
Proc. of IEEE SMC Information Assurance and Security Workshop, West Point, NY, June 5-7, 2000

Page 1

1 This work was sponsored by the Department of the Air Force under Air Force contract F19628-95-C-0002.

Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily
endorsed by the United States Air Force.

The authors design, develop and evaluate information assurance technology at MIT Lincoln Laboratory, 244
Wood Street, Lexington, MA 02420-9185.

Abstract- Macroscope is a network-based
intrusion detection system that uses Bottleneck
Verification to detect user-to-superuser attacks.
Bottleneck Verification (BV) detects novel computer
attacks by looking for users performing high privilege
operations without passing through legal
“bottleneck” checkpoints that grant those privileges.
Macroscope’s BV implementation models many
common Unix commands, and has extensions to detect
intrusions that exploit trust relationships, as well as
previously installed Trojan programs. Bottleneck
Verification performs at a false alarm rate more than
two orders of magnitude lower than a reference
signature verification system, while simultaneously
increasing the detection rate from roughly 20% to
80% of user-to-super-user attacks.

Index terms—intrusion detection, security,
bottleneck verification

I. INTRODUCTION

he quantity of valuable information transferred
via the Internet for commerce, banking, and other

forms of communication has increased the potential
damage that can be done by computer attacks, while
worldwide connectivity allows attackers to initiate
their attacks from safe locations. Although many
have tried to prevent attacks by developing safe and
secure software, complex interactions between the
software for operating systems, network connectivity
and applications make it difficult to prevent all of the
weaknesses that are exploited by attackers. Intrusion
detection systems are used to detect attacks that
exploit these inevitable weaknesses and bugs. Most
commercial and government systems detect
previously known and studied attacks, while more
complex intrusion detection systems detect never-
before-seen, new attacks.

The many different approaches to intrusion
detection systems are described elsewhere [4][19].
Figure 1 shows four major approaches to intrusion
detection and the different characteristics of these
approaches. The figure is divided vertically into

approaches that detect new, unseen attacks, and those
that only detect previously known attacks. Simpler
approaches are on the left and approaches that are
computationally more demanding with greater
memory requirements are shown towards the right.

Signature
Verification

Finds
New

Attacks

Bottleneck
Verification

Program
Specification

Anomaly
Detection

Only
Finds
Old

Attacks

Computation and Memory

Fig. 1. Approaches to Intrusion Detection.

The most common approach to intrusion
detection is “signature verification”. Systems using
this approach find only previously known attacks by
looking for an invariant signature left by these
attacks. Attack signatures can be found in audit
records recorded on a victim machine, or in a stream
of network packets captured by a “sniffer” that records
packets traveling across the network. The Network
Security Monitor (NSM) was an early signature-based
intrusion detection system that searched for key-
strings in network traffic captured using a sniffer.
Early versions of the NSM [12][14] were the
foundation for many government and commercial
intrusion detection systems including NID [17] and
NetRanger [5]. This type of system is popular
because one sniffer can monitor traffic to many
workstations without requiring any modification to
those monitored workstations. In practice, these

Detecting and Displaying Novel Computer
Attacks with Macroscope1

Robert K. Cunningham, Senior Member, IEEE, Richard P. Lippmann, Senior Member, IEEE,
and Seth E. Webster, Member, IEEE

T

Proc. of IEEE SMC Information Assurance and Security Workshop, West Point, NY, June 5-7, 2000

Page 2

systems can have high false alarm rates (e.g. 100’s of
false alarms per day on moderately loaded 10MB/s
networks) because it is difficult to create signatures
that successfully detect real attacks without creating
false alarms for normal traffic. In addition, these
signature-based systems must be updated frequently
to detect newly discovered attacks, and these and
other systems which rely on network sniffing can be
defeated by user or network encryption which makes
reconstruction of network sessions effectively
impossible. Most current commercial systems,
including NetRanger [5] and packages built upon
Network Flight Recorder [25], include some form of
signature verification. Recent research on systems
which rely on signature verification include BRO
[21] which uses network sniffer data and NSTAT [15]
which uses audit information from one or more
hosts.

