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Abstract

We present a novel dataset and novel algorithms for the

problem of detecting activities of daily living (ADL) in first-

person camera views. We have collected a dataset of 1

million frames of dozens of people performing unscripted,

everyday activities. The dataset is annotated with activi-

ties, object tracks, hand positions, and interaction events.

ADLs differ from typical actions in that they can involve

long-scale temporal structure (making tea can take a few

minutes) and complex object interactions (a fridge looks

different when its door is open). We develop novel repre-

sentations including (1) temporal pyramids, which gener-

alize the well-known spatial pyramid to approximate tem-

poral correspondence when scoring a model and (2) com-

posite object models that exploit the fact that objects look

different when being interacted with. We perform an exten-

sive empirical evaluation and demonstrate that our novel

representations produce a two-fold improvement over tra-

ditional approaches. Our analysis suggests that real-world

ADL recognition is “all about the objects,” and in particu-

lar, “all about the objects being interacted with.”

1. Introduction

Activity recognition is a classic task in computer vision,

but is relatively less well-defined compared to neighboring

problems such as object recognition for which large-scale,

established benchmarks exist [6, 5]. We believe this is so the

following reasons: (1) It is difficult to define canonical cate-

gories of everyday behavior outside particular domains such

as surveillance and sports analysis. (2) It is difficult to col-

lect large-scale footage with rich intra-class variation. For

example, unscripted surveillance footage tends to be repeti-

tive, often dominated by scenes of people walking.

Traditionally, the above limitations have been addressed

by using actor-scripted video footage of posture-defined ac-

tion categories such as “skipping” or “jumping” [35, 11].

Such categories maybe artificial because they tend not be

functionally defined, a core aspect of human movement [1].

We focus on the problem of detecting activities of daily

Figure 1: Activities of daily living (ADL) captured by a

wearable camera.

living (ADL) from first-person wearable cameras. This for-

mulation addresses many of the limitations described above,

in that we use a natural list of daily activities developed

from the medical literature on rehabilitation. These activ-

ities are chosen so as to capture the representative move-

ments a person must undergo to perform everyday func-

tions, such as eating and maintaining personal hygiene.

Wearable cameras also provide a practical advantage of ease

of capture; we have amassed a diverse, 1 million-frame

dataset of people performing natural, everyday activities in

diverse home environments. We argue that ease of data col-

lection is one important benefit of wearable cameras.

Application 1 (Tele-rehabilitation): The medical liter-

ature on nursing and motor rehabilitation [21, 3] describes

a variety of clinical benchmarks used to evaluate everyday

functional activities such as picking up a telephone, drink-

ing from a mug, and turning on a light switch, etc. We de-

velop a taxonomy of everyday actions based on such med-

ical evaluations (Fig.7). These evaluations are currently

done in the hospital, but a computer-vision system capable

of analyzing such activities would revolutionize the rehabil-

itative process, allowing for long-term, at-home monitoring.
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Application 2 (Life-logging): A growing trend in ubiq-

uitous computing is that of continual logging of visual per-

sonal histories [12, 17]. Initial work has shown promise

for memory enhancement for patients with memory-loss

[17]. However, as there has been limited algorithm develop-

ment for processing and managing such massive records of

daily activity, these systems currently suffer from behaving

mostly as “write-only” memories. We believe the time is

right for the vision community to consider such large-scale,

“in the wild” activity recognition problems.

Novel representations: ADLs differ from typical ac-

tions in that they can involve long-scale temporal structure

(making tea can take a few minutes) and complex object in-

teractions (a fridge looks different when its door is open).

We develop novel representations including (1) temporal

pyramids, which generalize the well-known spatial pyra-

mid to approximate temporal correspondence when scoring

a model and (2) composite object models that exploit the

fact that objects look different when being interacted with.

Dataset: We introduce a fully-annotated dataset suitable

for “egocentric” ADL-recognition. Our dataset is 1 mil-

lion frames of 10 hours of video, amassed from 20 people

performing non scripted ADL’s in 20 different homes. Our

dataset has been annotated with activity labels, bounding-

box tracks of all objects in view, and annotations for which

are being interacted with. With respect to existing egocen-

tric datasets, our dataset is notable for its size and diversity

of natural scenes. With respect to existing action datasets,

our dataset is notable for its content of unscripted, everyday,

activities collected in continuous (non-segmented) video

streams. We use our dataset to perform a thorough inves-

tigation of state-of-the-art algorithms in both action and ob-

ject recognition.

