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ABSTRACT
An excess of nonsynonymous over synonymous substitution at individual amino acid sites is an important

indicator that positive selection has affected the evolution of a protein between the extant sequences under
study and their most recent common ancestor. Several methods exist to detect the presence, and sometimes
location, of positively selected sites in alignments of protein-coding sequences. This article describes the
“sitewise likelihood-ratio” (SLR) method for detecting nonneutral evolution, a statistical test that can identify
sites that are unusually conserved as well as those that are unusually variable. We show that the SLR method
can be more powerful than currently published methods for detecting the location of positive selection,
especially in difficult cases where the strength of selection is low. The increase in power is achieved while
relaxing assumptions about how the strength of selection varies over sites and without elevated rates of
false-positive results that have been reported with some other methods. We also show that the SLR method
performs well even under circumstances where the results from some previous methods can be misleading.

ANALYZING the instantaneous rate of nonsynony- the phylogenetic relationship between many sequences
and permit a statistical test of the result (Nielsen andmous (amino acid-changing) and synonymous (si-

lent) nucleotide substitutions in protein-coding molecu- Yang 1998; Suzuki and Gojobori 1999). These last two
methods extract more information by considering thelar sequences can give important clues to understanding

how they evolved. In particular, the ratio of the rates evolutionary relationships between the sequences ana-
lyzed but differ markedly in their approaches.of nonsynonymous and synonymous fixation has been

used to measure the level of selective pressure on pro- If a site has � � 1, it is unusually variable and is said
to have evolved under positive selection. Similarly, a siteteins (McDonald and Kreitman 1991, for example).
with � � 1 is unusually conserved and is said to have beenSynonymous mutations do not change the encoded pro-
subject to purifying selection. We describe methods basedtein and so are often assumed to be selectively neutral.
on the discovery of such sites as tests for detecting theIf a nonsynonymous mutation does not affect the fitness
location of selection. The Suzuki and Gojobori (SG)of a protein, it would become fixed within the popula-
method is such a test, assessing each site of an alignmenttion at the same rate as a synonymous mutation, giving
separately for deviations from neutrality. We refer thea nonsynonymous/synonymous rate ratio (�) of 1. If a
reader to the original article (Suzuki and Gojoborinonsynonymous change makes the protein more or less
1999) for a more detailed description, but in essencefit on average then � will be greater or less than 1,
the SG method reconstructs ancestral sequences, countsrespectively. A significant excess of nonsynonymous over
the number of implied synonymous and nonsynony-synonymous substitution has been used as evidence for
mous changes, and then tests the result for deviationadaptive evolution (for a review, see Yang and Bielaw-
from neutrality. The SG method largely ignores theski 2000).
uncertainty in the ancestral reconstruction and in theSeveral methods have been proposed to detect the
evolutionary path taken between ancestral and extantpresence of positive selection in an aligned set of homol-
sequences and failing to account for this extra variabilityogous protein sequences, from counting the observed
may adversely affect the performance of the test.number of synonymous and nonsynonymous differ-

In contrast, the Nielsen and Yang (NY) method usesences between pairs of sequences (e.g., Li et al. 1985;
the entire sequence to detect whether any part of itNei and Gojobori 1986; McDonald and Kreitman
has undergone positive selection, allowing information1991) to more sophisticated techniques that allow for
from all sites to be used to estimate those quantities com-
mon to all sites (e.g., evolutionary distances) more accu-
rately. We describe such methods as tests for detecting the
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if each site were a random draw from some distribution. The sitewise nature of the SLR test means that there is
no need to specify a model of how � varies along theIt is not clear what distribution appropriately describes

how � varies along the sequence and Yang et al. (2000a) sequence and so it is not susceptible to the elevated
rates of false-positive results that some variants of theinvestigated the relative performance of several differ-

ent parametric families. By using maximum-likelihood NY method permit. The weaker assumptions underlying
(ML) methods to compare the performance of the cho- the SLR method mean that it is more generally applica-
sen distribution with a suitable “null” model that does ble to real data and more robust to potential errors
not allow for positive selection, a likelihood-ratio test when data violate the models of variation that the NY
(LRT) for the presence of positive selection can be method assumes.
performed (Anisimova et al. 2001). The NY method can The behavior of the SLR method is studied using data
also be used with a post hoc empirical Bayesian analysis simulated under a variety of conditions similar to those
to perform a test of the location of positive selection previously used to investigate the strengths and weak-
(Nielsen and Yang 1998). This may be done with or nesses of the NY method (Anisimova et al. 2001; Suzuki
without a prior LRT, although we provide evidence be- and Nei 2002) and for two real data sets that provide
low that empirical Bayes analysis of data where there is interesting case studies. In the simulations, data simulat-
not a significant indication of the presence of positive ing both strictly neutral evolution and evolution with a
selection can result in unacceptably high rates of false- proportion of sites under positive selection were used.
positive results. Looking at the performance of the method on neutrally