Approaches shown in the upper half of Figure 1
can find novel attacks. This capability is essential to
protect critical hosts because new attacks and attack
variants are constantly being developed. Anomaly
detection, shown in the upper right of Figure 1, is
one of the most frequently suggested approaches to
detect new attacks and attack variants. NIDES was
one of the first statistical-based anomaly detection
systems used to detect unusual user [13] and unusual
program [2] behavior. The statistical component of
NIDES forms a model of a user, system, or network
activity during a training phase. After training,
anomalies or departures from normal behavior are
detected and are flagged as attacks. Anomaly
detection is most useful if normal user or system
behavior is repetitive and easily modeled and less
useful when behaviors vary widely. When behavior is
regular, this technique can discover attacks that rely
on human interactions not observed on the computer
system or network. Social engineering attacks, such
as those in which an attacker tricks the victim into
revealing passwords, can only be found using this
method. Recent research on anomaly detection
includes the development of EMERALD [22], which
combines statistical anomaly detection from NIDES
with signature verification, and the learning of audit
record sequences [11]. Other research, motivated by
the natural immune system, detects anomalous
behavior of system programs by examining system
calls and looking for unusual call sequences that
didn’t occur during normal training [9][10]. Finally,
some researchers are beginning to use neural networks
for anomaly detection [8][11][26] and to
simultaneously model both normal behavior and
known attack behavior.

Specification-based intrusion detection [16] is a
second approach from the top half of Figure 1 that
can be used to detect new attacks. It detects attacks
that make improper use of system or application
programs by using separately written security

specifications that describe the normal intended
behavior of programs. Host-based audit records are
then monitored to detect behavior that violates the
security specifications. Specification-based intrusion
detection has the potential for providing very low
false alarm rates when detecting a wide range of
attacks including many forms of malicious code such
as Trojan horses, viruses and attacks that take
advantage of race conditions. Unfortunately, it has
not become popular because security specifications
must be written for all monitored programs. This is
difficult because system and application programs are
constantly updated, because all programs must be
monitored for effective protection, and because many
recent browser, mail, and word processing
applications are extremely complex and are difficult
to model. Specification-based intrusion detection is
thus best applied to a small number of critical user or
system programs that might be considered prime
targets for exploitation.

The final approach to intrusion detection shown
in Figure 1 is bottleneck verification. Bottleneck
verification (BV) is designed to detect major security
policy violations, without monitoring every system
or application program. BV doesn’t require
specifications for all monitored programs as with
specification-based approaches, nor signatures for
attacks as with signature verification, nor a model of
normal user behavior as with anomaly detection. It
has very low computational and memory
requirements. Bottleneck verification detects a user
that transitions to a privileged state without going
through the normal system bottlenecks used to
permit this type of transition.

II. BOTTLENECK VERIFICATION

The bottleneck verification approach was
motivated by careful examination of reconstructed
telnet sessions, captured by network sniffers, of many
actual attacks on government sites. It was found that
the goal of many actual attacks on Unix systems and
also of many exploits posted to web sites is to obtain
an interactive shell running at the highest level of
privilege. It was also noticed that, no matter which
exploit was used to obtain such a privileged shell,
evidence was present in the transcript that could be
used to determine that a privileged shell had been
created and that it had been created without following
normal system procedures.

Figure 2 illustrates the BV approach to intrusion
detection. This approach applies to well-designed
operating systems where there are only a few legal
“bottleneck” methods to transition from a lower
privilege level (the lower, normal user states) to a
higher privilege level (the upper, privileged user
states) and where it is relatively easy to determine
when a user is at a higher level. The key concept is
to detect the use of legal bottleneck methods to

Proc. of IEEE SMC Information Assurance and Security Workshop, West Point, NY, June 5-7, 2000

Page 3

transition to higher privilege levels and user activity
indicative of a high privilege level. High privilege
activity that arises in a session where a user did not
pass through a bottleneck is indicative of an attack on
the system. This approach can theoretically detect
any novel attack that illegally transitions a user to a
high privilege level, without prior knowledge of the
attack mechanism. New attacks can thus be detected
even when the attack mechanism is not understood.

