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Abstract

Detecting faces in uncontrolled environments continues

to be a challenge to traditional face detection methods[24]

due to the large variation in facial appearances, as well

as occlusion and clutter. In order to overcome these

challenges, we present a novel and robust exemplar-

based face detector that integrates image retrieval and

discriminative learning. A large database of faces with

bounding rectangles and facial landmark locations is

collected, and simple discriminative classifiers are learned

from each of them. A voting-based method is then proposed

to let these classifiers cast votes on the test image through

an efficient image retrieval technique. As a result, faces

can be very efficiently detected by selecting the modes

from the voting maps, without resorting to exhaustive

sliding window-style scanning. Moreover, due to the

exemplar-based framework, our approach can detect faces

under challenging conditions without explicitly modeling

their variations. Evaluation on two public benchmark

datasets shows that our new face detection approach is

accurate and efficient, and achieves the state-of-the-art

performance. We further propose to use image retrieval

for face validation (in order to remove false positives)

and for face alignment/landmark localization. The same

methodology can also be easily generalized to other face-

related tasks, such as attribute recognition, as well as

general object detection.

1. Introduction

Although boosting-based object detection methods[24]

and their variations[28] have achieved great success in

frontal-view face detection, so-called face detection in the

wild (i.e. in unconstrained environments) continues to be

a challenge, due to large variation in pose, lighting and

expressions, as well as occlusion and clutter. The perfor-

mance of state-of-the-art methods under such challenging

conditions still has considerable room to improve.

Annotated Face Database

Face Detection Face AlignmentFace Validation

Figure 1. Overview of our retrieval-based face detection system.

Some approaches attempted to learn multiple models to

detect faces in different viewpoints[8, 26], while part-based

models have also been proposed to address the variations[7,

29]. Nevertheless, it is difficult, if not impossible, to

explicitly model all possible variations in facial appearance.

The exemplar-based approach is an intuitive and straight-

forward alternative, in which a test sample can be directly

matched against a collection of face images to determine its

label. Without explicit modeling, a face can be detected

as long as enough similar exemplars are included in the

collection. However, there are two challenges confronting

this approach: (1) To achieve good performance, lots of

exemplar faces are needed to span the large appearance

variation. As a result, simple direct matching methods (e.g.

nearest neighbor search) against such a large data collection

would be too inefficient.(2) With traditional sliding window

scanning, all possible candidate regions at every location

and scale for a given test image need to be examined. This

also incurs considerable computational costs.

This paper addresses these two challenges by proposing

an integration of state-of-the-art image retrieval[20] with
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discriminative learning. Modern bag-of-words-based image

retrieval methods allow us to retrieve similar images

from millions of database images with near real-time

performance. Our new face detector is essentially an image

retrieval system that uses a database of face images an-

notated with bounding rectangles and landmark locations.

To achieve robustness, a discriminative classifier is learned

from each exemplar face. A voting-based approach is then

proposed to let the classifiers project their predictions on the

test image during search. The face regions in the test image,

even with challenging poses or expressions, shall receive

high prediction scores from similar exemplar faces. Face

detection is then performed by simply selecting the voting

peaks with high scores. Therefore, the detection can be very

fast without exhaustive sliding window scanning.

The overview of our approach appears in Fig.1. In

addition to the voting-based face detection, we also propose

a new face validation step to further boost the detection

performance by reducing false positives. Each candidate

face rectangle is used to perform search and localization

against a face database. True face samples shall retrieve

similar faces and accurately localize those faces, while false

positives tend to retrieve and localize on non-face image

regions, and are consequently removed. We evaluate our

method on two public face detection datasets and show that

our approach outperforms state-of-the-art methods.

Although we mainly focus on face detection in this pa-

per, since we retrieved similar faces to the test image during

validation, robust face alignment can also be achieved as

a by-product by transferring landmark locations from the

exemplar face images, which is an additional benefit of our

method. It can also be potentially extended to other face-

related tasks such as attribute recognition as well as general

object detection. Moreover, our approach is well suited

for online training, as more exemplars can be incrementally

added to improve the performance.

The contributions of this paper are three-fold:

1. We propose a novel exemplar-based face detection

approach by combining image retrieval with discrimi-

native learning, and designing a voting-based method

to efficiently detect faces without exhaustive scanning.

2. We introduce an efficient image retrieval-based frame-

work to simultaneously perform face validation and

facial landmark localization.

3. We achieve the stat-of-the-art performance on two

challenging face detection benchmarks.

