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Abstract Semantic segmentation is a crucial component for perception in auto-
mated driving. Deep neural networks (DNNs) are commonly used for this task, and
they are usually trained on a closed set of object classes appearing in a closed opera-
tional domain. However, this is in contrast to the openworld assumption in automated
driving that DNNs are deployed to. Therefore, DNNs necessarily face data that they
have never encountered previously, also known as anomalies, which are extremely
safety-critical to properly cope with. In this chapter, we first give an overview about
anomalies from an information-theoretic perspective. Next, we review research in
detecting unknown objects in semantic segmentation. We present a method outper-
forming recent approaches by training for high entropy responses on anomalous
objects, which is in line with our theoretical findings. Finally, we propose a method
to assess the occurrence frequency of anomalies in order to select anomaly types to
include into a model’s set of semantic categories. We demonstrate that those anoma-
lies can then be learned in an unsupervised fashion which is particularly suitable in
online applications.

1 Introduction

Recent developments in deep learning have enabled scientists and practitioners to
advance in a broad field of applications that were intractable before. To this end,
deep neural networks (DNNs) are mostly employed which are usually trained in a
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supervised fashion with closed-world assumption. However, when those algorithms
are deployed to real-world applications, e.g., artificial intelligence (AI) systems used
for perception in automated driving, they often operate in an open-world setting
where they have to face diversity of the real world. Consequently, DNNs are likely
exposed to data which is “unknown” to them and therefore possibly beyond their
capabilities to process. For this reason, having methods at hand, that indicate when
a DNN is operating outside of its learned domain to seek for human intervention, is
of utmost importance in safety-critical applications.

A generic term for such a task is anomaly detection, which is generally defined as
recognizing when something departs from what is regarded as normal or common.
More precisely, identifying anomalous examples during inference, i.e., new examples
that are “extreme” in some sense as they lie in low density regimes or even outside of
the training data distribution, is commonly referred to as out-of-distribution (OoD) or
novelty detection in deep learning terminology. The latter is in close connection to the
task of identifying anomalous examples in training data, which is contrarily known
as outlier detection; a term originating from classical statistics to determine whether
observational data is polluted. Those outlined notions are often used interchangeably
in deep learning literature. Throughout this chapter, we will stick to the general term
anomaly and only specify when distinguishing is relevant.

For the purpose of anomaly detection, plenty of methods, ranging from classical
statistical ones (see Sect. 2) to deep-learning-specific ones (see Sect. 4) have been
developed in the past. Nowadays for the most challenging computer vision tasks
tackled by deep learning, where both the model weights and output are of high
dimension (in themillions), specific approaches to anomaly detection are mandatory.

Classical methods such as density estimation fail due to the curse of dimension-
ality. Early approaches identify outliers based on the distance to their neighbors
[KNT00, RRS00], i.e., they are looking for sparse neighborhoods. Other meth-
ods consider relative densities to handle clusters of different densities, e.g., by
comparing one instance either to its k-nearest neighbors [BKNS00] or using an
ε-neighborhood as reference set [PKGF03]. However, the concept of neighborhoods
becomes meaningless in high dimensions [AHK01]. More advanced approaches for
high-dimensional data compute outlier degrees based on angles instead of distances
[KSZ08] or even identify lower-dimensional subspaces [AY01, KKSZ09].

In deep-learning-driven computer vision applications, novelties are typically
regarded as more relevant than outliers. In semantic segmentation, i.e., pixel-level
image classification, novelty detection may even refer to a number of sub-tasks. On
the one hand, we might be concerned with the detection of semantically anomalous
objects. This is also known as anomaly segmentation in the case of semantic segmen-
tation. On the other hand, we also might be concerned with the detection of changed
environmental conditions that are novel. The latter may be effects of a domain shift
and include change in weather, time of day, seasonality, location and time. In this
chapter, we focus only on semantically novel objects as anomalies.

In general, an important capability of AI systems is to identify the unknown. How-
ever, when striving for improved self-reflection capabilities, anomaly detection is not
sufficient. Another important capability for real-world deployment of AI systems is
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to realize that some specific concept appears over and over again and potentially
constitutes a new (or novel) object class. Incremental learning refers to the task
of learning new classes, however, especially in semantic segmentation, mostly in a
strictly supervised or semi-supervised fashion where data for the new class is labeled
with ground truth [MZ19, CMB+20]. This is accompanied by an enormous data col-
lection and annotation effort. In contrast to supervised incremental learning, humans
may recognize a novelty of a given class that appears over and over again very well,
such that in the end a single feedback might be sufficient to assign a name to a novel
class. For the task of image classification, [HZ21] provides an unsupervised exten-
sion of the semantic space, while for segmentation there exist only approaches for
supervised extension of the semantic space via incremental learning.

In this chapter, we first introduce anomaly detection from an information-based
perspective in Sect. 2. We provide theoretical evidence that the entropy is a suitable
quantity for anomaly detection, particularly in semantic segmentation. In Sect. 3,
we review recent developments in the fields of anomaly detection and unsupervised
learning of new classes. We give an overview on existing methods, both in the con-
text of image classification and semantic segmentation. In this setting, we present an
approach to train semantic segmentation DNNs for high entropy on anomaly data
in Sect. 4. We compare our proposed approach against other established and recent
state-of-the-art anomaly segmentation methods and empirically show the effective-
ness of entropy maximization in identifying unknown objects. Lastly, we propose an
unsupervised learning technique for novel object classes in Sect. 5. Further, we pro-
vide an outlook how the latter approach can be combined with entropy maximization
to handle the unknown at run time in automated driving.

2 Anomaly Detection Using Information and Entropy

Anomaly detection is a common routine in any data analysis task. Before training a
statistical model on data, the data should be investigated whether the underlying dis-
tribution generating the data is polluted by anomalies. In this context, anomalies can
generally be understood as samples that do not fit into a distribution. Such anoma-
lous samples can, e.g., be generated in the data recording process either by extreme
observations, by errors in recording and transmission, or by the fusion of datasets
that use different systems of units. Most common for the detection of anomalies in
statistics is the inspection of maximum and minimum values for each feature, or
simple univariate visualization via box-whisker plots or histograms.

More sophisticated techniques are applied in multivariate anomaly detection.
Here, anomalous samples do not necessarily have to contain extreme values for
single features, but rather an untypical combination of them. One of the application
areas for multivariate anomaly detection is, e.g., fraud detection.

In both outlined cases, an anomaly z ∈ R
d can be qualified as an observation that

occurs at a location of extremely low density of the underlying distribution p(z) or,
equivalently, has an exceptionally high value of the information
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I (z) = − log p(z) . (1)

Here, two problems occur: First, it is generally not specified what is considered as
exceptionally high. Second, p(z) and thereby I (z) are generally unknown. Regarding
the latter issue, however, the estimate Î (z) = − log p̂(z) can be used which in turn
relies on estimating p̂(z) from data associated to the probability density function
p(z). Estimation approaches for p̂(z) can be distinguished between parametric and
non-parametric ones.