Simulation studies have shown that some variants of evolving data allows the actual size of the test to be
the NY method permit unexpectedly high rates of false- checked, confirming that the rate of false positives is
positive results when analyzing sequences that, in truth, controllable and that the test is neither liberal nor un-
contain large proportions of neutrally, or almost neu- duly conservative. Simulated data containing sites evolv-
trally, evolving sites (Anisimova et al. 2002; Suzuki and ing under positive selection are used to compare the
Nei 2002). Swanson et al. (2003) argue that, with suffi- power (ability to detect positive selection) of the SLR
cient data, applying some variants of the NY method to and SNY tests. In particular, detecting sites under weak
data consisting of a mixture of unusually conserved and positive selection is extremely difficult and so, while
strictly neutral sites may falsely detect the presence of such sites may not be of the most interest when analyzing
positive selection 50% of the time regardless of how the real data, comparing the ability to find such sites is a
nominal size of the test is chosen. These elevated high good way to discriminate between different methods.
rates of false positives are a consequence of the distribu-
tions used to model the variation in � and not all choices
are affected equally; notably the variant proposed by THEORY AND METHODS
Swanson et al. (2003; henceforth denoted Swanson-

Substitution model: The SLR method is based on theNielsen-Yang, SNY) does not have this unfortunate prop-
same probabilistic model of sitewise evolution as the NYerty when testing for the presence of positive selection,
method, which assumes that substitutions at a given codonalthough in this article we show that the method still has
site occur independently of every other site and that thesome undesirable properties when used in conjunction
process can be modeled as a continuous-time Markovwith empirical Bayes techniques to detect the location
process. This model of substitution may be thought of asof positively selected sites.
a two-stage process, describing background mutation andThis article introduces a test for nonneutral selection
subsequent selection within a population. At each co-that combines the statistical foundation and more realis-
don position, instantaneous nucleotide mutations aretic models of substitution used by the NY method with
assumed to occur in a fashion similar to the HKY85the sitewise testing approach used by the SG method.
model of evolution (Hasegawa et al. 1985). These muta-This new “sitewise likelihood-ratio” (SLR) method tests
tions then become fixed in the population with someeach site individually for neutrality but uses the entire
probability: 0 if the mutation involves the creation of aalignment to determine quantities common to all sites,
stop codon, p S if the mutation is synonymous, or pN if thesuch as evolutionary distances. The SLR method is thus
mutation is nonsynonymous. Splitting the substitutiona test for the location of selection, devised from the best
process into these two stages gives a biological interpre-features of existing phylogeny-based tests for both the
tation to the parameterization of the model of codonpresence and the location of positive selection. It can
substitution proposed by Muse and Gaut (1994): theirbe used to detect either positive or purifying selection
� and � parameters are proportional to the probabilitiesand can form the basis of a test for the presence of
of fixation given that a synonymous or nonsynonymousselection; we discuss both these points further below.
mutation has occurred, respectively. Splitting the pro-Treating many parameters as common to all sites
cess in this manner also highlights that the model as-allows the SLR method to extract more information
sumes that all observed mutations are fixed within thefrom the data without having to make strong assump-

tions about how selection varies along the sequence. population. Consequently, care should be taken when
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applying the methods in situations where this may not While revising this article we were made aware of
the maximum-likelihood method for detecting positivebe true: for example, if the data contain SNPs.
selection of Suzuki (2004), which shares many similari-The rate matrix for the Markov chain therefore has
ties with the SLR method. The main differences betweenentries
the methods are in how the common parameters are
estimated, although it is not clear what process Suzuki
recommends. Suzuki (2004) does not analyze the size
and power of the test presented but the results in this
article will be largely transferable if similar methods to
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0 ( j a stop codon or i → j

not a single-nucleotide mutation)

pS (i → j a synonymous transversion)

pN (i → j a nonsynonymous transversion)


pS (i → j a synonymous transition)


pN (i → j a nonsynonymous transition),

estimate common parameters are used.
Parameter estimation and likelihood calculation: All

inferences and tests are performed using likelihood cal-
culations and optimizations standard in phylogenetics
(see Felsenstein 2003, for example). In the SLR method,where q ij is the instantaneous rate of substitution from
the tree topology, branch lengths, equilibrium codoncodon i to codon j, 
 is the transition/transversion rate
frequencies, and the transition/transversion rate ratio

ratio, �j is the equilibrium frequency of codon j, and �
are considered to be common to all sites in an alignment

is a parameter confounded with time that describes the
and so are estimated using information from every site.