2. Related Work

Face detection is a well studied vision problem, and

various features and models have been proposed. Please

refer to [28] for a full review. Most work in recent

years have followed the paradigm proposed by Viola and

Jones[24]. In their original work, a cascade of boosted

classifiers is trained using Haar wavelets as features. Sliding

window scanning is then performed for face detection.

Variants include different features (e.g., HOG-LBP[25],

SIFT/SURF[15]) and different boosting algorithms[2, 4, 3].

Multi-view models have been proposed to detect faces

under viewpoint changes[8, 26]. Part-based models[7, 18,

5], especially deformable part-based models[6, 29] have

also shown their efficacy in detecting faces with variations

and occlusions.

Recently, the incorporation of object localization into

image retrieval has been studied. Some image search

methods not only retrieve similar images, but also localize

similar objects in the retrieved images, either by sub-image

search[13, 16], or by generalized Hough voting[14, 20]. In

[27], face images with the same identities were retrieved.

[21] localizes and segments a product in the query image

with the help of the top-retrieved images. However, in all of

those methods, the query image is given, and the task is to

find the identical object or visually similar objects from the

database, which is a different task from face detection, as

the category of face has much larger appearance variations

than a single object. In [1], parts of faces are localized

by combining local detector outputs with a consensus of

non-parametric global models computed from exemplars.

However, they still need pre-trained classifiers (SVM) with

sliding-window scanning to detect local facial parts. To the

best of our knowledge, there is no previous work on face

detection leveraging large-scale image retrieval.

3. Face Detection by Image Retrieval

3.1. Exemplar Database

To detect faces using image retrieval, we build a

database with 18486 exemplar face images under different

viewpoints, poses, expressions and lighting conditions. The

face region in the image is around the image center and

manually marked with four main facial landmark locations:

the center of two eyes, mouth center and nose tip. A

rectangle bounding the face is then generated according to

the landmark positions1. See the database images in Fig.1

for some examples. Some of them are from the Annotated

Facial Landmarks in the Wild (AFLW) dataset[12], while

others are annotated by ourselves. No images in the testing

datasets are included in the database.

3.2. Algorithm

In order to detect faces in a test image by search-

ing the database images, we need to define a similarity

measure between any detection window(represented by a

1For profile faces, if one eye is invisible due to occlusion, its landmark

annotation would be absent.
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(a) (b) (c)
Figure 2. The voting-map based method to calculate similarity

scores. (a) test image, (c) The face rectangle in an exemplar image,

(b) generated voting map when using (c) to vote on (a).

sub-rectangle)2 in the test image and the face rectangle

in a database image. We employ the retrieval approach

based on local features, visual vocabulary and inverted files,

and choose the spatially-constrained similarity measure

proposed in [20, 21], which is a variant of the traditional

bag-of-words in image search, but with much better spatial

matching consistency:

�(�, ��) =
�∑

�=1

∑

(�,�)
�∈�,�∈	�


(�)=
(�)=�

∣∣T(�(�))−�(�)∣∣<


idf2(�)

tf�(�) ⋅ tf	�(�)
(1)

where � is a detection window in the test image, and ��
is the face rectangle in the �-th database image. � and 	

are the local features extracted from � and ��, respectively.

� denotes the �-th visual word in a learned vocabulary.


(�) = 
(	) = � means that � and 	 are both assigned to

visual word �. idf(�) is the inverse document frequency of

�, tf�(�) and tf	�(�) are the term frequencies (i.e., number

of occurrence) of � in � and ��, respectively. �(�) is the

2D image location of � . T is the spatial transformation that

maps rectangle � in the test image to �� in the exemplar

image. We assume T only consists of scale change and

translation. The spatial constraint ∣∣T(�(�)) − �(	)∣∣ < 


means that the locations of two matched features should be

sufficiently close under transformation T.

In [20] and [21], such a similarity measure is efficiently

calculated by multi-scale generalized Hough-voting[14].

We use a similar voting-based method to calculate the

similarities3. Consider that if a feature 	 inside the face

rectangle of an exemplar image is matched with a feature

� in a possible positive detection window of a test image,

the relative locations of 	 and � to their respective rectangle

centers should be consistent under a certain scale change.