The Mahalanobis distance [Mah36] is the best known parametric method for
anomaly detection which is based on information of the multivariate normal distri-
bution N . In fact, if z ∼ N (μ, �)with meanμ ∈ R

d and positive definite covariance
matrix � ∈ R

d×d , then

I (z) = − log

(
1

(2π)d/2(det�)1/2
exp

(
−1

2
(z − μ)T�−1(z − μ

))
(2)

= d

2
log(2π) + 1

2
log(det�) + 1

2
(z − μ)T�−1(z − μ) = 1

2
d�(z,μ)2 + c ,

(3)

where
d� :=

√
(z − μ)T�−1(z − μ) (4)

denotes the Mahalanobis distance. The estimation Î (z) is obtained by replacing μ

and� by the arithmetic mean μ̂ and the empirical covariance matrix �̂, respectively,
and likewise d�(z,μ) by the empirical Mahalanobis distance d�̂(z, μ̂).

In contrast, non-parametric techniques of anomaly detection rely on non-
parametric techniques to estimate p(z). Here, a large variety of methods from his-
tograms, kernel estimators and many others exist [Kle09].We note, however, that the
non-parametric estimation of densities and information generally suffers from the
curse of dimensionality. To alleviate the latter issue in anomaly detection, estimation
of information is often combined with techniques of dimensionality reduction, such
as, e.g., principal component analysis [HTF07] or autoencoders [SY14].

When using non-linear dimensionality reduction with autoencoders, densities
obtained in the latent space depend on the encoder and not only on the data itself.
This points towards a general problem in anomaly detection. If p(z) is the density
of a random quantity z and z′ = φ(z) is an equivalent encoding of the data z using a
bijective and differentiable mapping φ : Rd �→ R

d , the change of variables formula
[Rud87, AGLR21]

p(z′) = p(z) · | det (∇z′z) | = p(z) · | det (∇zφ
−1(z)

) | (5)

implies that the information of z′ is

I (z′) = − log (p(z)) − log
(∣∣det (∇zφ

−1(z)
)∣∣) , (6)
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where ∇zφ
−1(z) denotes the Jacobian matrix of the inverse function φ−1. Thus,

whenever a high value of I (z) indicates an anomaly, there always exists another
equivalent representation of the data z′, where the information I (z′) is low. In other
words, if z is remote from other instances z j of a dataset and therefore considered
an anomaly, there will be a transformation z′ = φ(z) that brings z′ right into the
center of the data z′

j = φ(z) j . In fact, via the Rosenblatt transformation [Ros52] any
representation z of the data can be expressed via a representation z′ = φ(z) where
I (z′) is constant over all data points. This stresses the importance to understand that
an anomaly always refers to probability and encoding of the data z. This is true for
both the original data and its approximated lower-dimensional representation.

As a side remark, autoencoders designed from neural networks have been very
successfully applied in anomaly detection. Encoder and decoder networks possess the
universal approximationproperty [Cyb89]. Furthermore, common training losses like
the reconstruction error are invariant under a change of the representation on latent
spaces. Therefore, additional insights seem to be required to explain the empirical
success of anomaly detection with autoencoders which is, however, not the scope of
this chapter.

Another way of looking at the issue of anomaly detection in the context of differ-
ent representations of same data is an explicit choice of a reference measure. This
reference measure represents to which extent, or how likely, data is contaminated
by potential anomalies. Suppose we can associate the probability density panom(z)
to the reference measure, then we can base anomaly detection on the quotient of
densities, i.e., the odds p(z)

panom(z) , and apply a threshold whenever this ratio is low or,
equivalently, when the relative information

I rel(z) := − log

(
p(z)

panom(z)

)
= I (z) − I anom(z) (7)

is high. We note that the relative information is independent under changes of the
representation z′ = φ(z) as the − log | det(∇zφ

−1(z))| term from (6) occurs once
with positive sign in I (z′) and once with negative sign in −I anom(z′) and therefore
cancels. Thus, the choice of a reference measure and the choice of a representation
for the data is largely equivalent.

In practical situations, panom(z) is often represented by some data {zanomi }i∈T ′ that
are either simulated or drawn from some data source of known anomalies. A binary
classifier p̂(anom|z) can thenbe trained onbasis of proper data {zi }i∈T and anomalous
data {zanomi }i∈T ′ . The assumed prior probability p(anom) for anomalies, i.e., the
degree of contamination, acts as a threshold for the estimated odds. Equivalently, the
estimate of the relative information

Î rel(z) = − log

(
p̂(z)

p̂anom(z)

)
Bayes’ Theorem= − log

(
p̂(non-anom|z)p(z)

p(non-anom)
· p(anom)

p̂(anom|z)p(z)

)

(8)

= − log

(
1 − p̂(anom|z)
p̂(anom|z) · p(anom)

1 − p(anom)

)
(9)
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= − log

(
1 − p̂(anom|z)
p̂(anom|z)

)
− log

(
p(anom)

1 − p(anom)

)
(10)

= − log

(
1 − p̂(anom|z)
p̂(anom|z)

)
+ c (11)

with the prior log-odds c = − log
(

p(anom)

1−p(anom)

)
being a parameter controlling the

threshold for the binary classifier p̂(anom|z).
If specifying what is an exceptionally high value for the information I (z) or

relative information I rel(z), the distinction between the detection of outliers in the
training data and the detection of novelties during inference has to be taken into
account. In outlier detection, observations, which have high (relative) information
but which are in agreement with the extreme value of the (relative) information

Imax = max
i∈T

I (zi ) or I rel max = max
i∈T

I rel(zi ), (12)

are usually intentionally not eliminated. An outlier z for the level of significance
0 < α < 1 can then be detected using the condition

P{zi }i∈T (Imax > I (z)) ≤ α or P{zi }i∈T (I rel max > I rel(z)) ≤ α. (13)

Note again that the distribution of I rel(z j ) has to be estimated to derive the associated
distribution for the extreme values, see, e.g., [DHF07], and also I rel(z) requires the
estimation p̂(z) or p̂anom(z). Therefore, a quantification of the epistemic uncertainty
is essential for a proper outlier detection. Given the already mentioned problems of
density estimation in high dimension, epistemic uncertainties may play a major role,
unless a massive amount of data is available.

For the case of novelty detection taking place at inference, a comparison of the
information of a single instance I rel(z) with the usual distribution of information Pzi

seems to be in order, which leads to the novelty criterion for level of significance
0 < α < 1

Pzi (I (zi ) > I (z)) ≤ α or Pzi (I rel(zi ) > I rel(z)) ≤ α. (14)

As a variant to this criterion, I rel(zi ) could also be replaced by the extreme value
statistics over the number of inferences alleviating the problem of generating false
novelties by multiple testing. What has been stated on the necessity to quantify the
epistemic uncertainty for the case of outlier detection equally applies for novelty
detection.