2. Related work

There has been a fair amount of work on everyday

activity-recognition from the ubiquitous computing com-

munity [31, 39, 29] , much of it addressed from a “life-

logging” perspective [2, 30] . Most approaches have ig-

nored visual cues, and instead focused on alternate sensors

such as RFID tags or accelerometers. This requires a fairly

involved effort for instrumenting both the observer and the

“outside world”. One may argue that it is more practical to

instrument the observer; for example, wearable cameras are

easy to deploy, innocuous, and increasingly common [17].

There is a rich history of activity recognition in the vi-

sion community; we refer the reader to the recent surveys

of [11, 40] for a detailed summary. Classic datasets tend

to consist of scripted actions [24, 44], though recent work

has looked at actions in televised and film footage [27]. Re-

lated work has also begun looking at the problem of ev-

eryday, at-home activity-recognition. Though there exists

large body of work on recognizing actions from wearable

cameras, most demonstrate results in a single scene, such

as a kitchen or office [38, 8, 37, 15], possibly outfitted with

actors in mocap suits [36]. Such a setting may allow one

to assume a priori knowledge of the particular objects in

the scene, which allows for instance-level visual recognition

[16] or RFID-tagged objects [39, 43]. We focus on recogni-

tion in widely-varying, un-instrumented, “in-the-wild” en-

vironments.

Low-level features such as motion [9, 15, 20, 33] and

skin-based color models [28] likely play a large role in an-

alyzing wearable camera footage. We experimented with

such cues, but found static image cues (such as image-based

object-detectors) to be more stable, perhaps due to the un-

constrained nature of our footage. Other researchers have

examined unsupervised discovery of objects [19, 9] and ac-

tions [20] from wearable footage. We work with a list of

semantically-driven actions and objects, as derived from the

medical literature on ADL.

Our temporal pyramid representation is inspired by a

large body of work on multiresolution models of video

[18, 44]. Our model can be seen as a special case of a

spatiotemporal pyramid [4]. However, we use interaction-

based object models to determine spatial support rather

than a spatial pyramid. Our model is also similar to the

temporally-binned model of [23], but we use a weighted,

multiscale, pyramid to approximate a coarse-to-fine tempo-

ral correspondence. Our interaction-based object models

are inspired by studies from human vision [22] and are re-

lated to visual phrases [34], which capture visual compos-

ites of humans and objects in interactions. Our performance

gains stem from the ability to capture large changes in ob-

ject appearance (an open versus closed fridge) as well as the

inclusion of a human in the composite model.

3. Temporal pyramids

In this section, we develop several simple but novel mod-

els of daily activities based on object-centric representa-

tions. We write T for the set of frames to be analyzed

using K object models. We use these models to compute

a score for object i at a particular pixel location and scale

p = (x, y, s) in frame t:

scoreti(p) ∈ [0, 1] (1)

We use the object models of [10], which are not cali-

brated to return scores in [0, 1]. One may calibrate the mod-

els to return probabilities [32], but we divide the raw score

of each object model by the maximum value found in the

whole dataset. We then record the maximum value of each

object model i in each frame t:

f t
i = max

p
scoreti(p) (2)



”Bag of features” is a naive way of aggregating these

features by averaging them over time.

x0

i =
1

|T |

∑

t∈T

f t
i (3)

