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Abstract

One of the major challenges in anatomical landmark detection, based on deep neural networks, is 

the limited availability of medical imaging data for network learning. To address this problem, we 

present a two-stage task-oriented deep learning (T2DL) method to detect large-scale anatomical 

landmarks simultaneously in real time, using limited training data. Specifically, our method 

consists of two deep convolutional neural networks (CNN), with each focusing on one specific 

task. Specifically, to alleviate the problem of limited training data, in the first stage, we propose a 

CNN based regression model using millions of image patches as input, aiming to learn inherent 

associations between local image patches and target anatomical landmarks. To further model the 

correlations among image patches, in the second stage, we develop another CNN model, which 

includes a) a fully convolutional network (FCN) that shares the same architecture and network 

weights as the CNN used in the first stage and also b) several extra layers to jointly predict 

coordinates of multiple anatomical landmarks. Importantly, our method can jointly detect large-

scale (e.g., thousands of) landmarks in real time. We have conducted various experiments for 

detecting 1200 brain landmarks from the 3D T1-weighted magnetic resonance (MR) images of 

700 subjects, and also 7 prostate landmarks from the 3D computed tomography (CT) images of 73 

subjects. The experimental results show the effectiveness of our method regarding both accuracy 

and efficiency in the anatomical landmark detection.
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I. Introduction

Recent success of deep learning approaches for landmark detection in natural image analysis 

is generally supported by large datasets, i.e., with millions of images [1], [2], [3]. Although 

several deep learning based landmark detection methods have been proposed in medical 

image analysis [4], [5], [6], [7], it is still challenging to detect anatomical landmarks for 

medical images, due to limited training data at hand. Also, the total number of weights to be 

learned in deep neural networks for 3D medical images is much larger than that for 2D 

natural images. Therefore, it is difficult to train an accurate landmark detection model with 

limited medical imaging data in an end-to-end manner, where an entire 3D image is treated 

as the input.

To avoid the problem of limited training data, some deep learning based landmark detection 

methods usually adopt local image patches as samples to perform patch-wise regression/

classification [8], [9]. However, there are at least two major problems in such patch based 

deep learning methods. 1) Although it is generally efficient of using neural networks in the 

testing stage, it is still time-consuming when using massive 3D image patches for landmark 

detection. 2) Large-scale landmark detection aggravates the computational cost, if each 

landmark is detected separately. Although we could jointly detect multiple landmarks, since 

the local patches can capture only limited structural information, they are incapable of 

estimating all landmarks accurately, especially for the landmarks far away from specific 

local patches. Moreover, the correlations among local image patches are often neglected.

On the other hand, recent studies [10], [6] have adopted an end-to-end learning strategy for 

landmark detection via convolutional neural networks (CNN) or fully convolutional 

networks (FCN), with an entire image as input and the landmark coordinates (or heat maps 

of landmarks) as output. Due to limited (e.g., hundreds of) medical imaging data, it is only 

possible to design very shallow networks rather than deep ones, to avoid learning many 

network weights. Generally, such shallow networks are incapable of uncovering 

discriminative information of medical images for landmark detection. To address this 

problem, synthetic medical images (e.g., images with different scales, rotations, and 

translations) are often utilized to extend the training dataset for existing deep learning based 

methods, which is a basic technique in natural image analysis. In contrast to natural images 

containing complex contents or imaging conditions, most medical images can be linearly 

aligned with a common space easily and efficiently, thus allowing the training of deep 

learning models in such a common space to be much easier. In this case, synthetic medical 

images may increase the complexity of data distribution, which may bring unnecessary 

burden for subsequent model learning.

Accordingly, we propose an end-to-end deep learning approach to detect large-scale 

landmarks in real time, by using limited medical images. Figure 1 briefly illustrates our 

Zhang et al. Page 2

IEEE Trans Image Process. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proposed method. Specifically, all training and testing images are first linearly aligned into a 

common template space mutual-information-based 3D linear registration, through which 

transformation matrices can be obtained. Then, we train a two-stage task-oriented deep 

learning (T2DL) model for landmark detection, with the linearly-aligned training images 

landmarks. In the testing phase, given a testing image, we first detect its landmarks via our 

T2DL method using its corresponding linearly-aligned image. Using the inverse of its 

corresponding transformation matrix estimated during the linear registration procedure, we 

can easily obtain the final landmark locations in the original space of the testing image.

Figure 2 illustrates the architecture of the proposed T2DL model, where we learn a two-stage 

deep CNN model in a cascaded manner. Specifically, we first train a patch based CNN 

regression model to describe the non-linear mapping between local image patches and their 

3D displacements to the target landmarks, using millions of image patches as training 

samples. In the second stage, we develop another CNN model by adding extra layers to an 

FCN model, which shares the same architecture and network weights as the CNN used in 

the first stage. In particular, the CNN model in the second stage can predict the coordinates 

of multiple landmarks jointly, with an entire image as input and the landmark coordinates as 

output. In this way, both local information (i.e., the inherent associations between image 

patches and their displacements to landmarks) and global information (i.e., the association 

among image patches) can be integrated into the learning process via CNN in the first and 

second stages, respectively. Our method achieves a mean error of 2.96 mm in brain 

landmark detection using MR data (with 1200 landmarks and 700 subjects), and a mean 

error of 3.34 mm in prostate landmark detection using CT data (with 7 landmarks and 73 

subjects). Also, our method requires only approximately 1 second to detect thousands of 

landmarks simultaneously.