While anomaly detection is generally seen as a sub-field of unsupervised learning,
some specific effects occur in the case of novelty detection in supervised learning.
During the phase of inference, the data z = (y, x) contain an unobserved component
y ∈ S, which, e.g., represent the instance’s label in a classification problem for the
classes contained in S. Using the decomposition p(z) = p(y, x) = p(y|x)p(x), one
obtains the (relative) information from
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I (z) = I (y|x) + I (x), or I rel(z) = I (y|x) + I rel(x) − I anom(y|x), (15)

where I (y|x) = − log(p(y|x)), I anom(y|x) = − log(panom(y|x)) is the conditional
information on the right hand side. Often, for the data of the reference measure
panom(z), the labels are not contained in S. In this case, one uses a non-informative
conditional distribution panom(y|x) = 1

|S| . If this is done, the last term of (15)
becomes a constant that can be integrated into a threshold parameter.

The (relative) information cannot be computed without knowing y. Therefore,
the conditional expectation is used as an unbiased estimate, yielding the expected
information

E I (x) = Ey∼p(y|x)(I rel(z)) = E(x) + I rel(x) + brel, (16)

where E(x) = ∑
y∈S p(y|x)I (y|x) is the expected information, or entropy, of the

conditional distribution p(y|x) and brel is zero for the information and equal to
− log(|S|) for the relative information with non-informative conditional distribution
panom(y|x). Note that E(x) is bounded by log(|S|). Therefore, under normal cir-
cumstances, the term I rel(x) will outweigh E(x) by far. However, in problems like
semantic segmentation, each component of x is assigned a label from S. This implies
solving |I| classification problems, where I denotes the pixel space of x, thus the
maximum value for E(x) yields |I| log(|S|).

Therefore, the first term in (16) contains significant contributions, especially in
situations where |I| is large. The second term, I rel(x) loses importance under the
hypothesis that the probability of the inputs x does not vary greatly. Despite this
hypothesis could be supported by fair sampling strategies, it requires further critical
evaluation. But at least to a significant part, the expected information as an anomaly
measure with regard to instance x is given by a dispersion measure, namely the
entropy of the conditional probability. As the entropy can be well estimated using
a supervised machine learning approach to estimate p̂(y|x) from the data {z j } j∈T ,
this part of the information is well accessible in contrast to I rel(x), which requires
density estimation in high dimension.

Lastly in this section, let us give a remarkon the role of anomaly data {zanomj } j∈T ′ =
{xanomj } j∈T ′ . If such data is available, it is desirable to train the machine learning
model p̂(y|x) to produce high values for E(xanomj ) so that the tractable part of the
expected information E I (x) shows good separation properties. This requirement
can be inserted to the loss function, as it has been proposed in [HAB19, HMKS19]
for classification. In fact, as the entropy E(x) is maximized by the uniform (non-
informative) label distribution p(y|xanomj ) = 1

|S| , the aforementioned loss will favor
this prediction on anomalous inputs {xanomj } j∈T ′ . In this chapter, in Sect. 4, we will
extend this approach to the computer vision task of semantic segmentation, after
having reviewed related works based on deep learning in the following section.
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3 Related Works

After the introduction to anomaly detection from a theoretical point of view, we now
turn to anomaly detection in deep learning. In this section, we review research in the
direction of detecting and learning unknown objects in semantic segmentation.

3.1 Anomaly Detection in Semantic Segmentation

An emerging body of work explores the detection of anomalous inputs on image
data, where the task is more commonly referred to as anomaly or out-of-distribution
(OoD) detection. Anomaly detection was first tackled in the context of image classi-
fication by introducing post-processing techniques applied to softmax probabilities
to adjust the confidence values produced by a classification model [HG17, LLLS18,
LLS18, HAB19, MH20]. These methods have proven to successfully lower con-
fidence scores for anomalous inputs at image-level, which is why they were also
adapted to anomaly detection in semantic segmentation [ACS19, BSN+19], i.e.,
to anomaly segmentation by treating each single pixel in an image as a potential
anomaly. Although those methods represent good baselines, they usually do not gen-
eralize well to segmentation, e.g., due to the high prediction uncertainties at object
boundaries. The latter problem can, however, be mitigated by using segment-wise
prediction quality estimates [RCH+20], an approach which has also demonstrated
to indicate anomalous regions within an image [ORF20].

Recent works have proposed more dedicated solutions to anomaly segmentation.
Among the resulting methods, many originate from uncertainty quantification. The
intuition is that anomalous regions in an image correlate with high uncertainty. In this
regard, early approaches estimate uncertainty using Bayesian deep learning, treating
model parameters as distributions instead of point estimates [Mac92, Nea96]. Due
to the computational complexity, approximations are mostly preferred in practice,
which comprise, e.g., Monte-Carlo dropout [GG16], stochastic batch normaliza-
tion [AAM+19], or an ensemble of neural networks [LPB17, GDS20]; with some
of them also being extended to semantic segmentation in [BKC17, KG17, MG19].
Even when using approximations, Bayesian models still tend to be computationally
expensive. Thus, they are not well suited to real time semantic segmentation which
is required for safe automated driving.

This is why tackling anomaly segmentation with non-Bayesian methods are more
favorable from a practitioner’s point of view. Some approaches therefore include
tuning a previously trained model to the task of anomaly detection, by either mod-
ifying its architecture or exploiting additional data. In [DT18], anomaly scores are
learned by adding a separate branch to the neural network. In [HMD19, MH20] the
network architecture is not changed but auxiliary outlier data, which is disjoint from
the actual training data, is induced into the training process to learn anomalies. The
latter idea motivated several works in anomaly segmentation [BSN+19, BKOŠ19,
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JRF20, CRG21]. Nonetheless, such models have to cope with multiple tasks, hence
possibly leading to a performance loss with respect to the original semantic seg-
mentation task [VGV+21]. Moreover, when including outlier datasets in the training
process, it cannot be guaranteed that the chosen outlier data is a good proxy for all
possible anomalies.

Another recent line of works performs anomaly segmentation via generativemod-
els that reconstruct original input images. These methods assume that reconstructed
images will better preserve the appearance of known image regions than that of
unknown ones. Anomalous regions are then identified by means of pixel-wise dis-
crepancies between the original and reconstructed image. Thus, such an approach
is specifically designed to anomaly segmentation and has been extensively studied
in [CM15, MVD17, LNFS19, XZL+20, LHFS21, BBSC21]. The main benefit of
these approaches is that they do not require any OoD training data, allowing them
to generalize to all possible anomalous objects. However, all these methods are lim-
ited by the integrated discrepancy module, i.e., the module that identifies relevant
differences between the original and reconstructed image. In complex scenes, such
as street scene images for automated driving, this might be a challenging task due to
the open world setting.

Regarding the dataset landscape, only few anomaly segmentation datasets exist.
The LostAndFound dataset [PRG+16] is a prominent example which contains
anomalous objects in various streets in Germany while sharing the same setup as
Cityscapes [COR+16]. LostAndFound, however, considers children and bicycles as
anomalies, even though they are part of the Cityscapes training set. This was fil-
tered and refined in Fishyscapes [BSN+19]. Another anomaly segmentation dataset
accompanies the CAOS benchmark [HBM+20], which considers three object classes
from BDD100k [YCW+20] as anomalies. Both, Fishyscapes and CAOS, try to mit-
igate low diversity by complementing their real images with synthetic data.