The above representation ignores any temporal structure;

we may want to encode, for example, that “making tea” re-

quires first boiling water and then (minutes later) pouring it

into a cup. Such long-scale temporal structure is difficult to

encode using standard hidden markov models. We develop

a flexible model based on the spatial pyramid match kernel

[25]. We represent features in a temporal pyramid, where

the top level j = 0 is a histogram over the full temporal

extent of a video clip (as in (3)), the next level is the con-

catenation of two histograms obtained by temporally seg-

menting the video into two halfs, and so on. We obtain a

coarse-to-fine representation by concatenating all such his-

tograms together:

x
j,k
i =

2j−1

|T |

∑

t∈T j,k

f t
i ; ∀k ∈ {1...2j} (4)

where T j,k is the temporal extent of the k’th segment on

the j’th level of the pyramid and x
j,k
i is the feature for the

i’th object detector on that segment. The scale factors de-

fine an implicit correspondence based on the finest temporal

resolution at which a model feature matches a video feature

[13]. We use j ∈ {0, 1} levels. These allows us to encode

long-scale temporal structure in a “soft” manner; one must

touch a kettle at the beginning of a making tea action, but

the precise time may vary a bit.

We use our models for activity recognition by learning

linear SVM classifiers on features

x = min
( [

x0

1
. . . x

j,k
i . . . x

L,2L

K

]T

, 0.01
)

with the public SVM implementation of [7]. We found an

elementwise-minimum was useful to approximately “bina-

rize” x, so that it softly encode the presence or lack thereof

of object i (inspired by the clipping post-processing step

in SIFT [26]).We experimented with various histogram ker-

nels [41], but found a simple linear kernel defined on an

L1-normalized feature to work well.

4. Active object models

Recognizing objects undergoing hand manipulations is

a crucial aspect of wearable ADL recognition (see Fig.2)

[22]. Following recent work on human-object interaction

models, one approach may be to detect objects and human

body parts (hands) in frames, and then reason about their

spatial relationship. However, this ignores the fact that ob-

jects may significantly change in appearance during inter-

actions - an open fridge looks very different from a closed

fridge.

Figure 2: Our dataset (top row) contains images of objects

under different semantic states-of-use (e.g., a microwave

with open or closed door). These semantic states are typ-

ically not captured in web-based photo collections (bottom

row). Our active/passive object models exploit such visual

cues to determine which objects are being interacted with.

(a) passive stove (b) active stove

Figure 3: We visualize our passive and active stove models.

pan tv

mug/cup dish

Figure 4: To visualize the average location of active vs pas-

sive objects in our ADL dataset, we make a rectangular

mask for each bounding box and average them all for pas-

sive (on left) and active (on right) instances of annotated

objects. Active images tend to have larger bounding boxes

at the center of the image, indicating that active objects tend

to occur at large scales near the center of the field of view.



Figure 5: We show the average passive (left) and active

(right) TV remote in our ADL dataset. The left image is

blurred due to the variation in viewing angle in our data,

while the right image is more structured due to less pose

variation for remotes-in-hand. The right image also con-

tains more red-hued skin-pixels. We use such cues to build

active object models.

Active models: Instead, we learn separate object detec-

tors tuned for “active” objects being interacted with. Our

approach is inspired by the recent “visual phrase” work of

[34], which advocates detection of human-object compos-

ites rather than detectors built for each constituent object.

In our case, we do not increase the spatial support of our

detectors to explicitly include the human hand, but define

an active object to be a visually disparate sub-category. We

do this by training an additional object detector [10] using

the subset of active training images for a particular object.

We show an example for a “stove” object in Fig.3.

Spatial reasoning: While many objects can appear in

the field of view, active objects tend to be at a consistent

scale and location convenient for hand manipulation. We

analyze the spatial bias of passive versus active objects in

Fig.4. To exploit such cues, we augment our active object

models to include the position and scale as additional fea-

tures when detecting active objects:

scoreti(p) = w ·
[

score(p) x y s x2 y2 s2
]T

Because we use linearly-parameterized templates as object

detectors [10], we simply add the above spatial features to

the local appearance features when learning active object

models. We found this produced a small but noticeable im-

provement in our final results.

Skin detectors: Because active objects are manipulated

by the hand, they tend to occur near skin pixels (as shown

in Fig.5). We experimented with adding a skin detector fea-

ture to the above linear model, but failed to see consistent

improvements. We hypothesize this was due to large varia-

tions in illumination in our dataset.

We augment the temporal pyramid feature from (4) to

include K additional features corresponding to active ob-

jects, as defined in this section. We refer to this model as

“AO”, for our object-centric model augmented with active

objects. We refer to the original feature from (4) as “O”, for

our object-centric model.