II. Related Work

In the literature, extensive methods are proposed for facial landmark detection and 

anatomical landmark detection. In general, these methods can be roughly divided into three 

categories, including 1) keypoint based methods [11], 2) atlas based methods [12], and 3) 

learning based methods [13], [14], [15], [16], [17], [18]. Specifically, in keypoint based 

methods, points of interest (such as symmetry maxima, and Harris corners) detectors are 

adopted to identify candidates for individual model landmarks, and perform discrete 

optimization of a graph matching problem to obtain the final localization of landmarks. 

However, these methods cannot detect landmarks that are not located in salient corners or 

boundaries. Atlas based methods usually require an atlas with pre-defined landmarks. The 

landmarks for a testing image can be directly transferred from corresponding landmarks in 

the atlas image by using the estimated deformation field via registration. The main problem 

of these atlas based methods is that they largely rely on the accuracy of cross-subject 

registration. Although multi-atlas registration can improve the robustness and accuracy, it is 

very time intensive to perform multiple registrations for each testing subject. Different from 

the former two sets of methods, learning based methods utilize learning algorithms in 

machine learning domain for landmark detection and have demonstrated superiority in 

anatomical landmark detection for medical images [6], [19].
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Many learning based landmark detection methods for medical images aim to learn 

classification/regression models by using image patches as training samples. Currently, there 

are a large number of classification based methods for localizing anatomical landmarks or 

organs [20], [19]. In these methods, voxels near a specific landmark are regarded as positive 

samples and the rest are used as negative ones. For each voxel, a cubic patch is extracted 

(usually described by handcraft features [21], [22], [23], [24]), and then a patch-wise binary 

classifier [25], [26], [27], [28] is learned to localize anatomical landmarks. As another 

typical learning based framework in landmark detection, regression based methods focus on 

learning the non-linear relationship between a local patch and its 3D displacements to a 

target landmark via a regression model (e.g., random forest, and CNN). That is, each local 

patch can be used to estimate a potential landmark position. Given plenty of image patches, 

the optimal landmark position can be estimated by assembling the predictions of a 

tremendous amount of image patches, e.g., via a majority voting strategy [15], [13]. 

Therefore, context information from nearby patches can be utilized to localize landmarks. 

Recently, regression based methods have demonstrated their superiority in different medical 

applications [29], [14], [15], [30], [18]. Although patch based approaches can partly 

alleviate the problem of limited medical data (by using millions or even billions of patches 

as training samples), it is generally time-consuming to simultaneously predict landmarks 

from a massive amount of 3D image patches. Also, patch based methods can only model 

local information (i.e., relationships between patches and their displacements to landmarks), 

while global information (e.g., the correlations among patches) is ignored in the learning 

process.

A few previous studies have adopted an end-to-end learning strategy for anatomical 

landmark detection, through which the relationship among landmarks and patches can be 

captured. In these methods, landmark detection is often formulated as a regression problem 

[4], [10], with the goal of learning a non-linear mapping between an input image and 

landmark coordinates. In this way, the landmark position can be directly estimated via deep 

learning models (e.g., CNN). Besides, FCN based methods achieve impressive performance 

in object detection and landmark detection [31], [32], [33], [34]. Recently, Payer et al. [6] 

have tested several FCN architectures for detecting anatomical landmarks with limited 

medical imaging data, where each landmark position is marked as a heat map corresponding 

to the original image. Reasonable detection performance is obtained, which helps illustrate 

the effectiveness of FCN in detecting anatomical landmarks. However, due to the limited 

training data, very shallow networks were used in the experiment, which could not entirely 

capture the discriminative information in the medical images. Also, it is almost impossible 

to simultaneously detect large-scale landmarks in an end-to-end manner, since each 

landmark corresponds to an output of a 3D heat map and thus the existing GPU memory 

cannot deal with thousands of 3D output maps together. In contrast, if multiple landmarks 

are detected separately, it is cumbersome to train many models and also the underlying 

correlations among landmarks will be ignored.

Our proposed two-stage task-oriented deep learning (T2DL) method is inspired by both 

patch based and end-to-end learning methods. First, to overcome the problem of limited 

training data, we propose a patch based CNN regression model in the first stage, by using 

millions of image patches as training samples. Then, we develop another CNN model in the 
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second stage to jointly detect large-scale landmarks in an end-to-end manner, where the 

global structural information of images can be naturally captured and integrated into the 

learning process.

III. Method

In this study, we attempt to deal with two challenging problems in detecting anatomical 

landmarks with medical imaging data, i.e., 1) limited training data and 2) large-scale 

landmarks. As shown in Fig. 2, we propose a two-stage task-oriented deep learning (T2DL) 

method, where each network has its specific task. Specifically, the task of the first-stage 

CNN model is to describe the inherent associations between local image patches and their 

3D displacements to the target landmarks, with millions of image patches as the input. The 

task of the second-stage CNN model is to estimate the landmark coordinates by considering 

correlations among image patches, with the entire image as the input. The following sub-

sections describe the architecture of the proposed T2DL method in detail.