All Normal
Users

Privileged
User

New
Attacks

Privileged
User State

Normal
User State

Fig. 2. System user state diagram (notional).

A recent addition to bottleneck verification,
indicated on the right side of Figure 2, makes use of
the observation that most security policies restrict the
number of privileged users permitted to access a
system. If a normal user appears to have super-user
privilege, it is likely that a successful attack occurred
prior to the current session.

Initial work on bottleneck verification has focused
on detecting when users illegally obtain interactive
privileged (root) shells on UNIX hosts by examining
sniffing data or host audit data. The general approach,
however, can be extended to other operating systems
to determine whether users illegally access or modify
data or illegally use specific application or system
programs.

This approach was used to develop a successful
(low false alarm rate, high detection rate) off-line
implementation of a sniffer-based bottleneck
verification intrusion detection system [18] and a
real-time host-based version of the bottleneck
verification intrusion detection system[7]. The
following sections describe the design of Macroscope
and the performance of the system on two different
data sets.

III. MACROSCOPE SYSTEM DESIGN

Macroscope is a network-based intrusion
detection system whose architecture is depicted in
Figure 3. The name is chosen to stress the system’s
ability to perform critical forensic analysis for a user.
Packet data is captured from a network by the
NetTracker tool [26], which also records high-level
packet statistics. Bottleneck Verification acts as a
filter for telnet and rlogin sessions, recording in the
database only those sessions that appear suspicious.
A fixed set of queries and displays is provided by the
RapIDisplay tool, which gives the user an easy way
to view and report detected intrusions.

RapIDisplayDBM

NetTracker Bottleneck
Verification

Fig. 3. System Components of Macroscope

A. NetTracker

NetTracker uses the libpcap libraries to acquire
network data. Output is to database and analysis
processes, such as the BV parser. For that parser,
network traffic for an rlogin or telnet session is
collected and assembled into two transcripts, one for
each side of the duplex communication. While
creating the transcripts, NetTracker strips out client
and server control data for that protocol (e.g., telnet
option negotiation), so that only actual data is
included. Packet assembly is surprisingly difficult to
do properly. There are many details to the TCP/IP
protocol, and proper assembly requires a proper
implementation of the TCP/IP stack. This is so
difficult to do that many common operating systems
do not have correct implementations of all aspects of
the protocol. Attackers can perform insertion or
evasion attacks that use implementation differences to
make it difficult to reliably interpret network data
[24]. To guard against some insertion attacks,
NetTracker assumes that it can see both sides of a
communication, and usually only records data when
acknowledgements are available. Although this
traffic pattern can be assured by careful architecture of
a protected Intranet, many analysts report that pre-
existing networks are often not configured this way.
To address evasion attacks, we concentrate our
analysis on the victim system’s reply, which is more
difficult to modify than the attacker’s transmissions.
Otherwise, we (incorrectly) assume that packet-
assembly is performed as specified in RFC 793 [18].

NetTracker also records statistics for UDP and
ICMP and reports these to other analysis algorithms
not described here.

B. Network-based Bottleneck Verification

BV parses interactive telnet and rlogin sessions,
recording in a database both attack transcripts and a
parse-tree that helps RapIDisplay color-code and
identify the exact line (or lines) on which an attack
(or attacks) occurred.