5. Dataset

In the subsequent description, we refer to our dataset as

the ADL dataset.

action name mean of std. dev. of

length (secs) length

combing hair 26.50 9.00

make up 108.00 85.44

brushing teeth 128.86 45.50

dental floss 92.00 23.58

washing hands/face 76.00 36.33

drying hands/face 26.67 13.06

laundry 215.50 142.81

washing dishes 159.60 154.39

moving dishes 143.00 159.81

making tea 143.00 71.81

making coffee 85.33 54.45

drinking water/bottle 70.50 30.74

drinking water/tap 8.00 5.66

making cold food/snack 117.20 96.63

vacuuming 77.00 60.81

watching tv 189.60 98.74

using computer 105.60 32.94

using cell 18.67 9.45

Table 1: This table shows the statistics for the duration of

each action. Some actions like “using cell” are shorter in

time than other actions like ”washing dishes”. Many actions

exhibit a rather large variability in duration, making action

detection in continuous data difficult.

5.1. Collection and size

To collect our dataset, we used a GoPro camera designed

for wearable capture of athletes during sporting events. We

found a chest-mount easier than a helmet mount, both in

terms of quality of data and ease of capture. The camera

captures high definition quality video (1280x960) in the rate

of 30 frames per second and with 170 degrees of viewing

angle. A large viewing angle is important in capturing this

type of footage to reduce object and hand truncation. We

put together a list of 18 actions of daily activities and asked

20 people to do them all in their own apartment. In order

to collect realistic and varied data, we didn’t give users a

detailed description of actions, and instead gave them the

list of actions in Table 1 . Each capture session was roughly

30 minutes of unscripted morning activity. Our camera was

equipped with sufficient battery and memory to allow for

continuous capture. We collected more than 10 hours of

first person video footage, with more than a million frames.

The total collection process took one month of acquiring

subjects and arranging capture sessions.

5.2. Annotation

We annotated every second (30 frames) with dense anno-

tations of the form in Fig.1. We did so by assembling a team

of 10 part-time annotators, working over a month span. The

final dataset is annotated in terms of:



Figure 6: We show different kitchen scenes in our dataset.

Unlike many other manually constructed action datasets, we

exhibit a large variety of scenes and objects.

Action label: Our ADL dataset is temporally annotated

in terms of 18 different actions. Table 1 shows the list of

actions and also the statistics of their duration.

Object bounding boxes: Our ADL dataset is annotated

in terms of 42 different objects, of which some listed in Ta-

ble 2 . We asked the annotators to draw a tight bounding

box around each known object and then track it and adjust

the bounding box for every 30 frames.

Object identity: Our dataset is annotated with individ-

ual tracks of objects. We do not use such annotations for our

current analysis, but it may be useful for evaluating track-

ing algorithms. Note that there is large amount of camera

motion in this footage and can be considered a good bench-

mark for object detection and tracking algorithms.

Human-object interaction: We denote objects that are

being interacted with as “active”. We set a binary attribute

flag for active objects in our annotation interface. We show

that this knowledge is very helpful in action recognition.

5.3. Characteristics

In this section, we point out various distinguishing char-

acteristics of our dataset. We refer to the following sets of

figure captions for a detailed description, but we summarize

the main points here. Our dataset contains large variability

in scenes (Fig. 6) and object viewpoint and occlusion level

(Fig. 2). In Fig. 4 and Fig. 5, we illustrate various biases

(such as image location and skin color) which can be ex-

ploited to visually identify interacting objects.

Functional taxonomy: Many ADL actions are quite re-

lated to each other. We construct a functional taxonomy

Figure 7: Our manually-designed functional ADL taxon-

omy.