A. First Stage: Modeling Associations between Image Patches and Displacements to 
Landmarks

We first develop a patch based CNN regression model by using local image patches rather 

than the entire images, as the training samples. However, the conventional patch based 

methods usually directly estimate the class label (i.e., a certain landmark) of a voxel from 

local patches, where the context information of the image patches is not considered. In this 

study, we propose to estimate the displacements of an image patch to multiple landmarks for 

implicitly modeling the context information. Given a 3D image patch, our goal is to learn a 

non-linear mapping to predict its 3D displacements to multiple landmarks. The conventional 

patch based landmark detection methods build the mapping using random forest regression 

models [14], [13], and usually require pre-defined appearance features to represent image 

patches. Without using any pre-defined features, we adopt a patch based regression model 

using CNN. As shown in Fig. 2(a), the first-stage CNN model consists of 8 convolutional 

layers, 3 max-pooling layers, and 3 fully connected layers. In the training stage, we sample a 

tremendous amount of image patches to learn a deep CNN model. In this way, each local 

patch can then be used as a training sample to estimate its 3D displacements to multiple 

landmarks.

Due to variations of shape across subjects, the estimation of displacements for faraway 

landmarks from local image patches are often inaccurate [13]. Thus, we propose to adopt a 

weighted mean squared error as a loss function in the first-stage CNN model, by assigning 

lower weights to the displacements for faraway landmarks from image patches. Specifically, 

we define the 3D displacement from a local image patch to the i-th target landmark as 

, where Δxi, Δyi, and Δzi denote the displacements between the specific 

patch to the i-th landmark w.r.t. x, y, and z axes, respectively. Suppose  is the ground-truth 

displacement and  is the predicted displacement. Our proposed weighted mean squared 

loss function is defined as
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(1)

where , α is a scaling coefficient, and Nl is the total number of landmarks. By 

using the weighted loss function, patches are expected to contribute more to their nearby 

landmarks, but less to those faraway landmarks. In this way, we can reduce instability 

between local image patches and their corresponding faraway landmarks, which could 

potentially lead to robust performance in estimating displacements.

Intuitively, given a testing image, we first sample lots of local image patches, and then 

compute their displacements to landmarks via the first-stage CNN model. Since each patch 

can cast a vote to multiple landmarks, the final landmark positions for the testing image can 

be estimated by using the mean positions or the majority-voted positions based on those 

local patches. However, it is generally very time-consuming to predict displacements for a 

tremendous amount of 3D image patches, even the estimation of displacement from each 

image patch is fast. To this end, we further propose to integrate the patch based CNN model 

into a fully convolutional network (FCN) for jointly predicting displacements (to multiple 

landmarks) of those grid-sampled patches. As shown in Fig. 3, grid-sampled patches denote 

local image patches that are sampled from an entire image in a grid defined by a specific 

pooling strategy in FCN, with details given below.

B. Second Stage: Modeling Correlations among Image Patches

Coincidentally, if the neural network is carefully designed, the first-stage CNN model can be 

perfectly correlated to an FCN model that treats the entire image as input and the 

displacements of grid-sampled patches as output. Specifically, as shown in Fig. 2, the 

difference between the first-stage CNN and the FCN in the second stage is that the last three 

fully connected layers in CNN are replaced by three convolutional layers with the kernel size 

of 1 × 1 × 1 in the FCN. We can directly apply the learned network weights of the first-stage 

CNN to its correlated FCN model in the second stage. Given an input image, the 

displacements of grid-sampled patches to multiple landmarks can be predicted jointly via 

FCN.

As shown in Fig. 3, the output size of FCN is determined by both patch size and pooling 

size. Suppose the input image size is Ix × Iy × Iz, the patch size is p × p × p, and we have a 

total of np pooling operations with the kernel size of k × k × k in the network. In FCN, we 

implement a valid filtering strategy and non-overlapping pooling. As shown in Fig. 2, there 

are 3 max-pooling procedures with the kernel size of 2 × 2 × 2, and hence the down-

sampling rate is . Given Nl landmarks, the output size of FCN for an input image is 

defined as , with ⌊·⌋ denoting the floor operator.
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It is intuitive to compute the optimal landmark positions by assembling the predictions of a 

tremendous amount of grid-sampled patches. Similar to the strategy we developed for the 

weighted loss in the first stage, we adopt a weighted voting strategy to obtain the optimized 

landmark positions. We can assign large voting weights for image patches near to the 

landmarks (i.e., defined by their estimated displacements), and small weights for those 

faraway image patches. However, as a consequence, the underlying correlations among local 

image patches are completely ignored. For instance, the nearby image patches may 

contribute similarly to a specific landmark. Therefore, we propose to add more layers to the 

above-mentioned FCN model, to take advante of the association of patches.

As shown in Fig. 2(b), in the added network, the first 2 convolutional layers are used to 

associate those neighboring displacements of grid-sampled patches, and thus the outputs of 

those neighboring patches are integrated together to generate strong estimation. Also, the 

max-pooling operation can potentially decrease the negative impact of those inaccurate 

predictions. Next, we add other 3 fully connected layers to further build the connections 

among patches and landmarks. Importantly, the landmark coordinates can be regarded as the 

output of the added network. That is, the second-stage CNN model is a full end-to-end 

model, consisting of an FCN and an added network, where the entire image and landmark 

coordinates are treated as input and output, respectively.

