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To the Editor

Deciphering genome sequences is important for the mapping of genetic diseases and 

prediction of their risks. Advances in high-throughput DNA sequencing technologies using 

short read lengths have enabled rapid sequencing of entire human genomes and unlocked the 

potential for comprehensive identification of their underlying genetic variations. Various 

computational algorithms for identifying and characterizing variants have been developed; 

however, most of these computational methods are neither integrated nor interoperable, 

making it difficult for biologists to extract all the genetic information from billions of 

sequences generated by these sequencing technologies. Here, we present HugeSeq, an 

integrated computational pipeline to fully automate the process of variant detection from 

alignment of these genomic sequences to detection and annotation of all types of genetic 

variations (single nucleotide polymorphisms (SNPs), short insertions or deletions (indels) 

and larger structural variations (SVs)).

Compared with other popular platforms for genome data analysis that typically analyze 

SNPs or a limited set of variants (Supplementary Table 1), HugeSeq covers a more complete 

spectrum of variant types. The complete variant detection and characterization workflow of 

the HugeSeq pipeline (Fig. 1) is a modular framework comprising three phases: first, a 

mapping phase that prepares and aligns reads; second, a sorting phase that combines and 

sorts alignments for parallel variant detection; and third, a reduction phase that detects and 

annotates different variants (SNPs, indels and structural variations). It is based on a 

5Present address: Personalis, Inc., Palo Alto, California, USA. mpsnyder@stanford.edu

COMPETING FINANCIAL INTERESTS
The authors declare competing financial interests: details accompany the full-text HTML version of the paper at http://

www.nature.com/naturebiotechnology.

Note: Supplementary information is available on the Nature Biotechnology website.

HHS Public Access
Author manuscript
Nat Biotechnol. Author manuscript; available in PMC 2016 January 20.

Published in final edited form as:

Nat Biotechnol. ; 30(3): 226–229. doi:10.1038/nbt.2134.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/naturebiotechnology
http://www.nature.com/naturebiotechnology


MapReduce1 approach and runs in a parallel computational environment, making it highly 

efficient and scalable.

HugeSeq uses sequence reads (both single end and paired end) in a FASTA or FASTQ 

format (optionally compressed in a GZIP format) as input for alignment. Because alignment 

of a single read is independent of others, HugeSeq divides the reads into smaller subsets so 

they can be aligned in parallel. It then distributes the reads in the computer cluster and 

carries out a gapped alignment against the reference genome using the Burrows-Wheeler 

aligner2. The generated sequence alignment map (SAM)3 is then converted into its binary 

format, BAM, using SAMtools3 to ensure efficient storing and access of alignment 

information. After alignment, HugeSeq collects all the mapped reads and sorts them 

according to their aligned chromosomal positions with the Picard tool. The sorted reads for 

each chromosome are assigned to their corresponding chromosomal BAM and indexed for 

rapid and random access using SAMtools. Because most variant detections are 

intrachromosomal, the detection process can be carried out on each chromosomal BAM 

simultaneously. Interchromosomal translocation detection can also be enabled and run in a 

nonparallel mode, although it slows down the process considerably.

To enhance the quality of the alignments for more accurate variant detection, HugeSeq 

carries out several processing (‘cleanup’) procedures before variant calling. First, to 

minimize experimental artifacts, it removes potential PCR duplicates using the Picard tool. 

Second, it carries out a local realignment around indels and SNP clusters using the Genome 

Analysis ToolKit (GATK) realigner4. Last, based on the realignment, it recalibrates the base 

quality of the alignments using the GATK recalibrater4 so that the quality scores represent 

the empirical probability of mismatching to the reference genome. With the processed read 

alignments or any user-specified BAMs, HugeSeq detects variants of different kinds in a 

parallel fashion.

For SNP and small indel detection, HugeSeq uses two different well-established SNP and 

indel calling algorithms, the GATK UnifiedGenotyper4 and SAMtools3. When calling indels 

using GATK, it uses the Dindel5 model for greater sensitivity. The resulting SNPs and 

indels are then passed through the GATK variant filtering tool with default parameters 

similar to those used in the 1000 Genomes Project6. Structural variations and copy number 

variants (CNVs) are often difficult to detect, largely owing to their heterogeneous nature. A 

variety of different methods can be used to find them but each has distinct biases. To 

identify as many structural variations as possible, HugeSeq uses four major approaches: 

first, paired-end mapping using BreakDancer7; second, split-read analysis using Pindel8; 

third, read-depth analysis using CNVnator9 and fourth, junction mapping using BreakSeq10 

(a version we modified to support BAM as input for unmapped reads). Because these 

structural variation and CNV callers generate variant calls in different formats, HugeSeq 

standardizes their outputs by converting them into the standard general feature format.