The parser monitors transactions between the
source and destination machines, detecting and
identifying prompts, commands and their responses.
Processes are marked to indicate privilege level, and
the transitions are examined. For UNIX and
Windows/NT systems, the only command that is
authorized to effect the transition from regular user to

Proc. of IEEE SMC Information Assurance and Security Workshop, West Point, NY, June 5-7, 2000

Page 4

super-user privileges is the su command. All other
commands that effect such a change are an attack on
the system. This style of context-dependent parsing
reduces the amount of scanning required over
previous keystring-matching detection systems that
scan for a set of specific attacks, but the software
required to perform this parsing is more complex.

There are many subtleties that make this parsing
process difficult. First, the mapping from user input
to system interpretation is many-to-one, and
malicious users can exploit common tools to obscure
their input. System output is more difficult to
manipulate (at the application, transport, and network
layers), so our parser examines the target host’s
replies. Usually (but not always) the process echoes
commands back, to allow the user to verify that they
were properly received and interpreted. The echoed
commands, along with system and program output,
appear in the reply transcript. Future versions of the
system may use both streams to verify user actions
and identify typing patterns, although since both
streams are not always available, the ability to
process just a single stream is often an advantage.

A greatly simplified state diagram for network-
based Bottleneck Verification is depicted in Figure 4.
When a new session starts, Bottleneck Verification
enters the “init” state (top center of the diagram),
where data structures are created and initialized. If
the session starts normally, then Bottleneck
Verification immediately begins looking for the
login-related information and follows a successful
login by scanning for post-login banner-like
information (center). When a new session is created,
the destination computer system rarely just prompts
the user for input. Banners often occur before a login
(to let visitors know about restrictions on using a
system) and after a login (to alert users to important
system information. This banner message is
sometimes followed by mail messages or other news
messages. The format for this information is not
defined—in practice we see a range of short messages
(e.g., “Routine Maintenance on Saturday—computers
down from 8:00-10:00”) to long messages where text
has been turned into large banners. When these
banners are examined on a line-by-line basis, each
line has an odd assortment of characters and
punctuation. These banners make it difficult to use
simple models of English sentences to differentiate
preset “messages of the day” from user-issued
commands.

If the session started before Bottleneck
Verification analysis, then BV immediately starts
looking for a prompt, skipping the login and banner
stages. Once a prompt is found, BV then backtracks
to the first instance of that prompt and alternately
examines commands (examples on the right side of
the diagram), their outputs, and the next prompt.
Some commands (e.g., su, telnet, rlogin) can start

new processes, thereby restarting the init analysis.
When an unexpected prompt is found or unknown
command is executed, an analysis is performed to
determine if an intrusion has occurred.

others...

start
su

editor
vi, view,

…

telnet,
rlogin

more

end
ftp

login

banner

known
prompt

command

unknown
prompt

init

exit

Fig. 4. State Diagram for Network-based BV

Amidst this stream of information, the first
prompt itself is difficult to detect and identify. To
detect prompts we use a number of heuristics:
prompts usually end in one of “>:]%$#” followed by
a space, they are often followed by a common UNIX
command, and the line on which they appear usually
takes some time to type. This is enough to rapidly
parse most user sessions, but not experienced system
administrators or clever hackers, so fallback prompt-
identification techniques are also used. Among these
are scans for common UNIX commands, combined
with heuristics identifying and validating less strictly
prompt-like preceding text. Finally, when the parser
gets confused, the entire session is simply recorded
for subsequent analysis by the analyst.

Even this is not enough to fully identify the
command stream. Modern shells allow the user to set
the prompt to be a portion of the path to the current
directory. Changing directories (perhaps via cd,
pushd, popd) can also change the prompt. Sometimes
the new prompt is not easily guessed in advance,
such as when one changes to a directory that is linked
to another directory, or when one changes to a
directory that the shell locates via the CDPATH
environmental variable. When the prompt is lost, it
is not enough to simply examine the next line of
text, as type-ahead can blend multiple lines together.