C. Implementations

In the training stage, we first sample a tremendous amount of 3D image patches with a fixed 

size. Since there may exist large regions with uniform tissue in the medical images, it is not 

reasonable to adopt random sampling strategy to sample patches, since this could lead to a 

large number of uninformative image patches. To balance the proportions of uninformative 

(or less informative) and informative image patches, we sample image patches according to 

the probabilities calculated by local entropies from the entire image. Specifically, we first 

calculate the local entropy  for a region around each image patch , with the larger 

value of  denoting that the voxel  being more informative. Then, we sample the image 

patch  with the probability of , where β is a coefficient used to adjust the 

sampling probability.

Using image patches as input samples, we train the first-stage CNN regression model with 

the task of estimating 3D displacements to all landmarks. These 3D displacements are 

stretched and concatenated as multivariate targets of the regression model. We design our 

CNN model to guarantee that the output size of the last convolutional layer (before fully 

connected layers) is 1 × 1 × 1 × 3Nl. Therefore, the network weights of the patch based 

CNN model in the first stage can be directly assigned to the correlated FCN model in the 

second stage. In the second stage, by freezing the FCN network, we only learn the network 

weights of the added network. Since those accurately predicted displacements (i.e., outputs 

of FCN) make the detection problem much easier and the added network is not very deep, a 

robust landmark detection model can be trained even with limited training images. In 

addition, the full implementation of the proposed CNN model is based on Tensorflow [35], 

and the computer we used in the experiments contains a single GPU (i.e., NVIDIA GTX 

TITAN 12GB).
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IV. Experiments

A. Datasets

We evaluate our proposed T2DL method on two datasets with 3D brain MR data and 3D 

prostate CT data, respectively. In the brain MR dataset, we have two individual subsets that 

contain 400 subjects with 1.5 T T1-weighted MR images (denoted as ) and 300 subjects 

with 3.0 T T1-weighted MR images (denoted as ), respectively. The size of images in 

and  is 256 × 256 × 256, and the spatial resolution is 1 × 1 × 1 mm3. Exemplar MR 

images from  and  can be found in Fig. S3 in the Supplementary Materials. For this 

dataset, we annotate the ground-truth landmarks in MR images through a two-step process. 

Specifically, in the first step, we adopt a group comparison algorithm proposed in [36] to 

generate a large number (~ 1700) of anatomical landmarks. This algorithm aims to identify 

the landmarks that have statistically significant group differences between Alzheimer’s 

disease patients and normal control subjects in local brain structures [36]. In the second step, 

we ask three experts to annotate those unreliable landmarks. The criterion here is that, if one 

landmark is annotated as unreliable by at least one expert, this landmark will be deleted 

from the landmark pool. In this way, we obtain 1200 anatomical landmarks defined. Typical 

landmarks are shown in Fig. 4 (a). For this dataset, we perform three groups of experiments 

to evaluate the robustness of our method. To be specific, in the first group (denoted as ), 

we use MR images in  and  as training and testing data, respectively. In the second 

group (denoted as ), we treat  and  as the training set and the testing set, respectively. 

In the third group (denoted as ), we randomly select 200 images from  and 150 images 

from  to construct the training set, and the remaining images in  and  are used as the 

testing data.

In the prostate CT dataset, we have CT images from 73 subjects. The size of images in this 

dataset is 512×512×61 (or 512×512×81), with the spatial resolution of 0.938×0.938× 3 

mm3. For this dataset, we have 7 prostate anatomical landmarks manually annotated by two 

experts. These landmarks include seven key points in the prostate, including prostate center, 

right lateral point, left lateral point, posterior point, anterior point, base center, and apex 

center. Typical landmarks are shown in Fig. 4 (b). A five-fold cross-validation strategy is 

adopted for this dataset. Specifically, all subjects are randomly divided into five roughly 

equal subsets, and subjects in one subset are used for testing, while subjects in the remaining 

four subsets are used for training.

B. Experimental Settings

For those MR and CT images, we first perform linear registration to one fixed image (i.e., 
randomly selected from the corresponding dataset). To speed up the linear registration, we 

down-sample images to perform linear registration, and then rectify the transformation 

matrix to the original image space. Considering the GPU memory, we resize the original 

image and crop it by removing the background. Since all images are linearly aligned, the 

images can be cropped using the same strategy. Specifically, for brain MR images, we crop 

the original images into the size of 152 × 186 × 144. While, for prostate CT images, we 

resized them to have the spatial resolution of 0.938 × 0.938 × 0.938 mm3 and then crop them 

into the size of 140 × 140 × 140 mm3. Since MR and CT images have different sizes and 
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landmark numbers, the added network in the second-stage CNN model (see Fig. 2(b)) is 

slightly different for brain MR data and prostate CT data. Denoting Nl as the number of 

landmarks, the last three fully connected layers are of (1024, 1024, 3Nl) dimensions for 

brain landmark detection model, and of (512, 256, 3Nl) dimensions for prostate landmark 

detection model. The parameters α in the weighted loss function and β in patch sampling are 

empirically set as 0.6 and 15, respectively. In T2DL, we generally adopt ReLU activation 

function for both convolutional layers and fully connected layers. In the last layers of the 

first-stage and the second-stage CNN models, we use tanh activation function. The max-

pooling is performed in a 2×2×2 window, and the patch size is empirically set as 38 × 38 × 

38.