combing hair

make up

brushing teeth

dental floss

washing hands/face

drying hands/face

laundry

washing dishes

moving dishes

making tea

making coffee

drinking water/bottle

drinking water/tap

making cold food/snack

vacuuming

watching tv

using computer

using cell

doing nothing

co
m

bi
ng

 h
ai
r

m
ak

e 
up

br
us

hi
ng

 te
et

h

de
nt

al
 fl
os

s

w
as

hi
ng

 h
an

ds
/fa

ce

dr
yi
ng

 h
an

ds
/fa

ce

la
un

dr
y

w
as

hi
ng

 d
is
he

s

m
ov

in
g 

di
sh

es

m
ak

in
g 

te
a

m
ak

in
g 

co
ffe

e

dr
in
ki
ng

 w
at

er
/b

ot
tle

dr
in
ki
ng

 w
at

er
/ta

p

m
ak

in
g 

co
ld
 fo

od
/s
na

ck

va
cu

um
in
g

w
at

ch
in
g 

tv

us
in
g 

co
m

pu
te

r

us
in
g 

ce
ll

do
in
g 

no
th

in
g

Figure 8: The taxonomy-based cost of mistaking one class

for another is the (average) distance to their closest common

ancestor in Fig.7 . Dark values correspond to a low cost; we

pay less for mistaking “brushing teeth” with “flossing” as

opposed to “making tea”.

based on a bottom-up grouping of actions; at a high level,

all ADL actions can be grouped into those based on per-

sonal hygiene, food, and entertainment. Fig. 7 shows the

functional taxonomy we manually constructed. We can use

this taxonomy in evaluating actions, meaning we penalize

less for making mistakes between actions with similar func-

tionalities. Following [14], we define the misclassification

cost of two classes as the total distance to their closest com-

mon ancestor, divided by two. Fig. 8 illustrates this cost for

all possible mistakes with brighter color for larger cost. We

find the interesting phenomena that functionality correlates

strongly with scene context; one both brushes their teeth

and flosses in a bathroom. This suggests that approaches

that rely on scene context might fare well under such a func-

tional score.



Figure 9: Toothbrushes in our ADL dataset (left) look dif-

ferent than those found in web-based collections such as

ImageNet (right). The latter typically contains large, iconic

views of objects, often in displayed in isolation. Object de-

tectors trained with the latter may not work well for our

application, as we show in Table 2.

6. Experimental results

We implemented and evaluated our object-centric action

models on our ADL dataset.

Evaluation: We use leave-one-out cross-validation,

where we ensure that footage of the same person does not

appear across both training and test data. We use average

precision to evaluate object detection accuracy (following

the standard convention [6]). We use class confusion ma-

trices to evaluate action classification, scoring both classifi-

cation error and the taxonomy-derived loss shown in Fig.8.

We compute an overall classification rate by averaging the

diagonal of this matrix, weighting all classes equally. Be-

cause we have 18 classes, chance performance corresponds

to almost 5%.

Co-occurring actions: Some actions can co-occur in

our dataset. In many cases, it may be more natural to think

of the shorter action as interrupting the longer one; “watch-

ing TV” while waiting for water to boil while “making tea.”

Our annotations include such co-occurrences. For simplic-

ity in our current evaluation, we assign only one label to our

test frame, taking the shorter interrupting action when there

is overlap.

Training: In training visual object detectors, we used

off-the-shelf part-based model for object detection [10].

We use training data for 24 object categories with roughly

1200 training instances (with bounding-box labels) per cat-

egory. In Table 2, we compare results using different train-

ing datasets. We show that models trained using web-based

collections (such as ImageNet) tend to contain iconic view-

points of images not present in our ADL dataset (Fig. 9).

Additionally, wearable video contains images of objects un-

der different states-of-use (an open microwave or fridge, as

in Fig.2), also usually absent in online collections. When

trained on data extracted from natural ADL footage, object

detectors perform considerably better; for example, a faucet

tap trained from ImageNet performs at 0.1% average preci-

sion, while faucet tap model trained from ADL data per-

forms at 40% average precision. This suggests that, for our

application, it is crucial to train on data with a large vari-

Object ADL ImageNet

tap 40.4 ± 24.3 0.1

soap liquid 32.5 ± 28.8 2.5

fridge 19.9 ± 12.6 0.4

microwave 43.1 ± 14.1 20.2

oven/stove 38.7 ± 22.3 0.1

bottle 21.0 ± 27.0 9.8

kettle 21.6 ± 24.2 0.1

mug/cup 23.5 ± 14.8 14.8

washer/dryer 47.6 ± 15.7 1.8

tv 69.0 ± 21.7 26.9

Table 2: Average precision results for part-based object de-

tectors evaluated on our ADL dataset. We compare mod-

els trained on our ADL dataset versus ImageNet. Since the

ADL-trained models are trained and evaluated across cross-

validation splits, we report both the mean and standard de-

viation of average precision. The deviation is large because

we have relatively few object instances in our dataset (peo-

ple own a single tea kettle). Detectors trained on ImageNet

perform poorly on our data because they fail to capture the

large number of viewing angles and occlusion states present

in our wearable data.

