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Abstract

This paper describes a knowledge-based vision system for automating
the interpretation of alarm events resulting from a perimeter intrusion
detection system (PIDS). Moving blobs extracted over a sequence of digi-
tised images are analysed to identify the cause of alarm. Alarm causes
are modelled by a network of frames, and models are maintained for the
scene. Due to poor spatial resolution, non-visual contextual information
is required to supplement the image data. Probabilities are combined
and propagated through the network by Subjective Bayesian Updating.

1 Introduction

This paper describes a knowledge-based vision system for analysing image se-
quences resulting from a perimeter intrusion detection system (PIDS) [2]. The
PIDS contains a number of cameras viewing areas installed with a variety of
alarms. When an alarm is triggered the image sequence spanning the alarm
event is stored. The vision system’s task is to interpret alarm events, dis-
criminating between alarms triggered by human intruders and the many false
alarms caused by animals, weather-related events, or noise. In addition, the
false alarms should be sub-classified to enable the performance of the PIDS to
be monitored. The analysis system must cope with the variations in natural
illumination (changing position of the sun, cloud cover, shadows), as well as at
night, when artificial illumination is low in contrast and uneven.

Tracking and recognising complex articulated objects in two-dimensional
images of outdoor real world scenes contains several difficulties for machine
vision. Problems include occlusion, shadows, and variations in lighting con-
ditions. The alarm sources are not easily represented by geometric models
because of the wide variety in shape of natural objects. Moreover, the articu-
lation and flexibility of animals in motion and the changing viewpoint causes
their appearance to vary considerably within a sequence. An additional prob-
lem in this application is that due to the large range of depth in the scene
target objects often have a poor spatial resolution.
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Given such incomplete and variable image data, a solution is found by
supplementing the poor visual data by the non-visual data provided by the
PIDS. This includes the current environmental conditions (e.g. weather, time
of day, season), the types and locations of the triggered alarms (e.g. buried
cables, vibration sensors), camera location, and image acquisition details.

The alarm classification system has been developed within a frame-based
vision system called FABIUS [5, 6] which is implemented in Prolog. Frames
provide a flexible and well structured representation for modelling the alarm
sources. The pattern matching and backtracking facilities of Prolog make it well
suited to designing control structures. Image processing algorithms, written in
C for efficiency, are triggered from frames as demons. The disparate sources
of data are combined and evaluated by Subjective Bayesian Updating [3] to
classify the alarm sources.

2 Motion Detection

Motion is detected in the sequence of images acquired over an alarm event.
Techniques such as optical flow or feature correspondence are inappropriate
here since the interval between successive image frames is relatively long (up to
a second) allowing the target object to move a considerable distance (several
times its length) and substantially change shape.

Since the cameras are static we can use image differencing instead. This
method has the advantage in that it is extremely sensitive to changing pixels
between successive images or a reference image (e.g. motion) and is simple to
implement in both hardware and software; however, it is not a robust tech-
nique if the camera suffers from any movement. Successive frames in the im-
age sequence are subtracted from a reference image depicting the scene in its
undisturbed state. Ideally all non-zero pixels in the difference image represent
motion. To overcome the effects of noise the difference images are thresholded
using a dynamic global thresholder to extract significant blobs. More details
are given in [4].

Although automatically acquired reference images are available, they are
prone to artifacts due to temporary disturbances in the scene (e.g. animals
passing through) and gradual changes (e.g. moving shadows). An alternative
is to generate a reference image directly from the image sequence [1]. We have
developed a temporal median filter for this purpose. Each pixel in the reference
image is generated by reading the corresponding pixels at the same location in
each image in the sequence, and choosing the median of the pixel values. As
long as the objects move substantially within the image this technique works
well.

A problem that occurs in heavy winds is camera shake during the sequence
acquisition. For a non-static camera the images will not be in registration,
causing the difference images to be very noisy. To prevent this, individual
frames in the sequence are aligned with respect to the first frame. Cross-
correlation is performed in the horizontal and vertical directions, using a pair
of lines through the image which are correlated with two equivalent lines in
the base image. Since an interlaced image is used the shift between fields
is corrected by the same technique. This correction procedure need only be
invoked in windy conditions, a situation which can be anticipated by examining
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the associated data file for the sequence provided by the PIDS.