C. Competing Methods

We first compare T2DL with two baseline methods, including 1) multi-atlas (MA) based 

method using non-linear registration [37], 2) random forest (RF) regression [38], [13]. We 

further compare our method with two state-of-the-art approaches, i.e., 3)shallow 

convolutional neural network (Shallow-Net), and 4) U-Net [6]. Besides, we compare the 

proposed method with a patch based CNN model, which is a variant of T2DL (called First-

Stage-Only). We now briefly introduce these methods as follows.

1. Multi-Atlas (MA) based method with non-linear registration [37]. In MA, we 

first randomly select 20 images from the training set as atlases to perform 

deformable registration. For a particular landmark, we map this landmark from 

the corresponding positions in the non-linearly aligned atlases to each testing 

image, and hence can obtain 20 warped landmark positions on each testing 

image. We then average them to obtain the final landmark location on the testing 

image.

2. Random forest (RF) regression method based on image patches [38], [13]. In 

RF, we learn a non-linear mapping between a local patch and its displacement to 

a target landmark via a random forest regression model. Specifically, we adopt a 

coarse-to-fine strategy to train landmark detector for each landmark individually. 

During the feature extraction stage, we extract Haar-like features for each patch 

with the size of 32 × 32 × 32. For the random forest construction, we adopt 20 

trees and the depth of each tree as 25. We adopt the majority voting strategy to 

obtain the final landmark locations.

3. Shallow convolutional neural network (Shallow-Net) [39], which detects 

landmarks in an end-to-end manner. In Shallow-Net, we train a shallow 

regression network to predict landmark coordinates using an entire image as 

input. The architecture of Shallow-Net consists of 3 convolutional layers with the 

kernel size of 3×3×3 and 3 fully connected layers, and each convolutional layer 

is followed by a 3×3×3 max-pooling layer. The element numbers in the three 

fully connected layers are (512, 1024, Nl) and (256, 128, Nl) for brain landmark 

and prostate landmark detection models, respectively.

4. U-Net [40], which is a typical fully convolutional network. Following [6], we 

adopt heat maps of landmarks as target outputs, using the same parameters as 
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those in [6]. For each landmark, we generate a heat map using a Gaussian 

filtering with the standard derivation of 3 mm. We use 3 × 3 × 3 kernels for 

convolution, while down-sampling and up-sampling are performed in a 3×3×3 

window. ReLU activation function and average pooling are adopted in U-Net.

5. First-stage deep learning (First-Stage-Only) model with image patches as 

input, which is a variant of our T2DL method. As shown in Fig. 2(a), First-Stage-

Only denotes the first-stage CNN model in T2DL, where landmarks are detected 

by weighted majority voting on predicted displacements of patches to landmarks.

D. Landmark Detection Results

We first report landmark detection errors achieved by different methods on both brain MR 

and prostate CT datasets in Table I. Considering the computational cost and limited memory, 

it is difficult for RF and U-Net to detect large-scale landmarks in the brain. Thus, besides 

those original 1200 brain landmarks, we also randomly select 10 landmarks from the brain 

MR dataset, and perform an additional experiment by comparing the proposed methods with 

RF and U-Net on this subset of brain landmarks. Thus, in Table I, we show the landmark 

detection results of three tasks, including 1) detection of 1200 brain landmarks on the brain 

MR image dataset (Brain-1200), 2) detection of 10 brain landmarks on the brain MR image 

dataset (Brain-10), and 3) detection of 7 prostate landmarks on the prostate CT image 

dataset (Prostate-7). Note that, in the following text, without additional explanation, the 

brain landmark detection task refers to the detection for those original 1200 landmarks on 

the brain MR imaging dataset throughout this paper.

From Table I, we can make the following observations. First, the proposed T2DL method 

achieves much lower detection errors on both datasets, compared with other four methods. 

For instance, for the prostate landmarks, the detection error obtained by T2DL is 3.34 mm, 

which is lower than the other four methods by at least 1.02 mm. Second, one can observe 

that Shallow-Net achieves a relatively poor landmark detection performance on three tasks. 

This could be due to its shallow architecture induced by limited training data. With a similar 

shallow architecture, U-Net outperforms Shallow-Net to a large extent, which can be 

attributed to the use of heat map. Third, RF achieves comparable results with our First-

Stage-Only method, since they are patch based methods and share similar protocol to 

localize landmarks. Fourth, since First-Stage-Only uses just the first-stage FNN model of 

T2DL, its performance is much worse than T2DL in both brain landmark and prostate 

landmark detection tasks. A possible reason is that, besides local information (i.e., the 

associations between patches and landmarks) described by First-Stage-Only, T2DL further 

considers global information (i.e., the association among image patches) of the entire image 

via the added network. Fifth, MA achieves relatively good performance on detecting brain 

landmarks and poor performance on detecting prostate landmarks. The reason could be that 

it is easy to perform the nonlinear registration among brain MR images but difficult for 

prostate CT images. Moreover, it is time-consuming for nonlinear registration, especially for 

multiple atlases. In particular, our T2DL generally obtains better results compared with U-

Net which performs the task of landmark detection via heat map regression. Actually, the 

heat map regression here is more like a classification task. That is, it directly estimates the 

probability of a voxel being a landmark based on structural information of landmark regions 
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only, and does not utilize the contextual information of the whole image. In contrast, our 

method can model the contextual information of landmarks, by simultaneously estimating 

the displacements of a voxel to multiple landmarks. This could partly explain why our 

method is superior to U-Net.