Efforts to provide anomalies in real images have beenmade in [LNFS19] by sourc-
ing and annotating street scene images from the web and in [LHFS21, SKGK20] by
capturing and annotating images with small objects placed on the road. Just recently,
the datasets published alongside the SegmentMeIfYouCan benchmark [CLU+21]
build upon those works, particularly contributing to broad diversity of anomalous
street scenes as well as objects.

3.2 Incremental Learning in Semantic Segmentation

Building upon the detection of anomalies, training data can be enriched in order to
learn novel classes. To avoid training from scratch, several approaches tackle the task
of incremental or even continuous learning, which can be understood as adapting
to continuously evolving environments. Besides learning novel classes, incremental
learning also encompasses adapting to alternative tasks or other domains. A com-
prehensive framework to compare these different learning scenarios is provided in
[vdVT19].
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When learning novel classes, the primary issue incremental learning approaches
face is a loss of the original performance on previously learned classes, that is com-
monly known as catastrophic forgetting [MC89]. To overcome this problem, amodel
needs to be both, “stable” and “plastic”, i.e., the model needs to retain its original
knowledge while being able to adapt to new environments. The complexity of meet-
ing these requirements at the same time is called the stability-plasticity-dilemma
[AR05]. In this regard, proposed solution strategies can be separated into three cat-
egories, which are either based on architecture, regularization, or rehearsal. Most of
these methods have been applied to image classification first.

Architecture strategies employ separate models for each sequential incremental
learning task, combined with a selector to determine which model will be used for
inference [PUUH01, CSMDB19, ARC20]. However, these approaches suffer from
data imbalances, consequently standard classification algorithms tend to favor the
majority class. Approaches tomitigate skewed data distributions are usually based on
over- or undersampling. Another line of works, such as [RRD+16, RPR20], employ
“growing” models, i.e., enlarging the model capacity by increasing the number of
model parameters for more complex tasks. In [ACT17], the authors propose an auto-
mated approach to select the proper task-specific model at test time. More efficient
approaches were introduced in [GK16, YYLH18], that restrict the adaptation of
parameters to relevant parts of the model in terms of the new task. The Self-Net
[MCE20] is made up of an autoencoder that learns low-dimensional representations
of themodels belonging to previously learned tasks.By that, retaining existing knowl-
edge via approximating the old weights instead of saving them directly is accom-
panied with an implicit storage compression. The incremental adaptive deep model
developed in [YZZ+19] enables capacity scalability and sustainability by exploiting
the fast convergence of shallow models at the initial stage and afterwards utilizing
the power of deep representations gradually. Other procedures perform continuous
learning, e.g., using a random-forest [HCP+19], an incrementally growing DNN,
retaining a basic backbone [SAR20], or nerve pruning and synapse consolidation
[PTJ+21].

Regularization strategies can be further distinguished between weight regulariza-
tion, i.e., measuring the importance of weights, and distillation, i.e., transferring a
model’s knowledge into another. The former identifies parameters with great impact
on the original tasks that are suppressed to be updated. Elastic weight consolida-
tion (EWC) [KPR+17] is one representative method, evaluating weight importance
based on the Fisher information matrix, while the synaptic intelligence (SI) method
[ZPG17] calculates the cumulative change of Euclidean distance after retraining
the model. Both regularization methods were further enhanced, e.g., by combining
them [CDAT18, AM19], or by including unlabeled data [ABE+18]. Another idea to
maintain model stability was adapted in [ZCCY21, FAML19], updating gradients
based on orthogonal constraints. Bayesian neural networks are applied in [LKJ+17]
to approximate a Gaussian distribution of the parameters from a single to a combined
task.

Distillation is a regularization method, where the knowledge of an old model
can be drawn into a new model to partly overcome catastrophic forgetting. Knowl-



Detecting and Learning the Unknown in Semantic Segmentation 287

edge distillation, proposed in [HVD14], was originally invented to transfer knowl-
edge from a complex into a simple model. The earliest approach, which applies
knowledge distillation to incremental learning, is called learning without forgetting
(LwF) [LH18]. A combination of knowledge distillation and EWC was proposed in
[SCL+18]. Further approaches based on distillation loss are e.g., [JJJK18, YHW+19,
KBJC19, LLSL19].

Rehearsal or pseudo-rehearsal-based methods, which were already proposed in
[Rob95], mitigate catastrophic forgetting by allowing themodel to review old knowl-
edge whenever it learns new tasks. While rehearsal-based methods retain a subset of
the old training data, pseudo-rehearsal strategies construct a generator during retrain-
ing,which learns to produce pseudo-data as similar to the old training data as possible.
Hence, they provide the advantages of rehearsal even if the previously learned infor-
mation is unavailable. Methods reusing old data are, e.g., incremental classifier and
representation learning (iCaRL) [RKSL17], which simultaneously learns classifiers
and feature representation, or themethod presented in [CMJM+18],which proposes a
representativememory. The bias correction (BiC)method [WCW+19] keeps old data
in a similarmanner, but handles the data imbalancedifferently.Most pseudo-rehearsal
approaches include generative adversarial networks (GANs) [OOS17, WCW+18,
MSC+19, OPK+19] or a variational autoencoder (VAE) [SLKK17]. The method
presented in [HPL+18] combines distillation and retrospective (DR), whereby base-
line approaches such as LwF are outperformed by a large margin.

Only fewworks exist, such as [KBDFs20, MZ21, TTA19], that adapt incremental
learning techniques to semantic segmentation. They adjust knowledge distillation,
using no or only a small portion of old data, respectively. One challenge of continuous
learning for semantic segmentation is that images may contain unseen as well as
known classes. Hence, annotations that are restricted to some task assign a great
amount of pixels to a background class, exhibiting a semantic distribution shift.
The authors of [CMB+20] provide a framework that mitigates biased predictions
towards this background class. While existing approaches require supervision, we
employ incremental learning in a semi-supervised fashion, as we do not have access
to any ground truth including novelties.

4 Anomaly Segmentation

The task of anomaly detection in the context of semantic segmentation, i.e., identi-
fying anomalies at pixel-level, is commonly known as anomaly segmentation. For
this task several approaches have been proposed that are either based on uncer-
tainty quantification, generative models, or training strategies specifically tailored to
anomaly detection. In this chapter, wewill first review some of thosewell-established
methods and, subsequently, report a performance comparison with respect to their
capability of identifying anomalies. In particular, we will demonstrate empirically
that entropymaximization yields great performance on this segmentation task, which
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is in accordance to the statement of the entropy’s importance from the information-
based perspective as presented in Sect. 2.

4.1 Methods

Let x ∈ I
H×W×3, I = [0, 1], denote (normalized) color images of resolution H × W .

Feeding those images to a semantic segmentation network F : IH×W×3 → R
H×W×S ,

the model produces pixel-wise class scores y = (yi,s)i∈I,s∈S = F(x) ∈ R
H×W×S ,

with the set of pixel locations denoted by I = {1, . . . , H} × {1, . . . , W } and the
set of trained (hence known) classes denoted by S = {1, . . . , S}. The correspond-
ing predicted segmentation mask is given bym = (mi )i∈I ∈ {1, . . . , S}H×W , where
for mi = argmaxs∈S yi,s ∀ i ∈ I the maximum a-posteriori probability principle is
applied. Regarding the task of anomaly segmentation, the ultimate goal is then to
obtain a score map a = (ai )i∈I ∈ R

H×W that indicates the presence of an anomaly
at each pixel location i ∈ I within image x, i.e., the higher the score the more likely
there should be an anomaly.