rate at which mutations occur. By setting � � pN/p S ,
The null model for the SLR test at site i is that �i �

constant over all codons, the model “M0” described by 1 while all other parameters, including the strength of
Yang et al. (2000a; see also Goldman and Yang 1994) selection at other sites (�j for all j � i), are free to vary.
is recovered. This is equivalent to assuming that every Similar techniques to those described in Yang (1996)
site has been subject to the same strength of selection. can be used to hold appropriate parameters common to
Alternatively, the NY method describes variation in the all sites while allowing others to vary on a “site-by-site” basis,
strength of selection along the sequence as if the value the contribution of each site toward the log-likelihood
of � at each site was independently drawn from some being calculated using the familiar pruning algorithm
distribution, with all of the other parameters common (Felsenstein 2003). The alternative model for site i
to all sites. By using distributions in this fashion, the allows all the parameters to vary freely (still including
variation in the strength of selection can be described the strength of selection at other sites). Consequently,
using only a few parameters, although its actual value the alternative model parameter estimates and maxi-
at a particular site remains unknown. In contrast, the mum log-likelihood are identical at every site i , and
SLR method models each site separately with � taking one high-dimensional optimization (involving all the
the value �i at site i , using more parameters but directly common parameters and one parameter �i for each
estimating the strength at each site and making no as- site i) has to be performed to find them.
sumptions about the overall distribution. Maximizing the log-likelihood of the null model re-

For the NY method, the quantity � is chosen so that, quires a similar high-dimensional optimization at each
in unit time, the expected number of nucleotide substi- site and so may require considerable computing re-
tutions per codon site is 1. Models of evolution that sources. Instead of attempting to perform these optimi-
allow for some distribution of values of � along the zations, two approximations are made: (a) the estimates
sequence have a consequent variation in the rate of of common parameters by M0 are unbiased and consis-
evolution along the sequence; these models set � so tent, and (b) the effect of a single site on the ML values
that the average rate across all sites is 1, even though of the common parameters is negligible. The first ap-
each individual site may not be evolving at this rate proximation allows the common parameters to be esti-
(Nielsen and Yang 1998; Yang et al. 2000a). In contrast, mated using M0 and, in conjunction with the second
for the SLR method the rate of evolution could poten- approximation, held fixed. Given fixed common param-
tially be different at every site as the level of selection eters, the distribution at each site is independent of
changes and it is appropriate to choose � so that one every other site and so the ML estimate for selective
nucleotide change is expected per unit time for neu- pressure at site i (�̂i) can be found via a one-dimensional
trally evolving data. This means that sites under purify- optimization. In all, these approximations mean that
ing selection (with pN � p S or � i � 1) appear to evolve the two high-dimensional optimizations required to find
more slowly than neutral sites (� i � 1), which in turn the maximum-likelihood estimates of all parameters can
evolve slower than positively selected sites (� i � 1), be reduced to a comparatively low-dimensional optimi-
agreeing with biological intuition. zation to estimate the common parameters and a one-

The SLR test consists of performing a likelihood-ratio dimensional optimization at each site to estimate the
test on a sitewise basis, testing the null model (neutrality, strength of selection.
�i � 1) against an alternative model (�i � 1; or see There is some evidence (Yang 2000) that branch

lengths are underestimated when applying M0 to databelow for alternatives).
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with rate variation, and so approximation a may not be actual distribution for a finite number of observations
and so P-values calculated using this asymptote may notrealistic. Reanalyzing Yang’s “small” data set, we find

the correlation between synonymous branch length esti- be strictly correct. An alternative to approximating the
test distribution by its asymptote is to estimate it by amates under M8 (dnM8) and those under M0 (dsM0)

to be dsM8 � 1.018 	 dsM0 � 1.195e -07 with an R 2 parametric bootstrap, as described by Goldman (1993).
Under the null hypothesis �i � 1, with all the othervalue of 0.9995. The underestimation is significant and

consistent across branches, which may cause an increase model parameters at their previously estimated values,
the distribution of all possible observations is completelyin the number of false positives reported by the SLR

method. The simulations presented in this article take determined and pseudo-replicates of the data can be
generated by Monte Carlo simulation. The observedthe underestimation into account and it is not found

to make an appreciable difference to the false-positive values of the test statistic for these replicates form an
estimate of its actual distribution, from which P-valuesrate. If the number of sites is large, the contribution

from any one site toward the common parameters will can be derived. In the SLR test, the null model is the
same at every site and therefore the bootstrap estimatebe swamped by that from all the others and so approxi-

mation b is reasonable. of the distribution needs to be made only once. The
bootstrap estimate is dependent on the tree topologyIn all cases, the codon frequencies �j were estimated

from the empirical counts in the observed data rather and other estimated parameters, so it is not valid to
reuse it to analyze different data—a new bootstrap esti-than using the procedure outlined above.