We then show the cumulative distributions of landmark detection errors achieved by 

different methods in Fig. 5. From the figure, we can observe that most landmarks can be 

detected within a low error range using our two-stage task-oriented network. Also, the 

superiority of our proposed T2DL method over the competing methods is prominent in the 

task of prostate landmark detection. Importantly, it only requires approximately 1 second 

(with single NVIDIA GTX TITAN 12GB) for T2DL to complete the detection process of 

detecting multiple (e.g., 1200) landmarks for one image, which can be considered real-time. 

The underlying reason for the low computation time is the use of fully convolutional layers 

in the proposed second-stage CNN. Due to the overlapping regions of local image patches, 

the computation is highly amortized over the overlapping regions of those patches. Thus, 

both the feedforward computation and the backpropagation in the proposed second-stage 

CNN are much more efficient when computed layer-by-layer over the entire image instead 

of independently patch-by-patch.

Qualitatively, we also illustrate the landmark detection results achieved by our T2DL method 

in Fig. 6. For brain landmarks, we illustrate the 3D rendering of our sampled 10 landmarks 

in 3D brain MR images, since it is unclear to visualize too many landmarks in a single slice 

or a 3D rendering volume. The 3D rendering videos are provided in the Supplementary 

Materials for clear visualization. As shown in Fig. 6 (a), most of our detected landmarks 

(i.e., red points) are overlapping with or very close to the ground-truth landmarks (i.e., green 

points). For prostate landmarks, we show example landmarks in one slice in Fig. 6 (b). 

Similar to the results of brain landmark detection, the prostate landmarks detected by T2DL 

are very close to the ground-truth landmarks.

We further report the change of loss function values achieved by the proposed T2DL model 

training with entire images, as shown in Fig. 7. This figure indicates almost no over-fitting 

issue in T2DL, even if limited training subjects are used. Specifically, in brain MRI dataset 

with 400 subjects and 1200 landmarks, the loss on the validation set is very similar to that on 

the training set. A similar trend can be found from the results on the prostate CT dataset. 

That is, the losses of both training set and validation set are very similar, indicating almost 

no over-fitting issue in our proposed T2DL model. In addition, we perform an experiment to 

simply train the second-stage CNN without using the pre-training strategy. However, we 

found that the CNN model has the over-fitting problem, since the validation error is much 

larger than the training error. One possible reason could be that we have only a very limited 

number (i.e., hundreds) of training images. This further demonstrates the effectiveness of the 

proposed first-stage pre-training strategy.

V. Discussion

In this section, we first flesh out the difference between T2DL and conventional methods, 

and then analyze the influences of parameters. We also elaborate several limitations of our 
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method. In the Supplementary Materials, we further investigate the influences of 

interpolation algorithm, the distance among landmarks, and our two-stage learning strategy.

A. Comparison with Conventional Methods

There are at least two differences between our T2DL method and previous patch based 

approaches. First, in contrast to the conventional patch based learning methods that often 

rely on specific decision-making strategies (e.g., majority voting), our T2DL method can 

learn to design the suitable features and integration strategies to jointly detect multiple 

landmarks in an end-to-end manner. Second, T2DL can model both local and global 

information of images via a two-stage learning model, while the conventional methods often 

ignore global correlations among image patches. Experimental results in Table I demonstrate 

that T2DL outperforms patch based methods (i.e., RF, and First-Stage-Only) that consider 

only local information. This implies that integrating both local and global information into 

the learning model may help promote the performance of landmark detection.

Compared with the conventional end-to-end learning methods, the prominent advantage of 

T2DL is that it can partly solve the problem of limited training data in the medical imaging 

applications. Our strategy is to train a CNN model using 3D image patches, rather than the 

entire image in the first stage. In this way, we can learn a very deep CNN model to precisely 

model the inherent associations between image patches and their displacements to multiple 

landmarks, by using millions of local patches as the input. In contrast, the conventional end-

to-end learning methods (e.g., Shallow-Net, and U-Net) usually have very shallow 

architecture, because of using limited training data. Since shallow networks are not powerful 

enough to capture discriminative information of medical images with complex local 

structures, they cannot achieve good performance in landmark detection (see Table I and 

Fig. 5). Also, T2DL can jointly detect large-scale landmarks in real time, while the 

conventional FCN models (e.g., U-Net) cannot simultaneously deal with thousands of 3D 

output maps (corresponding to thousands of landmarks) which are very high dimensional.

B. Influence of Training Subject Number

We investigate the influence of the number of training subjects on landmark detection 

performance, with results shown in Fig. 8. In brain landmark detection, we randomly select 

training subjects from D_1 for model training, and then validate the learned model on D_2. 