Each of the methods employed in this section provides such score maps. Their
underlying segmentation networks (DeepLabV3+, [CZP+18]) are all trained on
Cityscapes [COR+16], i.e., objects not included in the set of Cityscapes object classes
are considered as anomalies since they have not been seen during training and thus
are unknown. The anomaly detection methods, however, differ in the way how the
scores are obtained, which is why we briefly introduce the different techniques in
the following.

Maximum softmax probability: The most commonly-used baseline for anomaly
detection at image level is thresholding at the maximum softmax probability (MSP)
[HG17]. Therefore, thismethod assumes that anomalies are attached a lowconfidence
or, equivalently, high uncertainty. Using MSP in anomaly segmentation, the score
map is computed via

ai = 1 − max
s∈S

softmax(yi ) ∀ i ∈ I . (17)

ODIN: A simple extension to improve MSP is applying temperature scaling as
well as adding perturbations, which is known as out-of-distribution detector for
Neural networks (ODIN) [LLS18]. In more detail, let t ∈ R>0 be a hyperparameter
for temperature scaling and let ε ∈ R≥0 be a hyperparameter for the perturbation
magnitude. Then, the input x is modified as

x̃ = (x̃i )i∈I with x̃i = xi − ε sign

(
− ∂

∂xi
logmax

s∈S
softmax

(yi

t

))
∀ i ∈ I ,

(18)
yielding prediction ỹ = F(x̃) for which thresholding is applied at the MSP, i.e., the
anomaly score map is given by
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ai = 1 − max
s∈S

softmax(ỹi ) ∀ i ∈ I . (19)

Mahalanobis distance: This anomaly detection approach estimates how well latent
features fit to those observed in the training data. Let (L − 1) denote the penultimate
layer of a networkFwith L layers. In [LLLS18] the authors have shown that training a
softmax classifier fits a class-conditional Gaussian distribution for the output features
fL−1. Hence, under that assumption

P
(
y(L−1)

i

∣∣∣ yi,s = 1
)

= N
(
y(L−1)

i

∣∣∣ μs, �s

)
∀ i ∈ I , (20)

where y(L−1) = fL−1(x) ∈ R
H×W×CL−1 denotes the feature map of the penultimate

layer given inputx, andy the correspondingone-hot encodedfinal target. Theminimal
Mahalanobis distance d�s (x,μs) is then an obvious choice for an anomaly score map

ai = min
s∈S

d�s (x,μs) = min
s∈S

(y(L−1)
i − μs)

T�−1
s (y(L−1)

i − μs) ∀ i ∈ I , (21)

cf. (2). Note that the class means μs ∈ R
CL−1 and class covariances �s ∈ R

CL−1×CL−1

are generally unknown, but can be estimated by means of the training dataset.

Monte-Carlo dropout: In semantic segmentation, Monte Carlo dropout represents
the most prominent technique to approximate Bayesian neural networks. According
to [MG19], (epistemic) uncertainty is measured as the mutual information which
might serve as anomaly score map, i.e.,

ai = −
∑
s∈S

(
1

R

∑
r∈R

p(r)
i,s

)
log

(
1

R

∑
r∈R

p(r)
i,s

)
− 1

R

∑
s∈S

∑
r∈R

p(r)
i,s log p

(r)
i,s ∀ i ∈ I,

(22)

with p(r)
i = (p(r)

i,s )s∈S = softmax(y(r)
i ) in the sampling round r ∈ R = {1, . . . R}.

Typically, 8 ≤ R ≤ 12.

Void classifier:Neural networks can be trained to output confidences for the presence
of anomalies [DT18]. One approach in this context is adding an extra class to the
set S of previously trained classes of a semantic segmentation network, which then
also requires annotated anomaly data to learn from. To this end, the void class in
Cityscapes is a popular choice as proxy for all possible anomaly data [BSN+19], in
particular if the segmentation model was originally trained on Cityscapes. Thus, the
softmax output of the additional class s = S + 1 represents the anomaly score map,
i.e.,

ai = softmaxs=S+1(y′
i ) ∀ i ∈ I , (23)

where y′ = (y′
i )i∈I = (y′

i,s)i∈I,s∈{1,...,S+1} = F′(x),F′ : IH×W×3 → R
H×W×(S+1).
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Learned embedding density: Let f�(x) ∈ R
H�×W�×C� denote the feature map, or

equivalently feature embedding, at layer � ∈ L = {1, . . . , L} of a semantic segmen-
tation network. By employing normalizing flows, the true distribution of features
p(f�(x)) ∈ I

H�×W� , where x ∈ X train is drawn from the training dataset, can be trained
via maximum likelihood, i.e., normalizing flows learn to produce the approximation
p̂(f�(x)) ≈ p(f�(x)) [BSN+19]. At test time, the negative log-likelihood measures
how well features of a test sample fit to the feature distribution observed in the
training data, yielding the anomaly score map

a = uplin
(−log p̂(f�(x))

)
(log applies log element-wise) (24)

with uplin : RH�×W� → R
H×W denoting (bi-)linear upsampling.

Image resynthesis: After obtaining the predicted segmentation mask m ∈
{1, . . . , S}H×W , m = (mi )i∈I , this output can be further processed by a generative
modelG : {1, . . . , S}H×W → I

H×W×3 aiming to reconstruct the original input image,
i.e., x′ = G(m) ≈ x. This process is also called image resynthesis, and the intuition
is that reconstruction quality for anomalous objects is worse than for those on which
the generative model is trained on. To determine pixel-wise anomalies, a discrepancy
network [LNFS19]D : {1, . . . , S}H×W × I

H×W×3 × I
H×W×3 → R

H×W can then be
employed, which classifies whether one pixel is anomalous or not, based on infor-
mation provided by m, x′, and x. Here, D is trained on intentionally triggered clas-
sification mistakes that are produced by flipping classes on predicted segmentation
masks. The anomaly score map is given by the output of the discrepancy network,
i.e.,

a = D(m, x′, x) = D(m,G(m), x) . (25)

SynBoost: The image resynthesis approach is limited by the employed discrepancy
module D. In [BBSC21], the authors proposed to extend the discrepancy network
by incorporating further inputs based on uncertainty, such as the pixel-wise softmax
entropy

Hi (x) = −
∑
s∈S

softmaxs(yi ) log(softmaxs(yi )) ∀ i ∈ I, (26)

and the pixel-wise softmax probability margin

Mi (x) = 1 − max
s∈S

(softmax(yi )) + max
s∈S\{mi }

(softmax(yi )) ∀ i ∈ I . (27)

Furthermore, D is trained on anomaly data provided by the Cityscapes void class.
Thus, the anomaly score map is given by

a = D(m, x′, x,H(x),M(x)) = D(m,G(m), x,H(x),M(x)) . (28)

with H(x) = (Hi (x))i∈I and M(x) = (Mi (x))i∈I .
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Entropymaximization: Adesirable property of semantic segmentation networks is
that they attach high prediction uncertainty to novel objects. To this end, the softmax
entropy, see (26), is one intuitive uncertainty measure. The segmentation network
can be trained for high entropy on anomalous inputs via the multi-criteria training
objective [CRG21]