SLR test and distribution of test statistic: The sitewise mate must be made.
SNY test: The variant of the NY method introducedLRT statistic for nonneutral evolution at site i , �i , is

twice the difference in log-likelihood between the null in Swanson et al. (2003) describes the distribution of
selective pressure along the sequence as a mixture of aand alternative models, individually maximized. Ap-

proximation b, above, means that �i is in fact simply two-parameter beta distribution and a point mass. The
beta distribution describes the variation in conservationtwice the difference between the contributions of site i

to the log-likelihoods under the null and alternative at sites under purifying selection and the point mass
describes neutrally evolving or positively selected sites.models. Writing li(�i) for the contribution of site i to

the log-likelihood given common parameter values and The point mass is fixed at neutral (� � 1) under the
null model (model M8A of Swanson et al. 2003; seeselective pressure �i , li(1) and li(�̂i) are the contribu-

tions toward the maximum log-likelihood of the null also Wong et al. 2004) and the presence of positive
selection is tested for by performing a LRT of � � 1and alternative models, respectively, and
against �  1 [a restricted variant of model M8 (“M8B”):

�i � 2(li(�̂i) � li(1)).
Yang et al. 2000a; Swanson et al. 2003; Wong et al.
2004], comparing the LRT statistic to a � 2

1 distribution.Note that �i  0, necessarily. Treating all parameters
except �i as fixed, the usual asymptotic theory (e.g., This test does not conform to typical statistical proce-

dure since (a) the parameter of interest is on a boundaryGarthwaite et al. 2002) states that �i should be com-
pared to a �2

1 distribution for a statistical test of neutrality under the null model, (b) the parameters involved in
specifying the shape of the beta distribution can disap-(�i � 1). The alternative hypothesis is that the site has

evolved under purifying or positive selection (�i � 1). pear when all the probability of the mixture distribution
is placed on the point mass, and (c) the parameter speci-Often only one of two possible deviations from neu-

trality may be of interest (for example, detecting posi- fying the position of the point mass can disappear when
all the probability is placed on the beta distribution.tively selected sites), and the power of the test can be

improved by considering the likelihood-ratio analog of The consequences for performing LRTs are considered
below.a one-tailed test. By placing a boundary at �i � 1, and

finding the maximum likelihood over �i  1 (positive The NY method can infer the location of positively
selected sites by using empirical Bayes techniques (Niel-selection) or �i � 1 (purifying selection), only one of

the possible alternatives is considered by the test. When sen and Yang 1998). We write simply “the SNY test” to
denote the SNY test for the location of positive selectionthe null hypothesis occurs at a boundary of the alterna-

tive hypothesis like this, the likelihood-ratio test statistic using the model M8B with the NY method, estimating
parameters by ML and inferring location by using empir-is asymptotically distributed as an equal mixture of a

point mass on 0 and a �2
1 distribution (Self and Liang ical Bayes with some specified cutoff. “SNY � LRTx”

explicitly denotes the use of the SNY test only if a prior1987). For this distribution, P-values can easily be calcu-
lated by halving those obtained from using a �2

1 distribu- LRT (with significance level x%) between M8A and M8B
indicates significant positive selection.tion. Following Goldman and Whelan (2000), who

provide a table of relevant critical values, this mixture Simulations: The probabilistic model that underlies
both the SNY and SLR methods means that sampledistribution is denoted � 2

1 .
As with most parametric tests, the asymptotic distribu- data sets can be simulated under known conditions, for

example, with 5% of sites subject to a given level oftion of the test statistic is only an approximation to its
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Figure 1.—Phylogenetic trees
used for simulation and analyses
presented in this article. Tree A is
derived from 12 sequences of 2-
hydroxyacid dehydrogenase (ac-
cession no. PF00389) taken from
the Pandit database (Whelan et
al. 2003). Tree B is an artificial
tree used solely for simulations
and has previously been used in
studies of positive selection tests
by Anisimova et al. (2001).

positive selection. Neutrally evolving data can be gener- Standard corrections for multiple comparisons are likely
to lead to conservative tests in the SLR method since theyated to check whether there is any significant difference

between the actual distribution of a test statistic and its assume that all sites have the same probability of falsely
indicating positive selection as a neutral site whereas inasymptote and so ensure that critical points obtained

from the asymptotic approximation are accurate and reality many sites are likely to be under purifying selec-
tion and therefore have a lower probability of giving athe size of the test (probability of type I error or false-

positive results) is properly controlled. If data are gener- false-positive result. In addition, the question of interest
is whether sites are present under positive selection,ated with sites under purifying or positive selection, the
rather than identifying particular sites, which is a weakerlocation of these sites in the sequence is known and so
criterion than assumed by most multiple-comparison cor-the number of the sites a method correctly detects can
rections. An unusually large number of sites with somebe determined. Multiple methods can be compared by
evidence for positive selection could be just as convincinglooking at the number of sites each of them correctly
as one site with overwhelming evidence.(or incorrectly) detects when analyzing the same data.