In prostate landmark detection, we randomly select 13 subjects as testing data, while training 

subjects are randomly selected from the rest. As shown in Fig. 8, as an end-to-end learning 

method, T2DL achieves quite stable performance with the different number of training 

subjects, while the landmark detection errors achieved by Shallow-Net and U-Net decrease a 

lot with the increase of training subject number. As patch based methods, RF and First-

Stage-Only are not very sensitive to the number of training subjects. The possible reason 

could be that there is no severe deformation in the linearly aligned images, and thus patch 

based methods (that rely on thousands of local image patches, rather than entire images of 

subjects) are relatively robust to the number of training subjects. Compared with First-Stage-

Only, T2DL is more sensitive to the number of training subjects. Also, as shown in Fig. 8(a), 

using 50 training subjects, First-Stage-Only achieves an error of 3.49, which is slightly 

better than T2DL on the brain MR dataset. Thus, if there are very few training subjects and 
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large-scale landmarks in a real application, the use of First-Stage-Only, rather than T2DL, 

could be a better solution. On the other hand, using only 10 training subjects, T2DL achieves 

appealing performance on the prostate CT dataset with only 7 landmarks. In contrast, it 

requires more training data for T2DL to detect large-scale (1200) brain landmarks, since 

more network weights need to be learned in the second-stage CNN model of T2DL.

C. Influence of Weighted Loss

We further evaluate the influence of the proposed weighted loss function (Eq. 1) on the 

performance of the proposed methods (i.e., T2DL and First-Stage-Only). In the experiments, 

we compare the weighted loss function with the conventional loss function (without 

weighting strategy). The experimental results are reported in Fig. 9. It can be seen that the 

methods using the proposed weighted loss function consistently achieve better performance 

in both brain landmark and prostate landmark detection tasks. Specifically, the detection 

errors by T2DL with the proposed weighted loss function are 2.96 mm and 3.34 mm on the 

brain and prostate datasets, respectively, while the detection errors by the conventional loss 

are only 3.26 mm and 3.45 mm, respectively. Similarly, First-Stage-Only with the proposed 

weighted loss can achieve much lower detection errors than that using conventional loss. 

This suggests that using the weighted loss function can further boost landmark detection 

performance, where local image patches are encouraged to contribute more to the nearby 

landmarks and less to the faraway ones. The main reason is that such strategy can help 

reduce the variance of displacements (between local image patches and landmarks) caused 

by shape variation across subjects.

D. Influence of Patch Size

In all above-mentioned experiments, we adopt a fixed patch size (i.e., 38×38×38) for the 

proposed T2DL and First-Stage-Only methods. Here, we investigate the influence of patch 

size on the performance of T2DL and First-Stage-Only in detecting both brain landmarks 

and prostate landmarks. Specifically, we vary the patch size in a range of [18 × 18 × 18, 28 × 

28 × 28, 38 × 38 × 38, 48 × 48 × 48], and record the corresponding results in Fig. 10. Note 

that, given different input patch size, the network architecture of our model is slightly 

changed to guarantee that output size of the last convolutional layer in First-Stage-Only is 1 

× 1 × 1 × 3Nl.

As shown in Fig. 10, the landmark detection errors achieved by T2DL fluctuate in a small 

range. For instance, on the brain MR dataset, T2DL produces an error of 3.21 mm using the 

patch size of 48 × 48 × 48, and an error of 3.12 mm with the patch size of 28 × 28 × 28. We 

can observe a similar trend for our First-Stage-Only method on those two datasets. These 

results imply that our proposed T2DL and First-Stage-Only methods are not very sensitive to 

the patch size. Also, Fig. 10 indicates that, using large patch size (e.g., 48 × 48 × 48) often 

leads to the smaller standard deviation, compared with that using small patch size (e.g., 18 × 

18 × 18). It implies that the use of large patch size often leads to relatively more robust, but 

not always very accurate landmark detection results. In addition, our method does not 

achieve good results using a small patch size (i.e., 18 × 18 × 18) on two datasets. One 

possible reason could be that a small patch could not entirely capture the region’s 

discriminative structural information by allowing the network to see only little context, 
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while the local structure (captured by a small patch) of a particular region (e.g., a small 

cortical region) could be ambiguous because of the variation among subjects. In contrast, a 

relatively large patch can not only model the structure of this small region, but also the 

context information of this region. For brain MR and prostate CT images used in this study, 

it is reasonable to adopt patch size between 28 × 28 × 28 and 38 × 38 × 38.

E. Influence of Down-sampling Rate

We also investigate the influence of down-sampling rate on the performance of our proposed 

First-Stage-Only and T2DL methods, where the down-sampling rate is determined by both 

the number and the kernel size of pooling procedures in CNN model. In the experiments, we 

vary the number of max-pooling process (with the kernel size of 2 × 2 × 2) in the range of 

[2, 3, 4], and record the corresponding results achieved by First-Stage-Only and T2DL in 

Fig. 11.