Therefore we can calculate the the relative location of 	

to the face center in the exemplar image, and use that to

predict the location of the face center in the test image

accordingly. A vote will be cast at that location with score
idf2(�)

tf�(�)⋅tf�� (�)
as introduced in Eqn.1. To achieve better

detection performance, we differ from [20] in that each vote

2In this paper, we fix the aspect ratio of a detection window to 1.
3For the details of the voting-based method, please refer to [20].
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Figure 3. Pipeline of our face detection method. This illustration

only shows voting maps at a certain scale, while in practice we

generate voting maps at multiple scales.

is further weighted by the distance from the feature 	 to

the face center in the exemplar image. Features closer to

the face center will cast votes with higher weights, as they

contain more feature information on the faces. Consider

Fig.2, for example, if we use all the features in the exemplar

face (Fig.2(c)) to vote on the test image (Fig.2(a)) at a

certain scale, we can get a voting map as in Fig.2(b),

in which the value at each location corresponds to a

similarity score between a sub-rectangle (with that location

as its center) in Fig.2(a) and the face rectangle (Fig.2(c)).

Therefore the similarities between any sub-rectangle of the

test image and the exemplars can be obtained from the

voting maps, without resorting to sliding window search.

However, since local features (e.g., SIFT[17]) are quan-

tized for fast retrieval, the similarities between a face

exemplar and a non-face test sample can be as high as

face-to-face similarities, and the voting maps may be

noisy. Therefore, only obtaining and simply aggregating the

similarities between test samples and the face exemplars is

not sufficient to robustly detect the faces. In fact it only got

58.0% in average precision on the AFW dataset[29].

To this end, we combine image retrieval and discrimina-

tive learning, and propose the pipeline of our face detection

algorithm as illustrated in Fig.3. Given a test image, we

first use all the exemplar faces to vote on the test image

and generate corresponding voting maps at multiple scales.

Gating is then performed on each voting map, i.e., each map

is subtracted by a pre-trained threshold ��. The threshold

�� corresponding to each exemplar face is discriminatively

learned in the training stage, as explained in Section 3.3.

The values on the voting maps that are below the threshold

are set to zeros. We then aggregate the gated voting maps

together to get the final score map. This operation can be

interpreted mathematically in the following equation:

�(�) =
∑

�:��(�)>��

(��(�)− ��) (2)
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where �(�) is the final detection score of �, ��(�) is the

similarity score between � and database exemplar ��, �� is

the corresponding threshold. We can see from Fig.3 that

after gating, the noise in the initial voting maps (e.g., in the

last row) is filtered out. Based on the aggregated voting

maps, we then select the maximal modes from the maps

with non-maxima suppression to get the final detection

results, as shown in the last column in Fig.3.

The reason we use gating before aggregation is to limit

the contributions of irrelevant exemplars to a given test

image, or more accurately, to a given sub-rectangle of

a test image. The appearance variation of face images

can be very large, and we expect that only the exemplars

which are very similar to the test region are informative

for classification, while the more distant exemplars are

uninformative. Therefore our assumption is that, if � is

sufficiently similar to ��, � should be voted as a face with

very high probability, while if � is far away from ��, ��
cannot determine the label of � with any preference. The

effect of gating hereby is to determine the effective range

of an exemplar. If the similarity ��(�) is larger than ��, it

means the test sample falls into the close neighborhood of

��, and accordingly receives a high confidence vote from ��.

3.3. Naive Bayes Interpretation

The foregoing argument appeals to our intuitive under-

standing of our algorithm. However it can be more con-

cretely justified in the context of Naive Bayes classification.

Suppose that we consider the gated voting of a particular

exemplar (in Section 3.2) as a simple classifier. In this

context, it is straightforward to show that if we make an

independence assumption among the exemplars, then our

voting scheme is operating as a Naive Bayes classifier.

Given a set of positive exemplars (i.e., face images) ��,

and a test sample �, let ��(�) be the similarity between ��
and �. � ∈ {0, 1} is the label of �, � = 1 if � is a face.

For each positive exemplar ��, given a small constant value

�, suppose there is a threshold �� such that:

� (� = 1∣��(�) > ��) ≥ 1− �

� (� = 0∣��(�) > ��) ≤ � (3)

where �� is a certain threshold, and � is a very small value.

It can be considered a hyper-sphere classifier. If � falls into

a small hyper-sphere around �� (i.e., ��(�) > ��), then it is

highly probable that � is a face. If ��(�) ≤ ��, based on our

assumption, �� cannot determine � is a face or not, therefore

we assume that �� has equal contribution to the label of �,

i.e., � (� = 1∣��(�) ≤ ��) = � (� = 0∣��(�) ≤ ��).