3 Sequence Formation

Following thresholding, a boundary-based feature extraction algorithm mea-
sures the size and position of the binary blobs in the image. The extracted
image blobs arising from motion are assembled into consistent temporal se-
quences. This temporal filtering allows noise blobs, that do not form part of
any sequence but only occur sporadically, to be eliminated. Consistent blob
sequences are formed based on:

e their real world separation

e consistency of blob area

e continuity within a sizeable portion of the image sequence
e smoothness of sequence track

Currently sequences are formed by examining all combinations of blobs.
For efficiency this is implemented using nested iterative loops in C rather than
backtracking in Prolog. However, the problem is combinatorial and becomes
time consuming if there are many blobs. Improvements are made by pre-
processing to eliminate blobs. All blobs whose real-world area is completely
outside the range of any of the models are removed. Also, very slow moving
objects can be efficiently detected, stored as sequences, and then eliminated
from the set of blobs to be processed for faster moving blobs.

4 Scene Models

Since the cameras are fixed, scene models can be constructed for each indi-
vidual camera position. These will be useful for augmenting the blobs’ simple
feature descriptions with additional image-based information. Three models
were made:

e A map of the areas covered by the various alarm sensors
e A map labelling areas such as ground, fence and sky in the scene
e A camera calibration model

The alarm map enables sequences to be ignored if they do not intersect the
triggered alarm zone. The semantic labelling of the image aids model matching
by restricting the interpretations of blobs based on their location. For example,
dogs do not appear in the sky, and rabbits do not climb up fences. The camera
calibration enables range measurements to be made on the objects and for
pixel measurements to be scaled into real world units on the assumption that
objects touch the ground plane or some other modelled surface. (Note: This
assumption is invalid for birds in flight. In this case, we tend to overestimate
the distance of the bird from the camera, producing an overestimate of the
objects size. Similarly, we would tend to overestimate the speed of the object,
though this is complicated if the bird is flying directly towards the camera.)



296

5 Object Models

Due to the large range of depth, small target objects such as birds can have a
very poor spatial resolution in the image, containing as few as 5x5 pixels. At
night even larger objects will be poorly defined since the floodlighting tends to
saturate the cameras. Given such poor spatial and/or intensity resolution only
an approximate silhouette with very little internal detail can be distinguished.
Objects are therefore represented by simple image-based features for appear-
ance (e.g. projected area) and movement patterns (e.g. maximum velocities
and accelerations). Lacking the image resolution to detect structural infor-
mation, we must accept large error ranges for the feature parameters, since
object shapes and sizes vary considerably depending on changing viewpoint
and articulation of subparts. This causes some overlap of object model param-
eters, making reliable distinctions between similar objects difficult. Including
behaviour patterns (e.g. birds tend not fly in heavy rain or wind; some animals
are more active at night than by day) helps disambiguate model matches.

Objects are represented by frames. Features of a frame are described by
slots, and the functional aspects of the slot are described by facets. For instance,
the relative importance of the presence or absence of each slot is specified by a
pair of weighting values attached as weight facets to the slot. Facilities such as
data value restrictions, value defaults, and demons are implemented by other
facets. See [5, 6] for more detail.

Each object model is partitioned into two components each represented by
a frame. The first describes the characteristics of the individual instances of
the animals. The second describes the dynamic behaviour of the animals over
a sequence. An example of part of an object model is shown in figure 1.

frame fox )
ako value animal

scaled_area weight [1,5]
pdf [band,0.06,0.1,0.3,0.35]
location weight  [3,10]
oneof [ground,trees]
frame fox_sequence

ako value  sequence
sequence_of value  fox
speed weight  [1,5]

pdf band,0.0,0.0,8.0,15.0]
acceleration weight [1,5]

pdf band,0.0,0.0,0.5,0.6)
timeof_.day weight [1,1]

pdf band2,600,800,1600,1800]
wind_speed  weight [1,1]

pdf [downslope,10,20]

Figure 1. Model frames for an alarm source.