J total = (1 − λ)E(y,x)∼D[JCE(F(x), y)] + λEx∼Danom [J anom(F(x))] , (29)

where D denotes non-anomaly training data (labels available) and Danom denotes
anomaly training data (no labels available). In this approach, the COCO dataset
[LMB+14] represents a set of so-called known unknowns, which is used as proxy
for Danom with the aim to represent all possible anomaly data. Moreover, λ ∈ I is a
hyperparameter controlling the impact of each single loss function on the overall loss
J total. For non-anomaly data, the loss function is chosen to be the commonly-used
cross-entropy JCE, while for anomaly data, i.e., for known unknowns, we have

J anom(F(x)) = − 1

H · W

∑
i∈I

1

S

∑
s∈S

log softmaxs(yi ) , x ∼ Danom . (30)

Therefore, minimizing J anom is equivalent to maximizing the softmax entropy since
both reach their optimum when the softmax probabilities are uniformly distributed,
i.e., softmaxs(yi ) = 1

S ∀ s ∈ S, i ∈ I. After training, the anomaly score map is then
given by the (normalized) softmax entropy

ai = 1

log S
Hi (x) = − 1

log S

∑
s∈S

softmaxs(yi ) log(softmaxs(yi )) ∀ i ∈ I . (31)

From an information-based point of view, the entropy contains significant contribu-
tion to the expected information. This particularly applies for instance predictions in
semantic segmentation, which motivates the entropy maximization approach for the
detection of unknown objects, cf. Sect. 2.

4.2 Evaluation and Comparison of Anomaly Segmentation
Methods

Discriminating between anomaly and non-anomaly is essentially a binary classifi-
cation problem. In order to evaluate the pixel-wise anomaly detection capability, we
use the receiver operating characteristic (ROC) curve as well as the precision recall
(PR) curve. While for the ROC curve the true positive rate is plotted against the false
positive rate at varying thresholds, in the PR curve precision is plotted against recall
at varying thresholds. Note that we consider anomalies as the positive class, i.e.,
correctly identified anomaly pixels are considered as true positive. In both curves,
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the degree of separability is then measured by the area under the curve (AUC), where
better separability corresponds to a higher AUC.

Themain difference between these two performancemetrics is how they copewith
class imbalance.While the ROC curve incorporates the number of true negatives (for
the computation of the false positive rate), in PRcurves true negatives are ignored and,
consequently, more emphasis is put on finding the positive class. With the anomaly
score maps as defined in Sect. 4.1, in our case, finding the positive class corresponds
to identifying anomalies.

As evaluation datasets, we use LostAndFoundNoKnown [BSN+19] and RoadOb-
stacle21 [CLU+21], which are both part of the public SegmentMeIfYouCan anomaly
segmentation benchmark.1 LostAndFoundNoKnown consists of 1043 road scene
images where obstacles are placed on the road. This dataset is a subset of the promi-
nent LostAndFound dataset [PRG+16] but considers only obstacles from object
classeswhich are disjoint to those in theCityscapes labels [COR+16].More precisely,
images with humans and bicycles are removed such that the remaining obstacles in
the dataset also represent anomalies to models trained on Cityscapes. Similar scenes
can be found in RoadObstacle21. That dataset was published alongside the Segment-
MeIfYouCan benchmark and contains 327 road obstacle scene images with diverse
road surfaces as well as diverse types of anomalous objects. Both datasets restrict the
region of interest to the road where anomalies appear. This task is extremely safety-
critical as it is mandatory in automated driving to make sure that the drivable area is
free of any hazard. All anomaly segmentation methods introduced in the preceding
Sect. 4.1 are suited to be evaluated on these datasets. We provide a visual comparison
of anomaly scores produced by the tested methods in Fig. 1. We report numerical
results in Fig. 2 and in the corresponding Table1.

In general, we observe that anomaly detection methods originally designed for
image classification, includingMSP, ODIN andMahalanobis, do not generalize well
to anomaly segmentation. As the Mahalanobis distance is based on statistics of the
Cityscapes dataset, the anomaly detection is likely to suffer from performance loss
under domain shift. The same holds forMonte Carlo dropout and learned embedding
density, particularly resulting in poor performance inRoadObstacle21,where various
road surfaces are available. Therefore, those methods potentially act as domain shift
classifier rather than as detector of unknown objects.

The detection methods based on autoencoders, namely image resynthesis and
SynBoost, show to be better suited for the task of anomaly segmentation, clearly
being superior to all the approaches that already have been discussed. Autoencoders
are limited by their discrepancy module, and we observe that anomaly detection
performance significantly benefits from incorporating uncertainty measures, as done
by SynBoost. Only entropy maximization reaches similar anomaly segmentation
performance, even outperforming SynBoost in RoadObstacle21. This again can be
explained by the diversity of road surfaces, which detrimentally affects the discrep-
ancy module.

1 www.segmentmeifyoucan.com.

www.segmentmeifyoucan.com
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[Input & annotation] [MSP] [ODIN]

[Mahalanobis] [MC dropout]

[Void classifier] [Embedding density]

[Image resynthesis] [SynBoost] [Entropy max.]

Fig. 1 Qualitative comparison of anomaly score maps for one example image of RoadAnomaly21.
Here, red indicates high anomaly scores while blue indicates low ones. The ground truth anomaly
instance is highlighted by green contours. Note that the region of interest is restricted to the road,
highlighted by red contours in the annotation

As a final remark, we draw attention to the use of anomaly data. The void
classifier follows the same intuition as entropy maximization by including known
unknowns, but cannot reach nearly as good anomaly segmentation performance. We
conclude that the COCO dataset is better suited as proxy for anomalous objects than
the Cityscapes unlabeled objects. Moreover, the results of that method empirically
demonstrate the impact of the entropy in anomaly segmentation, which is in accor-
dance to the statement of the entropy’s importance from the information perceptive
described in Sect. 2.

4.3 Combining Entropy Maximization and Meta
Classification

Meta classification is the task of discriminating between a true positive prediction
and a false positive prediction. For semantic segmentation, this idea was originally
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Max Softmax Probability ODIN Mahalanobis Distance
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Fig. 2 Receiver operating characteristic (left column) and precision recall (right column) curves
for LostAndFoundNoKnowns (top row) and RoadObstacle21 (bottom row), respectively. Dashed
red lines indicate the performance of random guessing, i.e., the “no-skill” baseline. The degree of
separability between anomaly and non-anomaly is measured by the area under the curve

proposed in [RCH+20]. Bymeans of hand-craftedmetrics,which are based on disper-
sion measures, geometry features, or location information, all derived from softmax
probabilities, meta classifiers have shown to reliably identify incorrect predictions
at segment level. More precisely, connected components of pixels sharing the same
class label are considered as segments in this context, and a false positive segment
then corresponds to a segment-wise intersection-over-union (IoU) of 0.