Parsing the output of all varieties of all UNIX
commands would be impossible. To reduce the
amount of parsing code, we identify a variety of
command classes. Some common commands, such
as those that display the contents of a directory or a
file, merely print information to the screen, then
return the user to his previous prompt. Many
commands are of this class, and all of these can be

Proc. of IEEE SMC Information Assurance and Security Workshop, West Point, NY, June 5-7, 2000

Page 5

handled by a single, generic parsing routine. Other
commands are more interactive, requiring additional
feedback from the user. Commands that limit the
amount of a file that is shown on a screen at one time
(e.g., more, less) and simple editors (e.g., vi, vedit)
are of this type. Many of these commands allow a
user to escape to execute commands, including
starting a new shell. These commands must be
parsed, watching for the special escape commands to
determine if a user just violated the security
bottleneck. Each of these parsing routines has a
common structure, but different escape commands.
Another class of commands set default arguments to
more common commands or wrap the common
commands with additional functionality (e.g.,
crontab, vipw), allowing the command parser to
consist of a small module that calls the parser of the
core common commands. Still other commands are
even more complicated, giving the user an entirely
new environment (e.g., emacs). These commands are
the most difficult to parse properly, because there are
so many ways to interact with the system. The
strategy here is the same as above: reduce the work
by parsing the command and only the command
escapes. By classifying most UNIX commands into
one of the above types and having generic routines
for each of the classes, the amount of commands that
require specific parsing is reduced.

Although many users treat command shells as a
way to enter a single command at a time, shells are
in fact complex and powerful command interpreters
that allow users to connect the output of one
command to the input of another command, to
execute multiple commands sequentially, or to
establish an environment in which to execute future
commands. Parsing commands requires
understanding the most common multi-command
line structures, and recording unrecognized
commands for future human analysis.

The permission level at which the shell is
running is determined by examining the prompt, the
commands executed, and the output of a select few
commands. Most shell prompts indicate the
permission level of the user: in csh, for example, the
default prompt for a regular user is “hostname %”,
while the default prompt for a privileged user is
“hostname #”. Other commands and command forms
are restricted for use by only the super user. For
example, the “mount disk/” command form can only
be executed by the super-user. If this command
executes, then it is clear that the user is the super-
user. Some commands indicate who the user is: in
Unix, “who am i” will respond with “root” if the user
is the super-user. Once a hypothesis about the level
that a shell is operating at is developed, the
command history is examined to see if this level of
permission was obtained legally. If it was not, a
bottleneck violation has occurred.

C. RapIDisplay

The RapIDisplay intrusion detection analysis tool
was designed after talking with intrusion detection
analysts. It uses a network browser interface, with
navigation via simple clicks on underlined elements.
There are two primary screens with a common title
bar to provide rapid access to documentation and
report generation. At the overview screen, all attacks
recently recorded by the system that the user has not
examined are sorted based on the confidence that an
attack occurred, the protocol displayed, and the time
that the attack occurred. One line of data appears for
each putative attack; the user can select each line to
access forensic data.

After clicking on an attack line, a new screen is
displayed that is separated into four regions. In the
upper-leftmost is the name of the service, with a list
of other recorded transcripts of this service. In the
upper rightmost is a summary of the selected
transcript, including information about the address of
the attacker and victim machines, and the start and
the duration of the session (up until the analyst
looked at the transcript). In addition, a thermometer
graph indicates confidence that an attack occurred.
Along the left side of the screen are two other
windows: a quick access window to allow the analyst
to view both sides of a connection or to jump
directly to the line of the putative attack, and a
keystring window to support integration with
keystring-based intrusion detection systems. In the
lower right window is the transcript itself, color
coded to indicate the prompts received and
commands issued. Keystrings and attacks are
highlighted to enhance visibility.