In the test stage, suppose there are � total exemplar

faces, and for simplicity we use �� to denote the similarity

��(�), the likelihood ratio can be defined as:

�(�1, ..., ��) =
� (�1, ..., ��∣� = 1)

� (�1, ..., ��∣� = 0)
(4)

If we assume that the �� are independent, and take the
log operation, we get the Naive Bayes log-likelihood ratio:

log�(�1, ..., ��) =

�∑

�=1

log
� (��∣� = 1)

� (��∣� = 0)

∝

�∑

�=1

log
� (� = 1∣��)

� (� = 0∣��)
(5)

Suppose there are � exemplars with ��(�) > ��, based
on our assumption, the remaining � − � exemplars with

��(�) ≤ �� have log � (�=1∣��)
� (�=0∣��)

= 0. Accordingly we have:

log�(�1, ..., ��) =
∑

�:��(�)>��

log
� (� = 1∣��)

� (� = 0∣��)
≥ � log

1− 	

	
(6)

Apparently if more exemplars are close to the test sample

(i.e., � is larger), the log-likelihood ratio will be higher, and

� is more likely to be a face. Therefore we can use such a

log-likelihood ratio to detect faces.

Classification. To calculate the Naive Bayes log-

likelihood ratio, we need a detailed form of classifier

satisfying Eqn.3. We model the probabilities to be:

� (� = 1∣��(�) > ��) = 1− ��−�(��(�))

� (� = 0∣��(�) > ��) = ��−�(��(�)) (7)

where �(��(�)) can be any monotonically increasing
function of ��(�). For a practical purpose, we choose
�(��(�)) = ��(�)− ��.

4 Then we have

∑

�:��(�)>��

log
� (� = 1∣��)

� (� = 0∣��)
=

∑

�:��(�)>��

log
1− 	
−(��(�)−��)

	
−(��(�)−��)

=
∑

�:��(�)>��

log(
1

	


��(�)−�� − 1) (8)

Since � is small, when ��(�)− �� > 0, we can approximate
Eqn.8 and get:

∑

�:��(�)>��

log
� (� = 1∣��)

� (� = 0∣��)
=

∑

�:��(�)>��

log(
1

	


��(�)−�� − 1)

≈
∑

�:��(�)>��

log(
1

	


��(�)−��)

= −� log 	+
∑

�:��(�)>��

(��(�)− ��) (9)

The first term is a constant, and the second term is exactly

the aggregated vote score after the gating in Eqn.2.

Classifier training. For each positive exemplar �� and

its corresponding classifier, the threshold �� needs to be

4While �(��(�)) can take any form as long as it satisfies Eqn.3, we

found that �(��(�)) = ��(�)− �� works quite well in practice.
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(a) Validation result of a true positive.

(b) Validation result of a false positive.

Figure 4. The validation step consists of running a second search

using the detected window as a query. Valid faces tend to retrieval

similar faces and accurately localize on these faces, while invalid

detections produce inconsistent search and localization results.

determined. In order to discriminatively learn the threshold,

besides the existing positive training samples, we also

collected a negative training set 
 5.

Given the negative sample set, and a particular exemplar

�� we need to determine a �� such that � (��(�) > ��∣� ∈ 
 )
is minimized. It is straightforward to see that � (��(�) >

��∣� ∈ 
 ) = 0 if

�� ≥ max
�∈�

��(��). (10)

Once satisfying the constraint in Eqn.10, we would like

to enlarge the effective hyper-sphere of �� without losing

classification accuracy, i.e., to include as many positive

training samples from the positive set �:

�� = argmax
��

� (��(�) > ��∣� ∈ �)

�.�. �� ≥ max
�∈�

��(��) (11)

Apparently when �� is smaller, the objective function in

Eqn.11 is larger. Thus we choose the final threshold as:

�� = max
�∈�

��(��) (12)

This means the threshold is the maximum similarity score

between exemplar �� and any negative training samples.

4. Face Validation

After the face detection step, several candidate face

rectangles are obtained. Some of them may not be true

faces. Therefore we propose a face validation step using

image retrieval again to identify and filter out these false

positives and further improve the detection accuracy. We

use each detected face window to perform search and

localization on a validation face database using the same

similarity measure as in Eqn.1 and the similar voting

5We collected ∼ 5000 images without faces, and use the same voting-

based method to calculate the similarities between the positive exemplar

and the sub-rectangles in the negative images, which is equivalent to

generating negative training samples by multi-scale dense sampling.

approach as in [20]. The validation database is set as

the same as our face database for detection, but it can

also be augmented with non-face images for improved

discriminability. If the candidate region is a true face,

it will retrieve faces with similar poses and meanwhile

accurately localize the faces, as shown in Fig.4(a). If it is

not a face, then the overlap between the localized rectangle

and ground truth rectangle tends to be low, as seen in

Fig.4(b). Therefore we use such information to generate the

validation score and further refine our face detection results.