ety of viewpoints and scales. We find that there are certain

objects in our labeled dataset for which current detection

systems cannot model - e.g., they yield zero percent perfor-

mance. We think this is due to small resolution and large

geometric variation.

6.1. Action recognition results

Table 3 tabulates action classification accuracy for dif-

ferent versions of our system. We begin with a standard

baseline; a SVM trained on a bag of quantized spatio-

temporal interest points (STIPS) [42]. It performs fairly

poorly, at 16.5% on classification of pre-segmented video

clips. Adding our temporal pyramid model boosts perfor-

mance to 22.8%, revealing the benefit of reasoning about

temporal structure. Our bag-of-objects model (O) notice-

ably improves performance to 32.7%, which is further in-

creased to 40.6% when augmented with the active-object

model (AO). Our novel representations provide a factor of

two improvement over contemporary approaches to action

recognition.

To further analyze where future work should be focused,

we evaluated our model with idealized perfect object de-

tectors (IO), and augmented such idealized detectors with

perfect knowledge of when objects are “active” (IA+IO).

We do this by simply using the object and interaction an-

notations in our dataset. These dramatically increase per-

formance to 77%, suggesting that for ADL recognition, “its

all about the objects”, and in particular, “its all about the

objects being interacted with.”



pre-segmented

segment class. accuracy taxonomy loss

pyramid bag pyramid bag

STIP 22.8 16.5 1.8792 2.1092

O 32.7 24.7 1.4017 1.7129

AO 40.6 36.0 1.2501 1.4256

IO 55.8 49.3 0.9267 0.9947

IA+IO 77.0 76.8 0.4664 0.4851

sliding window

frame class. accuracy taxonomy loss

pyramid bag pyramid bag

STIP 15.6 12.9 2.1957 2.1997

O 23.8 17.4 1.5975 1.8123

AO 28.8 23.9 1.5057 1.6515

IO 43.5 36.6 1.1047 1.2859

IA+IO 60.7 53.7 0.79532 0.9551

Table 3: Classification accuracy and taxonomy loss for

action recognition using different representations. We

compare results using both pre-segmented and temporally-

continuous video clips. Please see the text for a detailed

discussion, but our active-object (AO) model doubles the

performance of typical action models based on space-time

interest points (STIP). We also show that idealized, per-

fect object detectors (IO), augmented with the knowledge

of which objects are being interacted with (IA+IO), dramat-

ically increase performance.

We believe that accuracy is limited (even for the ideal

case) due to genuine ambiguities in the data, as well as

difficulties in annotation. Some actions such as “washing

dishes” and “drinking water from tap” involve interactions

with the same objects (mug and tap). Some objects are

small and often occluded (e.g., dental floss) and so are not

fully annotated. But it’s likely that an ideal detector for such

objects would be difficult to build.

One compelling aspect of ADL footage is that it is natu-

rally collected as a continuous video stream, requiring one

to solve a temporal segmentation problem. This temporal

continuity is rare for action datasets, which tend to consist

of pre-segmented clips. For each evaluation scenario, we

train 1-vs-rest SVM classifiers on pre-segmented clips and

test them on either pre-segmented or continuous videos. In

the continuous case, we apply the detector within a tempo-

ral sliding window of 10 seconds and assign the best label

to its center frame. We also add a background class label to

the set of possible outputs in the continuous case. We score

a model with its frame classification accuracy. As perhaps

expected, performance decreases with respect to the pre-

segmented case, but it is still reasonable.

We have constructed confusion matrices for all entries

in Table 3 and will release them with the dataset. Due
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Figure 10: Confusion matrix for temporal pyramid with vi-

sion based active object detectors on pre-segmented videos.