A model taxonomy is built up using the ako link, facilitating property in-
heritance. The frame network is shown in figure 2. Alarm causes are divided
into three major classes - human, animals, and other false alarms. The animal
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Figure 2. Frame network containing models and image data. Continuous lines
represent ipo links, dashed lines represent instantiation links.

class contains sub-classes associated with more specific animal types. The gen-
eral sequence model specifies that it is made up of several blobs, and contains
various demons for calculating properties of a sequence such as velocity and
acceleration. As can be seen in the figure image data is also stored in the net-
work. Frames are created, and filled with the measured feature data, for each
blob extracted and for each sequence formed.

6 Model Matching

Sequences of image blobs are matched against the set of models associated with
the alarm causes, and classified as the best matching model. Model selection
is performed top-down. The model tree is traversed a specified depth from the
topmost alarm node, subclassifying the current classification at each level. In
this application a human/animal/other classification is made first. If required
the animal classification can be followed by finer classifications into specific
animals,

The matching procedure involves the instantiation of a model and an image
sequence. The matches between each individual image blob that makes up
the image sequence and the individual model frame are evaluated. Each blob
match requires each of its feature matches to be evaluated by using the image
blob’s slot value to index the probability distribution function in the model
frame’s slot’s pdf facet. These individual slot matches are combined using
Subjective Bayesian Updating [3] to form an overall match for the frame. In
a similar manner these are propagated up to the sequence model which is
evaluated by combining the probabilities of its individual blob frames and the
slots corresponding to sequence feature matches. At each level in the model
taxonomy the model with the highest match probability is chosen.
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7 Results

Figures 3-4 show the results of processing two image sequences each containing
eight 512x512 images at approximately 0.5-1.0 second intervals. Figure 3a shows
the binary motion detection image containing two birds (plus shadows) taking
off, overlaid onto one of the images from the sequence. Figure 3b shows the
four sets of tracks that are detected (i.e. both birds and shadows). These are
correctly classified as birds.

Figure 4a shows the motion detection image of a person running across
the scene. Due to only slight contrast changes between parts of the person’s
clothes and the tree shadow the detection image is broken up, as shown by
the minimum bounding rectangles of the set of detected image blobs shown
in figure 4b. The sequence detector selects the most consistent set of blobs
to form a track, as shown in figures 4c and 4d, and correctly classifies it as a
human. The problem of fragmentation can be minimised by applying dilation
and erosion operators to the binary image of detected blobs. In this example,
a single erosion and dilation was sufficient to prevent breakup.

Table 1 shows the result of applying the classification procedure to 82 image
sequences, mainly containing human subjects. As can be seen, the classification
is not robust for subclassifying the false alarms, but does reliably detect human
events. This is further emphasised in table 2, which groups all false alarm causes
into a single class, and demonstrates the feasibility of the method for identifying
the principal objects of interest - the human-generated alarms.

real identity

human | rabbit | pheasant | fox | bird | noclass
= human 52 0 0 1 0 0
2 rabbit 0 4 0 1 0 1
& || pheasant 0 1 3 0 1 0
= fox I 1 0 2 1 0
4 bied |0 T 7 03 T
< noclass 0 0 0 0 0 6

Table 1. Resulls of image sequence classification.

human | false
human H2 1
false 1 28

Table 2. Resulls of classifying image sequences as human/non-human.

8 Conclusions

This paper describes a system for interpreting alarm sources from image se-
quences. The image-based data can be very poor, making a purely visual anal-
ysis difficult and unreliable. This is overcome by also utilising the non-visual
data such as environmental conditions, types of alarm, etc. which are available
to the system. Models and data are stored in a frame-based system which pro-
vides the facilities of model taxonomies, property inheritance, demons, and the
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Figure 3a. Binary detected objects Figure 3b. Resulls of sequence de-
overlaid onto original image show- tection for four tracks.
ing two birds (and shadows).

Figure 4a. Delected objects for a Figure J/b. MBRs of the set of image
person running across the screen. blobs detected.

: Ay i
Figure fc. Extracted sequence. Figure 4d. Sequence overlayed with
tmage blobs.
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probabilistic combination of the different sources of data. The system performs
robustly on the current test data of several hundred image sequences, correctly
classifying human intruders under a wide range of illumination conditions, un-

dertaking a range of activities (crossing alarm zones, crawling, climbing fences,
etc.).
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