Themeta classification approach can straightforwardly be adapted to post-process
anomaly segmentation masks. This seems particularly reasonable in combination
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Table 1 Pixel-wise anomaly detection performance on the datasets LostAndFoundNoKnown and
RoadObstacle21, respectively. Themain evaluationmetric represents the area under precision-recall
curve (AuPRC). Moreover, the area under receiver operating characteristic (AuROC) and the false
positive rate at a true positive rate of 95% (FPR95TPR) are reported for further insights

Method LostAndFoundNoKnown RoadObstacle21

AuPRC ↑ AuROC ↑ FPR95TPR ↓ AuPRC ↑ AuROC ↑ FPR95TPR ↓
Maximum
Softmax

30.1 93.0 33.2 10.0 95.5 17.9

ODIN 52.9 95.1 30.0 11.9 96.0 16.4

Mahalanobis 55.0 97.5 12.9 19.5 95.1 21.7

Monte Carlo
Dropout

36.8 92.2 35.5 4.9 83.5 50.3

Void
classifier

4.8 79.5 47.0 10.4 89.7 41.5

Embedding
density

61.7 98.0 10.4 0.8 81.0 46.4

Image
resynthesis

42.7 96.4 17.4 37.5 98.6 4.7

SynBoost 81.7 98.3 4.6 71.3 99.4 3.2

Entropy
maximiza-
tion

77.9 98.0 9.7 76.0 99.7 1.3

with entropymaximization. Since entropymaximization generally increases the sen-
sitivity towards predicting anomalies, it is possible that the entropy is also increased
at pixels belonging to non-anomalous objects. In the latter case, this would yield
false positive anomaly instance predictions, which, however, can be identified and
discarded afterwards by meta classification. The concept of trading false-positive
detection for anomaly detection performance is motivated by [CRH+20]. Moreover,
meta classifiers are expected to considerably benefit from entropy maximization,
since in the original work [RCH+20] the entropy as metric has already been observed
to be well correlated to the segment-wise IoU.

In our experiments on LostAndFound [PRG+16], we employ a logistic regres-
sion as meta classifier that is applied as a post-processing step on top of softmax
probabilities. We observe that the meta classifier is capable of reliably removing
false-positive anomaly instance predictions, which in turn significantly improves
detection performance of anomalous objects. The meta classification performance is
reported inTable2, a visual example is given in Fig. 3.Wenote thatmeta classification
is applied to segmentation masks as input. Therefore, the output of the combination
of entropy maximization and meta classification does not yield pixel-wise anomaly
scores to compare against the methods presented in Sect. 4.1.

The idea of meta classification can even be used to directly identify potential
anomalous objects in the semantic segmentation mask, see [ORG18], which will
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[without meta classifier]

[prediction quality rating] [with meta classifier]

Fig. 3 Meta classification as quality rating of anomaly instance predictions. Before applying the
meta classifier (top), the anomaly segmentationmask contains anomaly instance predictions (orange
segments), with some false-positives on the road. Based on softmax probabilities, the meta classifier
performs a prediction quality rating (bottom left, red corresponds to poor quality), which is then
used to remove false positive anomaly instance predictions (bottom right). Note that the region of
interest is restricted to the road, where ground truth anomalous objects (or obstacles) are indicated
by green contours

be subject to discussion in the following section about unsupervised learning of
unknown objects.

5 Discovering and Learning Novel Classes

If certain types of anomalies appear frequently, it might be reasonable to include
them as additional learnable classes of the segmentation model. In this section, we
propose an unsupervised method to further process anomaly predictions, all with the
goal to produce labels corresponding to novel classes. Afterwards, we will introduce
an incremental learning approach to train a model on novel classes by means of the
retrieved unsupervised labels.

5.1 Unsupervised Identification and Segmentation of a Novel
Class

Consider the dataset Dtest ⊆ X of unlabeled images x = (xi )i∈I ∈ I
H×W×3, along

with a semantic segmentation network F : IH×W×3 → R
H×W×S trained on the set of

classes S = {1, . . . , S}. Moreover, let a = (ai )i∈I ∈ R
H×W denote a score map, as



298 R. Chan et al.

introduced in Sect. 4, which assigns the degree of anomaly to each pixel i ∈ I in x.
Our unsupervised anomaly segmentation technique is a three-step procedure:

1. Image embedding: Image retrieval methods are commonly applied to construct a
database of images that are visually related to a given image. On that account, such
methods must quantify visual similarities, i.e., to measure the discrepancy or “dis-
tance” between images. A simple idea is averaging over the pixel-wise differences.
However, this approach is extremely sensitive towards data transformation such as
rotation, variation in light, or different resolutions. More advanced approaches make
use of visual descriptors that extract the elementary characteristics of the visual con-
tents, e.g., color, shape, or texture. Thesemethods are invariant to data transformation,
i.e., they perform well in identifying images representing the same item. If we want
to detect different instances of the same category, deep learning methods represent
the state-of-the-art. In this regard, convolutional neural networks (CNNs) achieve
very high accuracy in image classification tasks. These networks extract features
of the images, that are stable regarding transformations as well as the represented
object itself, i.e., objects of the same category result in similar feature vectors. We
now adapt this idea to identify anomalies that belong to the same class.

Let Ka|x denote the set of connected components within (a(τ )
i )i∈I, a(τ )

i := 1{ai ≥τ }
∀ i ∈ I for a given threshold τ ∈ R, after processing image x. Furthermore, letK :=⋃

x∈X Ka|x denote the set of all predicted anomaly components in Dtest. For each
component k ∈ Ka|x, we tailor the input x to the image crop x(k) = (xi )i∈I ′ , I ′ ⊆ I
by means of the bounding box around k ∈ Ka|x. By feeding the crop x(k) to an image
classificationnetworkG,wemapx(k) onto its feature vectorg(k) := GL−1(x(k)) ∈ R

n ,
n ∈ N for all k ∈ K. Here, GL−1 denotes the output of the penultimate layer of G.

2. Dimensionality reduction: Feature vectors extracted by CNNs are usually very
high-dimensional. This evokes several problems regarding the clustering of such
data. The first issue is known as curse of dimensionality, i.e., the amount of required
data explodes with increasing dimensionality. Furthermore, distance metrics become
less precise. Dimensionality reduction approaches project the feature vectors onto a
low-dimensional representation, either by feature elimination, selection, or extrac-
tion. The latter creates new independent features as a combination of the original
vectors and can be further distinguished between linear and non-linear techniques.
A linear feature extraction approach, named principal component analysis (PCA)
[Pea01], aims at decorrelating the components of the vectors by a change of basis,
such that they are mostly aligned along the first axes. Thereby, not much informa-
tion is lost if we drop the last components. A more recent non-linear method is
t-distributed stochastic neighbor embedding (t-SNE) [vdMH08], which uses con-
ditional probabilities representing pairwise similarities. Let us consider two feature
vectors g(k), g(k ′) with k, k ′ ∈ K and let pk|k ′ ∈ I denote their similarity under a Gaus-
sian distribution. Employing a Student t-distribution with one degree of freedom in
the low-dimensional space then provides a second probability qk|k ′ ∈ I. Hence, t-SNE
aims at minimizing the following sum (or Kullback-Leibler divergence) [vdMH08]
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∑
k∈K

∑
k ′∈K

pk|k ′ log

(
pk|k ′

qk|k ′

)
(32)

using gradient descent. We first perform dimensionality reduction via PCA, which
is then followed by t-SNE. In our experiments, we observed that this combination
of methods improves the effectiveness of mapping anomaly predictions onto a two-
dimensional embedding space. Here, the embedding ideally creates neighborhoods
of visually related anomalies.