Segment classification accuracy = 40.6%.

to space limitations, we show only a confusion matrix for

our active-object (AO) model in Fig.10. Interestingly, many

actions are mistaken for functionally similar ones - “make

up”, “brushing teeth”, and “dental floss” are all mistaken for

each other (and are instances of personal hygiene). We be-

lieve this holds because much of the functional taxonomy

in Fig.7 is scene-based; people prepare food in a kitchen

and maintain personal hygiene in a bathroom. Our bag-of-

object representation acts as a coarse scene descriptor, and

hence makes such functionally-reasonable mistakes.

Conclusion: We have presented a novel dataset, algo-

rithms, and empirical evaluation for the problem of detect-

ing activities of daily living (ADL) in first-person camera

views. We present novel algorithms for exploiting temporal

structure and interactive models of objects, both important

for ADL recognition. To illustrate our algorithms, we have

collected a dataset of 1 million frames of dozens of peo-

ple performing, unscripted, everyday activities. We have

annotated the dataset with activities, object tracks, hand

positions, and interaction events. We have presented ex-

tensive experimental results that demonstrate our models

greatly outperform existing approaches for wearable ADL-

recognition, and also present a roadmap for future work on

better models for objects and their interactions.

Acknowledgements: We thank Carl Vondrick for help
in using his annotation system. Funding for this research
was provided by NSF Grant 0954083, ONR-MURI Grant
N00014-10-1-0933, and support from Intel.

References

[1] M. Argyle and B. Foss. The psychology of interpersonal be-

haviour. Penguin Books Middlesex. England, 1967.

[2] M. Blum, A. Pentland, and G. Troster. Insense: Interest-

based life logging. Multimedia, IEEE, 13(4):40–48, 2006.

[3] A. Catz, M. Itzkovich, E. Agranov, H. Ring, and A. Tamir.

SCIM-spinal cord independence measure: a new disability



scale for patients with spinal cord lesions. Spinal Cord,

35(12):850–856, 1997.

[4] J. Choi, W. Jeon, and S. Lee. Spatio-temporal pyramid

matching for sports videos. In ACM ICMR, 2008.

[5] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. Im-

agenet: A large-scale hierarchical image database. In CVPR,

pages 248–255. IEEE, 2009.

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2008 (VOC2008) Results. http://www.pascal-

network.org/challenges/VOC/voc2008/workshop/index.html.

[7] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. Liblinear:

A library for large linear classification. JMLR, 9, 2008.

[8] A. Fathi, A. Farhadi, and J. Rehg. Understanding egocentric

activities. In ICCV, 2011.

[9] A. Fathi, X. Ren, and J. Rehg. Learning to recognize objects

in egocentric activities. In CVPR, 2011.

[10] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part

based models. IEEE TPAMI, 32(9), 2010.

[11] D. Forsyth, O. Arikan, L. Ikemoto, J. O’Brien, and D. Ra-

manan. Computational studies of human motion i: Tracking

and animation. Foundations and Trends in Computer Graph-

ics and Vision, 1(2/3):1–255, 2006.

[12] J. Gemmell, G. Bell, and R. Lueder. MyLifeBits: a per-

sonal database for everything. Communications of the ACM,

49(1):88–95, 2006.

[13] K. Grauman and T. Darrell. The pyramid match kernel: Ef-

ficient learning with sets of features. JMLR, 2007.

[14] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-

egory dataset. 2007.

[15] M. Hanheide, N. Hofemann, and G. Sagerer. Action recog-

nition in a wearable assistance system. In ICPR, 2006.

[16] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab,

P. Fua, and V. Lepetit. Gradient response maps for real-time

detection of texture-less objects. IEEE TPAMI, 2011.

[17] S. Hodges, L. Williams, E. Berry, S. Izadi, J. Srinivasan,

A. Butler, G. Smyth, N. Kapur, and K. Wood. SenseCam:

A retrospective memory aid. UbiComp, 2006.

[18] M. Irani, P. Anandan, J. Bergen, R. Kumar, and S. Hsu. Ef-

ficient representations of video sequences and their applica-

tions. Signal Processing: Image Communication, 8(4), 1996.