Sites that exist only in a single species, perhaps as aIn this article, the situation we study in detail is that of
result of a recent insertion, contain no informationtrying to detect positive selection since we expect this
about the substitution process and are defined to havevariant of the SLR test to be of most interest.
�i � 1. Such sites cannot be detected as being underThe power of two methods can be fairly compared
positive selection and should not count toward the num-only if their respective probabilities of a false-positive
ber of tests performed for the purposes of multiple-result are the same. This poses a problem when compar-
comparison corrections.ing the SNY and SLR tests since the SNY test produces

a Bayesian posterior probability of positive selection
rather than a P-value, and the SLR produces a P-value

RESULTSassuming strict neutrality (the hardest case to distin-
guish from positive selection) and so is an upper bound Distribution of the SLR test statistic: We present two
on the true probability that the result is a false positive. simulations representative of the range of results we
For this reason, receiver operator characteristic (ROC) have observed in a greater number of experiments. In
curves—plots of the number of correctly identified sites the first, 25 alignments of 12 sequences, each 200 co-
against the number of false positives as the cutoff value dons long, were generated under neutral evolution with
for the test is lowered—are useful. These curves allow 
 � 2 and codon frequencies taken from a set of 25
the power of the methods to be compared as if the abalone species’ sperm lysin sequences (Yang et al. 2000b;
probability of a false positive could be chosen perfectly, data also distributed with Yang 1997) on the tree in
a situation that is not possible for either test. Figure 1A, using the program evolver from the PAML

Testing for the presence of positive selection: As mul- package (Yang 1997). The generated alignments were
tiple tests will generally have been performed (e.g., one then analyzed on the correct tree using the SLR method,
at each codon site), the detection by the SLR test of all common parameters estimated using only data from
one (or more) sites under positive selection may not be each alignment. The 5000 sitewise test statistics form a
sufficient evidence for inferring the presence of positive Monte Carlo estimate of their test distribution, allowing
selection in the sequence as a whole. The statistics must for variation in the estimates of common parameters,
be adjusted for the number of tests performed, using which was compared to the � 2

1 distribution using a chi-
standard techniques for multiple comparisons (Hsu square goodness-of-fit test (Sokal and Rohlf 1995) and
1996). Application of corrections for multiple compari- is shown in Figure 2. The P-value of the fit was 0.24 and
sons to the SG method has been investigated by Wong we conclude that, for all practical purposes, there is no
et al. (2004) and these tests are equally applicable to difference between the actual distribution of the test

statistic and its asymptote in this case.the SLR method.
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Figure 2.—Comparison of actual and as-
sumed distribution of test statistic for SLR.
Bar charts show an estimate of the actual
distribution of the test statistic (solid bars)
against its � 2

1 asymptote (shaded bars). The
bars to the left of the y-axis represent values
where the test statistic is exactly 0. The main
graph shows a good fit from data generated
on the 12-species tree; the inset is the
poorer fit from the 6-species tree.

In the second experiment, the analysis was again per- This contrasts markedly with the results for the SNY
test used without first performing a LRT for the pres-formed using the parameter values derived from the

sperm lysin alignment but now the tree shown in Figure ence of positive selection, which show a false positive
rate �30% even when the empirical Bayes posterior1B was used. This tree is short and has few sequences,

and hence each site contains relatively little information probability cutoff is 0.99. Once the LRT is carried out,
the size of the SNY test is reduced to more appropriateabout its evolution. The distribution of the test statistic

is also shown in Figure 2, and the P-value for the fit is values; we note, however, that the size is affected more
by the significance level chosen for the LRT than by1 	 10�7, indicating a significant difference between

the actual and asymptotic distributions. However, the the posterior probability cutoff chosen for the empirical
Bayes analysis. For the analysis of strictly neutral data,95 and 99% critical values of the asymptotic � 2

1 distribu-
tion, 2.71 and 5.41, correspond to the 95.5 and 99.1% the cutoff for empirical Bayes analysis provides no mean-

ingful control over the rate of positive results. As alsopoints of the parametric bootstrap distribution, respec-
tively, and so there is little difference in the tail of the suggested by Wong et al. (2004), these results strongly

support the requirement to confirm that there is sig-distribution. This is the region that is important for all
the tests we describe here, and so for the purposes of nificant evidence for the presence of positive selection

before using empirical Bayes techniques to determinehypothesis testing in this article the asymptotic critical
points are taken as correct. its location. Even though the overall false-positive rate

is reasonable for the SNY � LRTx tests, considerationThis similarity between the simulated data and theory
agrees with the results of Knudsen and Miyamoto of the range of the number of false-positive results per

data set (from 0 to 100% of sites falsely identified) shows(2001) for a similar test to detect sitewise changes in
evolutionary rate. They also observed that the fit ap- that the behavior of the method is still extreme: when

one site is wrongly inferred to be under positive selec-peared especially good in the tail of the distribution.
False positives and size of SLR test: Table 1 summa- tion, many more false positives are also likely to occur

and there is an incorrect inference of apparently perva-rizes the performance of the SLR and SNY tests on
neutrally evolving sequences (�i � 1 for all sites), the sive positive selection.