The resulting SNP and indel call sets, which are in a standard variant call format (VCF), are 

combined and merged using VCFtools11. HugeSeq also uses VCFtools to concatenate 

variants from different BAMs for each algorithm and to merge calls from different 

algorithms into a single VCF. SNPs called by both GATK and SAMtools are of particularly 
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high confidence. For the structural variation and CNV call sets, BEDtools12 is used to 

intersect and merge the calls. Calls detected by two or more algorithms (50% reciprocal 

overlap) are regarded as high confidence13. Finally, HugeSeq carries out a functional 

annotation on the variants using Annovar14. Because both the input and output formats of 

Annovar are nonstandard variant formats, HugeSeq converts variants into the Annovar input 

format and converts the Annovar output into a tab-delimited format that can be easily 

merged and interpreted with the original call sets. The annotation includes gene intersection, 

exonic variations, repeat elements and mutation information (for example, SIFT score15). It 

can be expanded easily to include different databases, such as PolyPhen16.

We initially applied HugeSeq to a single human genome sequenced (~48×) with Illumina 

HiSeq. Overall, HugeSeq reported >8 million raw variant calls, or ~4.5 million after 

merging (Table 1). For SNPs, GATK UnifiedGenotyper reported 3,570,658 calls (after 

filtering), and SAMtools reported 3,632,090 calls. There were 3,399,561 concordant SNP 

calls based on positions between GATK and SAMtools. For small indels, GATK (with the 

Dindel model) reported 523,445 calls and SAMtools reported 553,360 calls. There were 

422,305 concordant indel calls based on matching the positions. For structural variation or 

CNV (≥50 bp), there were 11,043 paired-end calls, 11,911 read-depth calls, 1,741 split-read 

calls and 1,003 junction calls. There were 21,381 structural variation union calls with 1,639 

calls reported by two or more algorithms (50% reciprocal overlap). Because of the 

ascertainment bias toward deletions, the majority (>90%) of the structural variation calls 

were deletions; however, duplications, insertions and inversions were also detected 

(Supplementary Table 2). We observed enrichments of ~300-bp and ~6,000-bp structural 

variation deletions, possibly owing to Alu and long interdispersed element 1 elements. The 

majority of indel calls were 1 bp, whereas there was enrichment of 4-bp and 8-bp indel calls 

(Supplementary Fig. 1).

We carried out benchmarking on HugeSeq to assess its performance. We measured its run 

time and memory usage at various sequencing coverage ranging from 6× to 96× 

(Supplementary Figs. 2 and 3). For run time, we found that HugeSeq spent relatively less 

clock time on variant detection, as it benefited from parallel processing (Supplementary Fig. 

2a,b). We also found that its run time (~25 hours) was ~10 times faster than the time of 

processing individual steps in a nonparallel mode on a single computer (~250 hours) at 30× 

coverage, whereas the run time increased almost at a linear rate at different coverage 

(Supplementary Fig. 2c). For memory usage, most processes took at most 6 GB of physical 

memory. The duplicate removal, recalibration and GATK UnifiedGenotyper were bound by 

the maximum heap size of 6 GB preallocated to the Java Virtual Machine and the 

realignment and sorting were allocated a maximum of 12 GB heap size for a more efficient 

caching of high-coverage data (Supplementary Fig. 2d). When focusing on variant detection, 

we observed similar performance as in the overall process (Supplementary Fig. 3). We 

found that BreakDancer (read-pair mapping) and BreakSeq (junction mapping) were fastest 

and used the least memory, whereas GATK UnifiedGenotyper was slowest and used the 

most memory.

To assess the sensitivity of variant detection in HugeSeq, we detected SNPs and structural 

variations or CNVs using the Illumina (San Diego, CA) Human Omni1Quad genotyping 
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array with ~1 million markers. For SNPs, we assessed the true positives by taking all 

260,112 heterozygous calls from the array. We intersected these calls with the 3,399,561 