IV. SYSTEM PERFORMANCE

A. Accuracy on a Standard Corpus

In 1998 MIT Lincoln Laboratory created for
DARPA the first large-scale realistic database that
could be openly distributed and used to evaluate
intrusion detection systems [6][20]. The full corpus
was designed to evaluate both the false alarm rate and
the detection rate of intrusion detection systems
using many types of both known and new attacks
embedded in a large amount of normal background
traffic. Actual network traffic was generated to be
similar to the type of traffic observed flowing
between U.S. Air Force Bases and the publicly
accessible Internet.

Traffic and attacks were generated using
conventional Unix system and application programs
by humans and automatic traffic generators on a
network which simulated 1000’s of Unix hosts and
100’s of users using fewer than 20 actual machines.
This network simulates the inside of an Air Force
base connected through a Cisco router to outside

Proc. of IEEE SMC Information Assurance and Security Workshop, West Point, NY, June 5-7, 2000

Page 6

machines on the Internet. The inside contains Linux,
SunOS, and Solaris UNIX victim hosts and a
gateway to 100’s of simulated PC and Unix
Workstation hosts. Most attacks were launched from
outside workstations through the router against one
or more of the inside victim workstations.

Attacks were divided into four categories with
regard to their purpose. Since this algorithm defends
against user-to-root attacks, we report our results on
this class of attacks. The results presented in this
section should be considered “unofficial,” as some
members of the intrusion detection team interacted
with members of the evaluation corpus development
team. Nevertheless, this data was processed only once
following the formal evaluation procedures described
in [20].

The results of an analysis of system accuracy are
presented in Figure 5 for both BV and the naïve
keystring IDS. For this corpus, BV detected 79% of
the attacks at the rate of about one false alarm per
day. By comparison, the baseline keystring system
detected less than 5% of the attacks at this low false-
alarm rate.

Fig. 5. Accuracy of Network-based Bottleneck
Verification on 1998 DARPA IDS Data.

B. Accuracy on captured network data

The system has also been used for off-line
analysis of approximately a hundred and forty
thousand Internet sessions captured across three
months at more than 100 different sites. Of these,
Bottleneck Verification was used to scan the captured
telnet and rlogin sessions from a wider variety of
operating systems than were present in the standard
corpus. These transcripts were formed using a
different session reconstruction tool than NetTracker,
and exhibited some character and word doubling. In
addition, some transcripts did not capture a full
session, starting or ending mid-way through a
session. In these data, 67 illegal transitions to root
were detected with fewer than one false alarm per site
per day. Although it is difficult to compare results
across differing data sets, a similar test was done

using an earlier version of the NBBV engine [18].
The rewrite of the NBBV engine that allows for more
careful processing of command-line applications (as
described above) and handling of escape-to-shell
commands reduced the false alarm rate and increased
the detection rate.

V. USING NETWORK-BASED BOTTLENECK
VERIFICATION AS PART OF A SECURITY SYSTEM

In addition to the many security actions that a
system administrator should perform (e.g., patching
the OS with security fixes, maintaining a firewall
between the protected network and the Internet), there
are a few configuration choices can be made to
enhance the performance of Macroscope.

First, one can increase the accuracy and speed of
the parser. For command prompts, a system
administrator should either use the shell defaults, or
make the prompts easier to locate. Most shells
access a system-wide file to set the prompt: for sh,
the file is /etc/profile, for csh the file is /etc/.login.
Consider using these files to set the defaults to
something clear like “<user>@<host> <dir>% ”
for a regular user, or “<user>@<host> <dir>#
“ for the super-user. Although an individual can
change his own prompt, the overall work for the
parser will be diminished. If an organization has
access to the source code for the shells that it uses,
then all shells with super-user privilege could be
changed to have exactly the same prompt to clearly
indicate when a super-user is accessing the system.

By further modifying the login configuration and
BV, an even more secure environment can be
achieved. If the same string is used to indicate the
end of the login process, then BV can know for
certain where the system login is complete and user
interaction starts. A message that indicates the
command shell is particularly useful, e.g. “Welcome
to $HOST using the $SHELL shell”.