Power of the SLR test: The simulations have shownmost difficult case to distinguish from positive selection
for either method. One hundred sets of data, each con- that the size of the SLR method is properly controlled

and that it is reasonable to approximate critical pointssisting of 300 codons, were simulated under a neutral
model of evolution on the tree shown in Suzuki and from the asymptotic � 2

1 distribution of the test statistic.
Having established that the method is well behaved, itNei (2002, Figure 1C), using the same branch lengths

(all 0.1). Suzuki and Nei (2002) claim this tree to be is meaningful to investigate its power.
The power of the SLR method was compared to thata difficult case, in which they report the NY method

can give high rates of false positives. As shown in Table of the SNY test in three situations that differ in the
distribution from which the value of � at each site is1, the size for the SLR test is approximately correct for

these data. drawn. These distributions were: (A) the true model for
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TABLE 1 of true-positive and false-positive results change for each
method as their respective cutoff points are varied. InNumber of sites falsely identified as having
all three cases, the SLR test dominates the SNY � LRT95evolved under positive selection
test and so is the more powerful discriminator: for any

Method Cutoff Wrong sites % Range (%) given level of false positives, the SLR method correctly
identifies more sites evolving under positive selection.SLR 0.95 1529 5 2–43 (1–14)
In all cases the nominal 95 and 99% cutoffs are conserva-0.99 334 1 0–14 (0–5)
tive, a result that is expected for the SLR test for reasons
similar to those discussed above. (The SNY test doesSNY 0.95 10646 35 0–300 (0–100)

0.99 9540 32 0–300 (0–100) not have to be conservative; here, it probably is so be-
cause none of the three models contains any almost

SNY � LRT95 0.95 2808 9 0–300 (0–100) neutral sites.) The simulations were repeated using sets
(17) 0.99 2586 9 0–300 (0–100)

of data 1000 codons long, generating data from tree A
in Figure 1, or both of these. Using longer sequencesSNY � LRT99 0.95 1171 4 0–300 (0–100)
makes little difference to the ROC of either method(5) 0.99 1106 4 0–300 (0–100)
but increasing the number of species does, findings

One hundred data sets, each 300 codons long, were simu-
consistent with those of Anisimova et al. (2002). Thelated under a model of neutral evolution and analyzed. “SNY �
ROC curves for these additional simulations are in theLRTx (n)” refers to detecting sites using empirical Bayes on

data sets that pass a statistical test for the presence of positive supplementary material (http://www.genetics.org/sup
selection using significance level x%, the number n in paren- plemental/).
theses being the number of such data sets (out of 100) that The curves in Figure 3 do not tell the entire story, aspassed the test. “Cutoff” refers to the significance level used

the SLR method would have correctly detected sites inin LRTs for the SLR test and to the empirical Bayes posterior
the many data sets that were discarded because they didprobability cutoff level used in the SNY test—note that these

numbers are not directly comparable (see text for further not pass the LRT for the presence of positive selection.
details). “Range” shows the minimum and maximum numbers For the discarded data sets (56, 78, and 89% of data
of falsely identified sites observed within the 100 individual

sets in cases A, B, and C, respectively) the SNY � LRT95data sets.
test has effectively no power, whereas the power of the
SLR method does not drop substantially compared to
the results shown in Figure 3 (see supplementary mate-the SNY test, M8B with p0 � 0.9432, � � 2.081, p �
rial) and so overall it is by far the more powerful of the0.572, and q � 2.172; (B) a mixture distribution taking
two tests. As the evidence for the presence of positivethe value � � 0.5 with probability 0.75 or else � � 1.5;
selection increases, the proportion of data sets for whichand (C) a distribution derived empirically by fitting a
the SNY � LRT95 test will detect the presence of positivelarge number of categories to an alignment of D-man-
selection will increase and so this difference in perfor-nose-binding lectin sequences (Pandit accession no.
mance between it and the SLR test will decrease.PF01453), seven of which had nonzero weight and one

Real examples: By way of comparison on real data, weof which was slightly positively selected (� � 1.72, p �
reanalyze two data sets from Yang et al. (2000a), using0.039). All other parameters took the same values as in
both the SLR and SNY tests. The vertebrate �-globin andthe simulations described above. Cases A and C repre-
human immunodeficiency virus (HIV)-1 pol data sets (D2sent realistic examples of positive selection; in case A
and D7 in the original article) were analyzed for positivelythe alternative hypothesis model of the SNY test is true,
selected sites with both tests, using the alignments andgiving that test a particularly good chance of succeeding.
topologies available from ftp://abacus.gene.ucl.ac.uk/Case B was selected to be a difficult problem for both
pub/YNGP2000/. The SNY test gives only marginal evi-methods. For each model of � variation, data sets 200
dence for the presence of positive selection in �-globin,codons long were generated on the tree shown in Figure
with a LRT statistic of 5.45, in comparison to the HIV-11B. The short length of this tree, along with the limited
pol data for which a value of 60.27 is obtained (cf. �2