Consider that top-� images are retrieved for a detected

candidate window �, with a localized rectangle obtained in

each retrieved image, we calculate the overlap ratio between

the localized rectangle �� and ground truth rectangle 	� for

each retrieved image ��(� = 1...�):

��(�) =
��
∩
	�

��
∪
	�

(13)

If there are no faces in the retrieved image, then ��(�) = 0.

The validation score is then determined by:

� (�) =

�∑

�=1
��(�)>�

��(�)×��(�) (14)

where ��(�) is the similarity score between the test sample

� and the �-th retrieved image. The constraint ��(�) >

� means that we only consider the retrieved image with

overlap ratio greater than �. In practice, we choose � = 0.6.

After we obtain the validation score, and the final

detection score can be calculated as:

�(�) = ��(�) + (1− �)� (�) (15)

which is a linear combination of the initial detection score

and the validation score. � is a weight to control the

combination, which is determined experimentally through

cross validation, and then fixed for all the experiments.

5. Face Alignment

In addition to bounding rectangles, our database faces

are annotated with landmark locations. Therefore, we

can transfer the facial landmark locations from the images

retrieved during validation to the test image. In this way,

face alignment can be performed without any additional

search cost, which is an additional benefit of our method.

We localize each landmark using a modified version of

our voting scheme in face detection, and generate voting

maps for each landmark separately. To vote on a landmark,

when we find a matched feature pair between the test

sample and an exemplar face, we calculate the relative

location of the feature to the landmark in the exemplar face

image, and vote on the estimated location of that landmark

346234623464



Figure 5. Face alignment and pose estimation using top retrieved

face images. The locations of two eyes as well as the mouth and

the nose are accurately localized.

in the test sample accordingly. Meanwhile, similar as in

face detection, the vote is weighted by the relative distance

from the feature to the landmark in the exemplar face.

Features closer to the landmark have higher weight. After

voting, the peak location in each individual voting map is

the estimated landmark location based on ��.

For a particular landmark, each database image gives

us an estimated location ��. If we have �-top retrieved

images, then the final estimated location of that landmark

is determined as the per-component median value of

�1, �2, ..., ��, see Fig.5 for an example.

If the exemplar faces in the database are annotated

with additional information (e.g., attributes such as age,

gender and expressions), we can use the the top retrieved

face images and the same methodology to estimate these

attributes in the test image through label transfer..

6. Experiments

6.1. Implementation details

We used combined sparse and dense SIFT[17] as fea-

tures, and fast approximate k-means[19] to build a 100k

vocabulary. The maximum dimension of the exemplar

images is 640. To ensure performance, smaller test

images are resized to have 1280 pixels as their maximum

dimension, while larger images are kept the same. In face

detection, the smallest scale on which we vote is 80×80 (in

a 1280-pixel dimension image). We vote on 15 scales, and

each scale is 1.2 times larger than the previous one.

To speed up the process and reduce the memory, given

a test image, we first use the bag-of-words model[22] to

retrieve 3000 similar images from the database, and then

do voting and face detection using only those retrieved im-

ages. Without code optimization, the entire face detection,

validation and alignment finishes in less than 10 seconds in

C++ implementation. The voting and validation tasks can

be parallelized to further reduce the detection time, which

shows its potential in real time processing.

6.2. Results

We evaluated our approach on two public datasets with

annotated faces in the wild: AFW[29] and FDDB[9].

Both datasets contain faces in uncontrolled conditions with

cluttered backgrounds and large variations in both face

viewpoint and appearance, and thus bring forward great

challenges to the current face detection algorithms.

In the AFW dataset, the results of the following face

detection methods are reported in [29]: (1) OpenCV

implementations of 2-view Viola-Jones, (2) Boosted 2-view

face detector of [11], (3) Deformable part model(DPM)[6],

(4) Mixture of trees[29], (5) face.com’s face detector and

(6) Google Picasa’s face detector. Among the academic

solutions, [29] significantly outperforms others, and is only

slightly below the commercial systems.