[19] K. T. Kang H., Hebert M. Discovering object instances from

scenes of daily living. In ICCV, 2011.

[20] K. Kitani, T. Okabe, Y. Sato, and A. Sugimoto. Fast unsu-

pervised ego-action learning for first-person sports videos. In

CVPR, 2011.

[21] B. Kopp, A. Kunkel, H. Flor, T. Platz, U. Rose, K. Mauritz,

K. Gresser, K. McCulloch, and E. Taub. The Arm Motor

Ability Test: reliability, validity, and sensitivity to change of

an instrument for assessing disabilities in activities of daily

living. Arch. of physical medicine and rehab., 78(6), 1997.

[22] M. Land, N. Mennie, and J. Rusted. The roles of vision and

eye movements in the control of activities of daily living.

Perception, 28(11), 1999.

[23] I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld.

Learning realistic human actions from movies. In CVPR,

2008.

[24] I. Laptev and P. Perez. Retrieving actions in movies. In

ICCV, 2007.

[25] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In CVPR, 2006.

[26] D. Lowe. Object recognition from local scale-invariant fea-

tures. In ICCV, 1999.

[27] M. Marszałek, I. Laptev, and C. Schmid. Actions in context.

In CVPR, 2009.

[28] W. Mayol and D. Murray. Wearable hand activity recogni-

tion for event summarization. In International Symposium

on Wearable Computers. IEEE, 2005.

[29] D. Patterson, D. Fox, H. Kautz, and M. Philipose. Fine-

grained activity recognition by aggregating abstract object

usage. In IEEE Int. Symp. on Wearable Computers, 2005.

[30] A. Pentland. Looking at people: Sensing for ubiquitous and

wearable computing. IEEE TPAMI, 22(1):107–119, 2002.

[31] M. Philipose, K. Fishkin, M. Perkowitz, D. Patterson,

D. Fox, H. Kautz, and D. Hahnel. Inferring activities from

interactions with objects. IEEE Pervasive Computing, 2004.

[32] J. Platt. Probabilistic outputs for support vector machines.

Advances in Large Margin Classifiers, 10(3), 1999.

[33] X. Ren and C. Gu. Figure-ground segmentation improves

handled object recognition in egocentric video. In CVPR,

2010.

[34] M. Sadeghi and A. Farhadi. Recognition using visual

phrases. In CVPR, 2011.

[35] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human

actions: A local svm approach. In ICPR, 2004.

[36] E. Spriggs, F. De La Torre, and M. Hebert. Temporal seg-

mentation and activity classification from first-person sens-

ing. In IEEE Workshop on Egocentric Vision, 2009.

[37] L. Sun, U. Klank, and M. Beetz. Eyewatchme3d hand and

object tracking for inside out activity analysis. In IEEE

Workshop on Egocentric Vision, 2009.

[38] S. Sundaram and W. Cuevas. High level activity recognition

using low resolution wearable vision. In IEEE Workshop on

Egocentric Vision, 2009.

[39] E. Tapia, S. Intille, and K. Larson. Activity recognition in

the home using simple and ubiquitous sensors. Pervasive

Computing, pages 158–175, 2004.

[40] P. Turaga, R. Chellappa, V. Subrahmanian, and O. Udrea.

Machine recognition of human activities: A survey. Cir-

cuits and Systems for Video Technology, IEEE Trans on,

18(11):1473–1488, 2008.

[41] A. Vedaldi and A. Zisserman. Efficient additive kernels

via explicit feature maps. In Computer Vision and Pat-

tern Recognition (CVPR), 2010 IEEE Conference on, pages

3539–3546. IEEE, 2010.

[42] H. Wang, M. Ullah, A. Klaser, I. Laptev, and C. Schmid.

Evaluation of local spatio-temporal features for action recog-

nition. In BMVC, 2009.

[43] J. Wu, A. Osuntogun, T. Choudhury, M. Philipose, and

J. Rehg. A scalable approach to activity recognition based

on object use. In ICCV, pages 1–8. IEEE, 2007.

[44] L. Zelnik-Manor and M. Irani. Event-based analysis of

video. In CVPR, 2001.