1 95number of sequences, means there is little information
and 99% critical values of 2.71 and 5.41, respectively).per site for a method to detect positive selection and so
Using criteria consistent with our simulations, there isit is a good example for comparing the power of methods.
sufficient evidence of positive selection to carry out empiri-To reflect realistic analysis of data and reduce the
cal Bayes detection of location for both data sets. Thefalse-positive rate for the SNY test, data sets were simu-
results are summarized in Table 2.lated until there were 100 that passed the LRT test for

The SLR test finds no sites with significant positive selec-the presence of positive selection at the 95% level. Only
tion in the �-globin data, compared to five sites foundthese 100 sets were analyzed; in total 229, 456, and 931
by the SNY test with a 95% posterior probability cutoff.sets of data had to be generated to achieve the required
Correction of the SLR test for multiple comparisons withnumber of passes for cases A, B, and C, respectively.

The ROC curves in Figure 3 show how the numbers Hochberg’s method (Hsu 1996) gives a P-value indistin-
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Figure 3.—ROC curves com-
paring the power of the SNY and
SLR tests for positive selection.
ROC curves are shown for the pro-
portion of sites correctly and in-
correctly identified as positively
selected in various simulation
experiments. The conditions for
the simulations (A, B, and C) are
described in the text. The main
curves show the region with a false-
positive rate �10%; the insets are
the complete curves (axes un-
marked, but both between 0 and
1). Solid lines, SLR test; dotted
lines, SNY � LRT95 test. The cir-
cles (crosses) indicate the results
that would be obtained by taking
nominal 95 and 99% cutoffs for
the SLR (SNY) test. The disconti-
nuity for the SNY test in case B is
due to several sites being classified
as being under positive selection

with posterior probability 1 (possibly due to rounding at the eighth decimal place). A signed version of the SLR test statistic was
used when constructing these curves [sign(�̂i � 1)�i] so the SLR test could order sites that have no evidence of positive selection.

guishable from 1, again indicating no evidence for the of 1 	 10�3. This indicates that the SLR test finds highly
significant evidence for the presence of positive selectionpresence of positive selection.

For the HIV-1 pol data set, the SNY test finds 13 sites in the HIV-1 pol data, at sites 67 and 347. For this data set,
the SLR and SNY tests indicate the presence of significantwith a posterior probability of 0.95, of which 6 have

posterior probability 0.99. The SLR test finds 22 sites positive selection and suggest similar locations.
These two data sets show that the SNY and SLR testswith a P-value �0.05 and 13 with P-value �0.01; these

latter 13 matched exactly the sites found by the SNY test. have broadly comparable performance on real data, with
the SLR test detecting more sites in the HIV-1 pol data setAfter Hochberg’s correction for multiple comparisons,

two sites have adjusted P-values �0.05. The more extreme at a nominal cutoff although the actual number of false-
positive results is unknowable. The SLR test provides noof these has a P-value of 2 	 10�6; the other has a P-value

TABLE 2

Analysis of �-globin and HIV-1 pol for positively selected sites

Optimal
Data set Model/test log-likelihood Optimal parameters Positively selected sites

�-Globin M8A �3594.55 
 � 1.78, p0 � 0.90, NA
p � 0.63, q � 3.24

M8B �3591.83 
 � 1.86, p0 � 0.94, 7, 50, 67, 85, 123
p � 0.58, q � 2.44,
� � 1.62

SLR NA 
 � 1.78, � � 0.24 None

HIV-1 M8A �9293.65 
 � 4.87, p0 � 0.87, NA
pol p � 0.70, q � 10.92

M8B �9263.52 
 � 5.29, p0 � 0.97, 2, 3, 14, 41, 67, 347, 379, 459, 478, 568, 654, 761, 779
p � 0.19, q � 1.08,
� � 3.78

SLR NA 
 � 4.84, � � 0.20 2, 3, 4, 14, 41, 67, 313, 347, 379, 388, 431, 459, 462,
478, 568, 570, 654, 732, 761, 779, 782, 890