VI. FUTURE WORK

Unfortunately, there continue to be many ways to
elude the system. In this section a few evasion
techniques are described.

Since Macroscope only monitors a few services,
it is vulnerable to attacks that occur on other services.
Modern computers exchange information via a wide
variety of services (e.g., time, telnet) using different
protocols (e.g., HTTP, TCP, UDP). Most services
were designed to support a limited set of operations
transmitted via a single protocol, although an attacker
can cause some services to operate over different
protocols. For example, in the 1998 DARPA
Intrusion Detection Evaluation, an attack was
developed using hypertext transfer protocol [2] that
allowed arbitrary execution of shell commands on a
remote machine. This capability is similar to what is

Bottleneck Verification
Attacks: 38
Normal: 660,049

0
10
20
30
40
50
60
70
80
90

100

0 33 66 100 133

False Alarms Per Day

Keystring

Proc. of IEEE SMC Information Assurance and Security Workshop, West Point, NY, June 5-7, 2000

Page 7

commonly provided by the telnet service over
Transmission Control Protocol (TCP) [5][14]. In
order to set up this attack or other similar attacks that
tunnel a service over an unusual protocol, the attacker
must at least have access to the attacked system. To
obtain this, one must either attack the system or be
granted access to the system. If access is via a user-
to-super-user attack, then Bottleneck Verification may
find the precursor attack. However, once the attacker
is granted access, then methods other than Bottleneck
Verification must be used to find the attacker.

For the first version of Macroscope, it is assumed
that shell-level access is obtained via the rlogin or
telnet services operating over the TCP, but we
recognize that this assumption could be incorrect,
either because the attacker uses different services to
access the system, or because the attacker never
obtains a super-user shell.

VII. CONCLUSIONS

Macroscope rapidly and efficiently detects novel
attacks at exceedingly low false alarm rates. It has
been tested using the 1998 DARPA Intrusion
Detection data for which it detected nearly 80% of the
user-to-super-user attacks against a variety of UNIX
systems, while only producing a single false alarm
per day. It has also been used to analyze almost
140,000 previously recorded transcripts, with similar
results. Future work will focus on extending
Macroscope to find other abuses of privilege and to
find more stealthy attacks.

VIII. REFERENCES

[1] “Axent Intruder Alert User Manual,” Version 3.0, October
1998.

[2] D. Anderson, T. Lunt, H. Javitz, A. Tamaru, and A. Valdes.
"Safeguard final report: detecting unusual program behavior
using the NIDES statistical component," Computer Science
Laboratory, SRI International, Menlo Park, CA, Technical
Report, December 1993.

[3] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext
Transfer Protocol -- HTTP/1.0,” RFC 1945, 1996.

[4] M. Bishop,, S. Cheung, C. Wee. "The Threat from the Net",
IEEE Spectrum, 1997, 38(8).

[5] Cisco Systems, Inc. "NetRanger Intrusion Detection System
Technical Overview, ” http://www.cisco.com/warp/public/
778/security/netranger/ntran_tc.htm , 1998.

[6] R. Cunningham, R. Lippmann, D. Fried, S. Garfinkel, I.
Graf, K. Kendall, S. Webster, D. Wyschogrod, and M.
Zissman, "Evaluating intrusion detection systems without
attacking your friends: The 1998 DARPA intrusion detection
evaluation," in Proceedings of ID'99, Third Conference and
Workshop on Intrusion Detection and Response, San Diego,
CA: SANS Institute, 1999.

[7] R. Cunningham, R. Lippmann, D. Kassay, S. Webster, and
M. Zissman, Host-based Bottleneck Verification Efficiently
Detects Novel Computer Attacks,” MILCOM’99,
November 1999.

[8] H. Debar, M. Becker, and D. Siboni, “A Neural Network
Component for an Intrusion Detection System,” in Proc. of
IEEE Computer Society Symposium on Research in Security
and Privacy, 1992.