SNP calls reported by both GATK and SAMtools (high confidence) and all 3,803,187 

merged SNP calls (Fig. 2a). There were 254,700 and 258,654 concordant calls, 

corresponding to a sensitivity of 97.9% and 99.4% for the high-confidence and total sets, 

respectively. For the individual call sets, GATK had 257,243 and SAMtools had 256,111 

concordant calls, corresponding to a sensitivity of 98.9% and 98.5%, respectively. We also 

observed that the GATK- and SAMtools-specific calls had a relatively lower transition-to-

transversion rate (<1.6) compared with the high-confidence calls (~2.1). For structural 

variation or CNVs, we generated a list of true positives by taking the 482 deletion calls 

reported by Illumina GenomeStudio and CNVision17 based on the Omni1Quad array. We 

intersected these calls with the 1,594 deletion calls reported by two or more structural 

variation/CNV algorithms (high confidence) and all 19,809 merged deletion calls. There 

were 383 and 471 concordant calls (≥1 bp overlapping), corresponding to a sensitivity of 

79.5% and of 97.7% for the high-confidence and total sets, respectively. By requiring an 

overlap of 50% on the array calls, we found that there were 358 and 444 concordant calls, 

giving a sensitivity of 74.3% and 92.1% for the high-confidence and total sets, respectively.

We extended our sensitivity test for SNP or structural variation detection to various 

sequencing coverage as in the benchmarking. The test was done using the total call sets. We 

found that SNP calls reached saturation at a sequencing coverage of ~40× with a sensitivity 

of ~98.5%, whereas structural variation calls reached saturation at ~30× with a sensitivity of 

~97% (Fig. 2b). We also intersected the 19,809 deletion calls detected in HugeSeq with 

22,025 deletion calls reported by the 1000 Genomes Project in the pilot phase. With 50% 

reciprocal overlap, we found that structural variations detected by three or more algorithms 

had up to 93.8% (98.2% by 1 bp) concordance with the 1000 Genomes calls, whereas those 

detected by two or more algorithms had 88.7% (92.3% by 1 bp) and those detected by any 

algorithm had only 17.7% (27.6% by 1 bp; Table 2). Thus, we think that the majority of 

structural variations detected by two or more algorithms are probably correct.

Given the interest in genome sequencing, the availability of an integrated platform to 

analyze genomes is expected to be useful. The implementation of HugeSeq using widely 

accessible code with output in a common format could facilitate genome analysis and 

clinical interpretation18. In addition to whole-genome sequencing, HugeSeq can be used for 

other types of sequencing such as exome-seq (currently not applicable for CNV detection). 

It can also be used for Illumina’s long mate-pair library. We envision that comprehensive 

variant detection pipelines, such as the one we present here, will facilitate the analysis of 

biological information extracted from the large amounts of sequencing data currently being 

generated from thousands of genomes.

HugeSeq is open source and available for download at http://hugeseq.snyderlab.org/. A 

description of the methods used in our assessment of HugeSeq is in Supplementary methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A MapReduce approach for detecting genetic variants from high-throughput genome 

sequencing. Phase 1 is the mapping phase including sequence alignment. Phase 2 is the 

sorting phase including sorting alignments by mapped chromosomes. Phase 3 is the 

reduction phase including variant detection. chr1, chromosome one; chrM, chromosome M; 

SV, structural variation; SR, split-read analysis; RD, read-depth analysis; RP, read-pair 

mapping; JM, junction mapping; VCF, variant call format; GFF, general feature format.
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Figure 2. 
Accuracy and sensitivity of variant detection. (a) Concordant and specific calls in SNP 

detection by GATK and SAMtools. Original calls, total number of calls from methods; 

specific calls, total number of method-specific calls. Validated calls, number of calls 

validated by the array. Ti/Tv, transition-to-transversion rate. (b) Overall sensitivity of SNP 

and structural variation or CNV detection over different sequencing coverage. X is the 

average number of reads representing a given nucleotide in a haploid human genome. 50% 

indicates that detected structural variation calls overlap ≥50% the array calls.
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Table 1

Summary of detected variant calls

Variant Tool (algorithm) Original Merged (union) Concordant (intersection)

SNP GATK 3,570,658 3,803,187 3,399,561

SAMtools 3,632,090

Indel GATK
SAMtools

523,445
553,360

654,500 422,305

Structural variation or CNV BreakDancer (paired-end mapping) 11,043 21,381 1,639

CNVnator (read-depth analysis) 11,911

Pindel (split-read analysis) 1,741

BreakSeq (junction mapping) 1,003

Total 8,305,251 4,479,068 3,823,505
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Table 2

Concordant deletion calls between structural variations detected and from 1000 Genomes Project

Number of algorithms Deletion calls 1-bp overlapping 50% reciprocal overlapping

≥3 algorithms 451 443 (98.2%) 423 (93.8%)

≥2 algorithms 1,594 1,472 (92.3%) 1,414 (88.7%)

Any algorithm 19,809 5,468 (27.6%) 3,516 (17.7%)
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