The precision-recall curves of our method (face detec-

tion with and without validation) on this dataset along

with others are shown in Fig.6(a). The results of other

methods are provided by [29]. We can see that in our

approach, the performance of the initial detection step

(without validation) is already among the state-of-the-art.

After face validation, our method further outperforms [29],

achieving the state-of-the-art in research approaches, and

closing the gap with face.com and Google Picasa.

The FDDB benchmark reports the performance of sev-

eral published methods in the research community on their

dataset6, including: (1) OpenCV implementation of Viola-

Jones, (2) Mikolajczyk et al[18], (3) Subburaman et al[23],

(4) Jain et al[10] and (5) Li et al[15]. We also report the face

detector of face.com on this dataset. The FDDB benchmark

includes two methodologies for evaluation: discrete ROC,

and continuous ROC[9]. The evaluation of discrete ROC

is a common protocol (i.e. requiring at least 50% overlap

ratio of the intersection of two regions against the union of

the two regions), while in continuous ROC, the overlap ratio

is used as a weight to measure the matching quality.

The ROC curves of our approach and others are shown in

Fig.6(b) and (c) respectively. On this dataset, our initial face

detection has already achieved quite good performance, and

face validation does not show much improvement. The

performance of our method is even slightly better than

face.com’s detector. It should be noted that in FDDB, the

ground truth are elliptical regions, while the output of our

method (as well as face.com) are rectangles. Therefore

the overlap of two regions will be smaller than usual, and

in fact we have observed some good detections marked as

false positives when the rectangles are slightly off centered.

Moreover, there are many small faces in the ground-truth

files which our method will not detect (the minimum

resolution of the ground-truth faces is 20 pixels, while the

minimum scale of our detection is 80 pixels in a 1280-

resolution image).7 Nevertheless, our method has already

achieved very good results on this benchmark.

Fig.7 shows some examples of our detection results.

Our method can accurately detect faces with different

6http://vis-www.cs.umass.edu/fddb/results.html.
7As argued in [29], relatively large faces in high-resolution images are

common given HD photo and video recordings. Meanwhile, smaller faces

can be detected by further up-scaling the test images.
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(a) PR Curve on AFW (b) Discrete ROC on FDDB (c) Continuous ROC on FDDB

Figure 6. Performance evaluation on two public datasets. We compared with Zhu et al[29], DPM[6], Kalal et al[11], Viola-Jones[24],

face.com and Google Picasa on AFW. On FDDB, we compared with Li et al[15], Jain et al[10], Subburaman et al[23], Mikolajczyk et

al[18], Viola-Jones and face.com.

Figure 7. Examples of face detection results. Our method can accurately detect faces with large facial appearance variations.

resolutions, poses and attributes, in severe occlusions and

cluttered background, as well as blurred face images.

Although the main focus of this paper is face detec-

tion, the proposed framework allows us to perform face

alignment using the same methodology, as described in

Section 5. Our preliminary results show that, in most

cases, the localization of the four landmarks was reasonably

accurate. From Fig.8 we can see that our approach

can accurately localize the landmarks under large facial

appearance variations, which shows great potential in more

complete face alignment (e.g., eye corners and mouth

corners) given the availability of more precise landmark

annotations on our exemplar face database 8.

6.3. Discussions

Currently, we include only 18486 face images in the

database, without specifically selecting the types of faces,

8Please see http://users.eecs.northwestern.edu/∼xsh835/CVPR13Sup.zip for

more results.

yet our method has already achieved the state-of-the-art

performance. In principal, adding more faces to the

database will further improve performance since the larger

database will better span the face appearance variations.

Fortunately, our framework allows us to incrementally add

more exemplars in a convenient way, and our approach can

be easily extended to an online setting. Meanwhile, how to

design a better database for face detection is an interesting

problem that merits further study.

7. Conclusions

In this paper, we propose a robust face detector by

combining state-of-the-art visual search with discriminative

learning. Simple discriminative classifiers are learned for

the exemplar face images in the database and collabora-

tively cast their prediction scores on the test image. Face

detection is then efficiently performed by selecting modes

from multi-scale voting maps. A face validation step using

image retrieval is further proposed, and face alignment can
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Figure 8. Examples of face alignment. The landmarks are

accurately localized in different conditions.

be performed at the same time without additional cost. The

evaluation on two public face detection datasets shows that

our approach outperforms other state-of-the-art methods.

Moreover, our framework can potentially be extended to

other face-related tasks and general object detection, which

leads to interesting future work.
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