[9] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff, "A
sense of self for Unix processes," in Proceedings of 1996
IEEE Symposium on Computer Security and Privacy, 1996.

[10] S. Forrest, S. Hofmeyr, and A. Somayaji, "Computer
Immunology," Communications of the ACM, 40(10), 88-96,
1997.

[11] A. K. Ghosh, A. Schwartzbard and M. Shatz, “Learning
Program Behavior Profiles for Intrusion Detection”, in
Proceedings 1st USENIX Workshop on Intrusion Detection
and Network Monitoring, Santa Clara, California, April
1999, http://www.rstcorp.com/~anup/ .

[12] T. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood,
and D. Wolber, "A Network Security Monitor", in IEEE
Symposium on Research in Security and Privacy., 1990, pp.
296-304.

[13] H. Javitz, and A. Valdes, "The NIDES statistical component
description and justification," Computer Science Laboratory,
SRI International, Menlo Park, CA, Technical Report,
March 1994.

[14] T. Heberlein, "Network Security Monitor (NSM) - Final
Report”, U.C. Davis: Feb. 1995,
http://seclab.cs.ucdavis.edu/papers/NSM-final.pdf.

[15] R. Kemmerer. "NSTAT: A Model-based real-time network
intrusion detection system," Computer Science Department,
University of California, Santa Barbara, Report TRCS97-18,
http://www.cs.ucsb.edu/TRs/TRCS97-18.html.

[16] C. Ko, M. Ruschitzka, and K. Levitt, "Execution Monitoring
of Security-Critical Programs in a Distributed System: A
Specification-Based Approach," in Proc. IEEE Symposium
on Security and Privacy, 1997, pp. 134-144, Oakland, CA:
IEEE Computer Society Press.

[17] Lawrence Livermore National Laboratory (1998).
"Network Intrusion Detector (NID) Overview," Computer
Security Technology Center,
http://ciac.llnl.gov/cstc/nid/intro.html.

[18] Lippmann, R.P., et al. “Using Bottleneck Verification to Find
Novel New Attacks with a Low False Alarm Rate,” in
Recent Advances in Intrusion Detection, 1998, Louvain-la-
Neuve, Belgium.

[19] T. Lunt,, "Automated Audit Trail Analysis and Intrusion
Detection: A Survey", in Proceedings 11th National
Computer Security Conference., 1998, pp. 65-73.

[20] MIT Lincoln Laboratory, “Intrusion detection evaluations,”
http://www.ll.mit.edu/IST/ideval/index.html .

[21] V. Paxon, "Bro: A System for Detecting Network Intruders
in Real-Time," in Proceedings of the 7th USENIX Security
Symposium, San Antonio, TX, January 1998,
http://www.aciri.org/vern/papers.html.

[22] P. Porras, and P. Neumann, "EMERALD: Event Monitoring
Enabling Response to Anomalous Live Disturbances," in
Proceedings 20th National Information Systems Security
Conference, Oct 7, 1997.

[23] J. Postel, “Transmission Control Protocol,” RFC 793,
USC/Information Sciences Institute September 1981.

[24] T. Ptacek, and T. Newsham, “Insertion, Evasion, and Denial
of Service: Eluding Network Intrusion Detection,” Secure
Networks, Inc. January, 1998.

[25] M. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewicz, A.
Lambeth, and E. Wall. “Implementing A Generalized Tool
For Network Monitoring”, Eleventh System Administrators
Conference (LISA), 1997.

[26] J. Ryan, L. Meng-Jang, and R. Miikkulainen, "Intrusion
Detection with Neural Nets," in Advances in Neural
Information Processing Systems 10, Edited by M. Jordan, M.
Kearns, and S. Solla, MIT Press: Cambridge, MA, 1998, pp.
943-94

[27] S. Webster, “The Development and Analysis of Intrusion
Detection Algorithms,” Masters Thesis in Computer
Science, Massachusetts Institute of Technology: Cambridge,
MA, June 1998.