It can be observed from Fig. 11 that both First-Stage-Only and T2DL achieve the worst 

performances when using the down-sampling rate of , in both brain landmark and prostate 

landmark detection tasks. In particular, First-Stage-Only with a down-sampling rate of 

achieves an error of 5.29 mm in prostate landmark detection, which is higher than using 

down-sampling rate of  and  by at least 0.93 mm. The main reason is that, if we use a 

high down-sampling rate, the outputs of First-Stage-Only are of very low dimension. Hence, 

the outputs of FCN are displacements for very few sampled patches, leading to unstable 

estimations of landmark positions. If we adopt a low down-sampling rate (e.g., ), the 

outputs of FCN will be high-dimensional, which could lead to an over-fitting problem for 

the second-stage CNN with limited data.

F. Limitations and Future Work

Although our proposed T2DL method shows significant improvement in terms of landmark 

detection accuracy over conventional patch based and end-to-end learning methods, several 

technical issues need to be considered in the future. First, we empirically adopt a fixed patch 

size (i.e., 38×38×38) to train a CNN model in the first stage of T2DL. Multiscale patch size 

could be more reasonable for patch based CNN regression model, since the structural 

changes caused by diseases could vary highly across different landmark locations. Second, 

in this study, we treat all landmarks equally in both brain dataset and the prostate dataset. 

Actually, different landmarks may have different importance in real applications, and thus 

should be assigned different weights in the learning model for further boosting the learning 

performance. Third, there are only 7 anatomical landmarks annotated by experts for CT 

images in the prostate dataset. As one of our future work, we will ask experts to annotate 

more landmarks for this dataset. Furthermore, the large-scale 1200 brain landmarks are 

defined using group comparison for the purpose of brain disease diagnosis [36]. Specifically, 

as we did in our previous work [36], we can extract morphological features from each 

landmark location. Since these landmarks are distributed in the whole brain, we can extract 

morphological features based on landmarks for computer-aided disease diagnosis. Also, we 
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can locate informative image patches in MRI based on these landmarks, and then 

automatically learn discriminative features (e.g., via deep convolutional neural network) 

from MR image patches for subsequent tasks (e.g., classification, regression, and 

segmentation). However, there may be missing or redundant landmarks for brain MR 

images, which is not considered in this study. A reasonable solution is to perform manual 

correction to add more discriminative landmarks, or to remove redundant landmarks based 

on expert knowledge.

VI. Conclusion

We propose a two-stage task-oriented deep learning (T2DL) method for anatomical 

landmark detection with limited medical imaging data. Specifically, the task in the first stage 

is to capture inherent associations between local image patches and their corresponding 

displacements to multiple landmarks via a patch based CNN model. In the second stage, we 

focus on predicting landmark coordinates directly from the input image via another CNN 

model in an end-to-end manner, where the correlations among image patches can be 

captured explicitly. The proposed T2DL model can be effectively trained in a local-to-global 

task-oriented manner, and multiple landmarks can be jointly detected in real time. Our 

results on two datasets with limited medical imaging data show that our method outperforms 

many state-of-the-art methods in landmark detection. The proposed method may be applied 

to various other applications, such as image registration, image segmentation, and 

neurodegenerative disease diagnosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of the proposed two-stage task-oriented deep learning (T2DL) framework for 

landmark detection with medical images.
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Fig. 2. 
Illustration of our proposed two-stage task-oriented deep neural network model, where 

Conv3D denotes 3D convolutional layer and FC means fully connected layer. The activation 

function is not shown for brevity.
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Fig. 3. 
2D illustration of the fully convolutional network (FCN). Given an input 2D image, FCN 

first extracts multiple local image patches in a grid with the step size of np via the first max-

pooling operation (with the kernel size of k × k). Here, we denote the orange and blue blocks 

as two p × p patches. The estimated displacements of these two grid-sampled patches are the 

two 1 × 1 × 3Nl elements in the outputs of FCN for one specific landmark.

Zhang et al. Page 21

IEEE Trans Image Process. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Example anatomical landmarks on (a) brain MR dataset, and (b) prostate CT dataset.

Zhang et al. Page 22

IEEE Trans Image Process. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Cumulative distribution of landmark detection errors achieved by different methods on (a) 

brain MR dataset with 1200 landmarks (Brain-1200), (b) brain MR dataset with 10 

landmarks (Brain-10), and (c) prostate CT imaging dataset with 7 landmarks (Prostate-7).
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Fig. 6. 
Illustration of landmark detection results by the proposed T2DL method in tasks of (a) brain 

landmark detection and (b) prostate landmark detection. Here, red points denote our detected 

landmarks via T2DL, while green points represent the ground-truth landmarks.
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Fig. 7. 
Change of loss function values concerning different epoch achieved by the proposed T2DL 

model on (a) brain MR dataset (Brain-1200) and (b) prostate CT dataset.
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Fig. 8. 
Landmark detection errors by different methods with respect to the different number of 

training subjects on (a) brain MR dataset (Brain-1200) and (b) prostate CT dataset.
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Fig. 9. 
Landmark detection errors achieved by First-Stage-Only and T2DL using different loss 

functions on (a) brain MR dataset (Brain-1200) and (b) prostate CT dataset.
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Fig. 10. 
Influence of local image patch size on the performances of First-Stage-Only and T2DL when 

used in (a) brain MR dataset (Brain-1200) and (b) prostate CT dataset.
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Fig. 11. 
Influence of down-sampling rate on the performances of First-Stage-Only and T2DL when 

used in (a) brain MR dataset (Brain-1200) and (b) prostate CT dataset. DSR: Down-

sampling rate.
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