Results of analysis of �-globin and HIV-1 pol data sets are shown, using the SNY test (models M8A and M8B) and the SLR test.
For the SLR test, the parameter values given are those optimal under M0. The sites listed are those at which positive selection
is detected with a cutoff (significance level or posterior probability, as appropriate to the method used) �95%; those �99% are
in italics. The italic underlined sites are those at which there is still evidence for positive selection after correcting the SLR test
for multiple comparisons.
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evidence for positive selection in �-globin and the SNY In contrast, a full Bayes analysis (Huelsenbeck and
Dyer 2004) would give confidence only of 50%. Whentest and associated parameter value estimates for M8B

suggest that, should any positive selection exist, it is weak. analyzing real data, false indications of pervasive positive
selection may be differentiated from real ones by look-The results for �-globin differ from those obtained by

Yang et al. (2000a) for two reasons: the comparison of ing at the standard errors of the parameter values or
by checking whether the sites identified as being undermodels M8A and M8B in the SNY test permits a direct

test for the presence of positive selection, whereas other positive selection are distributed randomly along the
sequence. An inference of a high proportion of sitescomparisons used by Yang et al. (2000a) may not (Swan-

son et al. 2003), and the codon frequencies were estimated with � close to 1 should be cause for extreme caution.
The observed size of the LRT for the SNY test diddifferently (Yang et al. 2000a used four nucleotide fre-

quencies for each of the three codon positions, whereas not agree with what may have been expected from the-
ory (Self and Liang 1987). The discrepancy may bewe use 61 codon frequencies).
because the distribution used to generate the data lies
on the boundary of parameter space for the null model,

DISCUSSION
making the two parameters describing the beta distribu-
tion component of the model inestimable. When param-This article has presented a new method to detect both

positive and purifying selection. It has been shown that eters cannot be estimated under the null model, even
nuisance parameters not directly involved in the test,the SLR test can achieve higher power than the SNY test

while providing numerous other advantages: the method the regularity conditions necessary for the asymptotic
approximations do not hold and there is no reason torelaxes some important assumptions about how variation

in the level of selection is modeled, the probability of a expect P-values from a � 2
1 distribution to be accurate.

In this case, the techniques described in Davies (1987)false-positive result from the SLR method is controllable,
and the method is better behaved than the SNY test when may be useful in constructing critical values whose nomi-

nal P-values more accurately reflect the actual size ofanalyzing strictly neutral data and does not occasionally
give drastically wrong results in such cases. the test. This discrepancy arises only when the truth is

strictly neutral evolution, although bad fit to the asymp-Having to model how the level of selective pressure
varies along a sequence has caused a proliferation of vari- totic distribution may also be observed for small to me-

dium sample sizes when the truth is close to strictlyants of the NY method and appears to be the source of
the observed problems with the LRT (Anisimova et al. neutral (for example, when a large proportion of sites

have � � 1). Whatever the cause, at the moment the2001; Suzuki and Nei 2002; Massingham 2003). By mak-
ing fewer assumptions about how the level of selection SNY test allied with an empirical Bayesian analysis gives

no predictable control over the size of the ensuing testvaries along the sequence, the SLR method is more gener-
ally applicable to data and robust to possible errors when for the location of positive selection.

The examples presented in this article suggest thatassumptions about the distribution of � are violated.
The SLR test appears to have excellent control over the the power of the SLR test to detect the location of

positive selection exceeds that of the SNY test, evenlevels of false-positive inference of sites evolving under
positive selection, with no evidence of the high rates that when considering only those sets of data with significant

evidence of the presence of positive selection. In addi-have been reported for variants of the NY method. In
contrast, Table 1 shows that the SNY test can occasionally tion, the SLR method does not suffer from uncontrolla-

ble rates of false-positive results when analyzing strictlymake large mistakes when analyzing strictly neutral data.
When a set of data falsely passes the LRT, empirical Bayes neutrally evolving data and relaxes restrictions about

how the variation in the strength of selection is modeled.analyses can go badly wrong, often implying that many
sites are under positive selection with extremely high con- The apparent paradox of an increase in power accompa-

nying a relaxation of restrictions may be due in part tofidence—apparently strong evidence of pervasive positive
selection when none was actually present. the ill fit between the assumptions and the data (in

some examples) and to the failure of the empirical BayesWe believe that this behavior is due to the empirical
Bayes analysis taking the estimated parameter values as analysis to take the variability of parameter estimates

into account.true and not allowing for their inherent uncertainty. For
example, consider the case where the truth consists of The SLR method assumes that the background pat-

tern of mutation is constant along the sequences beingmost sites evolving under strictly neutral evolution with a
small number evolving with rates as if chosen from a beta analyzed and that the differences between the observed

rates of evolution at each site are solely due to differ-distribution: even for a large amount of data the estimated
location of the point mass in model M8B will place � � 1 ences in the strength of selection. For data consisting

of alignments of single proteins, the genomic environ-�50% of the time. This point mass may have a large
weight and under these circumstances an empirical ment of each site is similar, as will be the probability of

repair and other factors influencing the rate at whichBayes analysis will indicate positive selection with high
confidence. synonymous mutations become fixed within a popula-
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