
+
〈 ( )〉 − − +

+
〈 ( )〉 + ( ) ( )

= − − ( + )
+
〈 ( )〉

+ +
+
〈 ( )〉 − − +

+
〈 ( )〉 + ( ) ( )

S t S

t
β

μ μ

γ μ μ δ γδ

μ δ
S t γ μ

ρ
μ μ

γ μ μ δ γδ

μ δ
S t

ρ

t
P r B r

β
μ

γ μ

μ δ
S t γ μ

ρ
Λ

μ

γ μ

μ δ
S t

Λ

μ

γ μ

μ δ
S t

ρ

t
P r B r

βΛ

μ
γ μ ρ

Λ

μ

β γ μ

μ δ
S t

Λ

μ

γ μ

μ δ
S t ρ

γ μ

μ δ
S t

ρ

t
P r B r

βΛ

μ
γ μ ρ

Λ

μ

β γ μ

μ δ
S t

Λ

μ

γ μ

μ δ
S t ρ

γ μ

μ δ
S t

ρ

t
P r B r

βΛ

μ

μ γ μ ρ

β

β γ μ

μ δ
S t

Λ

μ

γ μ

μ δ
S t ρ

γ μ

μ δ
S t

ρ

t
P r B r

βΛ

μ R

β γ μ

μ δ
S t

Λ

μ

γ μ

μ δ
S t ρ

γ μ

μ δ
S t

ρ

t
P r B r

log log 0 Λ 1

1

2

Λ 1
d

Λ

1

2
2 d

1

2

2
1

2
d

1

2

2
1

2
d

1
Λ

2
1

2
d

1
1

˜

2
1

2
d .

t

t

t

t

Λ

μ

t

t

2

2

0

2

2 2

2

0

2

2

2

2

2

0

2

2

2

2

2

0

1

2
2

2

2

2

2

0

2

2

2

0

1050  Abdullah Alzahrani and Anwar Zeb



If condition (2) is satisfied, then

R









( ) ≤ − <
→∞
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lim sup

log
1

1

˜
0,

t
(21)

conclusion (16) is proved. Next according to Eq. (20)
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conclusion (15) is proved
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According to (15) and (16)
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Now from the third equation of system (1), it follows that













∫( ) = ( ) + ( )−( + ) ( + )Q t e Q δS r e r0 d .μ δ t

t

μ δ r

0

(24)

By applying L’Hospital’s rule with previous result, we have
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As from Eq. (4), it follows that
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t

Hence, the proof is complete. □
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5 Persistence

This section concern the persistence of system (1).

Theorem 5.1. Suppose that >μ ρ

2

2

. Let ( ( ) ( ) ( ))P t S t Q t, , be any solution of model (1) with initial conditions

( ( ) ( ) ( )) ∈ +P S Q R0 , 0 , 0 3. If >R̂ 10 , then

















( )〈 ( )〉 = − ( + )( + ) −
+

〈 ( )〉 = −
−

−→∞
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Proof. As we know that
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By applying the limit
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Using Eq. (17) we have
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Further
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By applying the limit → ∞t , we have
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1

˜

2

1

˜

2

Hence, the proof is complete. □

6 Numerical Simulation

For the illustration of our obtained results, we use the values of parameters and variables given in Table 2.

Now for the numerical simulation, we use Milstein’s higher order method [34]. The results obtained

through this method are shown graphically in Figure 1 for both deterministic and stochastic forms.

1052  Abdullah Alzahrani and Anwar Zeb



7 Conclusion

In this work, a formulation of a stochastic mathematical smoking model is presented. The sufficient

conditions are determined for extinction and persistence. Furthermore, the threshold of the proposed

stochastic model is discussed, when noises are small or large. Finally, numerical simulations are shown

graphically with the software MATLAB. The conclusions obtained are as follows: (a) if <R 10 , then system

(2) will be locally stable and will be unstable if ≥R 10 ; (b) if <R 10 , then system (2) will be locally stable

and will be unstable if ≥R 10 ; (c) for =Λ 0, system (2) will be globally asymptotically stable; (d) smoking

will be in control if <R̃ 1 and ≤ρ
βμ2
Λ

means that white noise is not large; and (e) the value of >R̃ 1 will

lead to the prevalence of smoking.

Table 2: Values of variables and parameters for numerical solution

Variables and parameters Values of variables and parameters

P t( ) 59

S t( ) 40

Q t( ) 30

Λ 0.08

β 0.003

μ 0.001

γ 0.02011

ρ 0.0075

δ 0.004

Figure 1: Graphs of (P) potential smokers using a deterministic method (green line) and from a stochastic solution (blue lines),

(S) chain smokers using a deterministic method (green line) and from a stochastic solution (blue lines) and (Q) quit smokers

using a deterministic method (green line) and from a stochastic solution (blue lines). The stability of stochastic graphs shows

best expression than deterministic graphs.
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