3. Novelty segmentation: If anomalies of the same category are detected more
frequently, they are expected to form a bigger cluster in the embedding space. Those
clusters can be identified by employing algorithms such as density-based spatial
clustering of applicationswith noise (DBSCAN) [EKSX96]. This algorithm supports
the idea of non-supervision since it does not require any information of the potential
anomaly data, such as e.g., the number of clusters. Moreover, DBSCAN divides
data points into core points, border points, and noise, depending on the size of the
neighborhood ε ∈ [0,∞) and theminimal number of a core point’s neighbors δ ∈ N.

More precisely, let g̃(k) ∈ R
2 denote the two-dimensional representation of x(k).

Then, g̃(k) is considered as a core point, if the corresponding point-wise density
ρ(g̃(k)) := |{g̃(k ′) : ‖g̃(k) − g̃(k ′)‖ < ε, k ′ ∈ K}| ≥ δ, i.e., the ε-neighborhood of g̃(k)

contains at least δ points including itself. We denote the neighborhood of a core point
g̃(k̊), which corresponds to a component k̊ ∈ K, as Bk̊ := {g̃(k ′) : ‖g̃(k̊) − g̃(k ′)‖ <

ε, k ′ ∈ K}. If g̃(k) is not a core point but belongs to a core point’s neighborhood, we
call it a border point. Otherwise, i.e., if g̃(k) is neither a core point nor within a core
point’s neighborhood, we call it noise.

Finally, a clusterC j ⊂ K, j ∈ J := {1, . . . , J } of components is formed bymerg-
ing overlapping neighborhoods Bk̊ , yielding J ∈ N clusters in total. In other words,
clusters are formed from connected core points and their neighborhoods’ border
points. Given ρ(g̃(k)), we can determine the cluster density of C j , e.g.,

as the maximum max
k∈C j

ρ(g̃(k)) or as the average
1

|C j |
∑
k∈C j

ρ(g̃(k)) .

The cluster C∗ ⊂ K, which is the cluster of highest density given a sufficient cluster
size, is then selected to be further processed. To this end, let us consider the predicted
segmentation mask F(x) = m = (mi )i∈I , where mi = argmaxs∈S yi,s, i ∈ I. The
pseudo labels ỹ = (ỹi )i∈I for the originally unlabeled x are then obtained by setting
ỹi = S + 1 if pixel location i belongs to a component k ∈ C∗, and ỹi = mi otherwise.

5.2 Class-Incremental Learning

Let Ỹ denote the set of pseudo labels, then the training data for some novel class S + 1
can be represented byDS+1 ⊆ Dnovel × Ỹ , whereDnovel denotes the set of previously-
unseen images containing novel classes. By extending the semantic segmentation
network F to F+ : IH×W×3 → R

H×W×(S+1) and retraining F+ on DS+1, we perform
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incremental learning to add a novel and previously unknown class to the semantic
space of F.

Regularization:Knowledge distillation is a subcategory of regularization strategies
aiming to mitigate a catastrophic forgetting, i.e., these strategies try to mitigate per-
formance loss on the previously-learned classes S = {1, . . . , S} while learning the
additional class S + 1. In [MZ19], the authors adapted incremental learning tech-
niques to the task of semantic segmentation. Among others, they introduced the
overall objective

J total(x, ỹ) = (1 − λ)JCE(F+(x), ỹ) + λJD(F+(x),F(x)), λ ∈ I , (33)

where (x, ỹ) ∈ DS+1. Here, JCE denotes the common cross-entropy loss over the
enlarged set of class indices S+ := {1, . . . , S + 1} and JD the distillation loss. The
latter loss is defined as

JD(F+(x),F(x)) := − 1

H · W

∑
i∈I

∑
s∈S

softmaxs(yi ) log(softmaxs(y+
i )) (34)

with y = F(x) and y+ = F+(x). Knowledge distillation can be further improved by
freezing the weights of the encoder part of F+ during the training procedure [MZ19].

Rehearsal: If the original training data Dtrain ⊆ X × Y of network F is available,
in incremental learning such data is usually re-integrated into the training set of
the extended network F+, i.e., the training samples are drawn from Dtrain ∪ DS+1.
To save computational costs of training and to balance the amount of old and new
training data, established methods, e.g., [Rob95], only use a subset of Dtrain. This
subset is typically obtained by randomly sampling a set from Dtrain that matches the
size of |DS+1|.

In combination with knowledge distillation, rehearsal strategies can be employed
to mitigate a loss of performance on classes that are related to the novel class. This
issue may arise e.g., through visual similarity such as between classes like bus and
train, or due to class affiliation as in the case of bicycle and rider. Relevant classes
can be identified by their frequency of being predicted on the relabeled pixels, i.e.,

ν tot
s :=

∑
(x,ỹ)∈DS+1

|{i ∈ I | mi = s ∧ ỹi = S + 1}| ∀s ∈ S , (35)

and hence

νrel
s := ν tot

s∑
s ′∈S ν tot

s ′
∀s ∈ S . (36)

The subset of Dtrain is then randomly sampled under the constraint that there are at
least νrel

s |DS+1| images containing the class s for all s ∈ S.
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[Segmentation prediction of the initial model]

[Prediction quality rating]

Fig. 4 Predicted semantic segmentation mask of the initial model’s prediction (top) and corre-
sponding segment-wise quality estimation (bottom) for one example from the Cityscapes test split.
Green color indicates a high segment-wise IoU, red color indicates a low one

5.3 Experiments and Evaluation

In the following experiments, wewill employ a DeepLabV3+ [CZP+18]modelwith
an underlying WiderResNet38 [ZSR+19] backbone for semantic segmentation.
This network is initially trained on a set of 17 classes, which we will extend by a
novel class. The already trained classes are the Cityscapes training classes except
pedestrian and rider, i.e., we exclude any human in the training process of our initial
semantic segmentation network F.

The initial model was trained on the Cityscapes [COR+16] training data. For the
incremental learning process, we use a portion of those data and combine them with
our generated disjoint training set DS+1 containing previously unseen images and
pseudo labels on novel objects. Here, the images from DS+1 are drawn from the
Cityscapes test data. For evaluation purposes, we use the Cityscapes validation data.
Hence, during the incremental learning process only known objects are presented to
the model except humans and a few instances, such as the ego-car or mountains in
an image background, belonging to the Cityscapes void category.
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Fig. 5 Relative frequency of old classes being predicted by the initial model on pixels that are
assigned to the novel class. Thus, the subset of Dtrain

CS included in the retraining should mainly
involve bicycles, motorcycles, and cars

We use the idea of meta classification, similarly as introduced in Sect. 4.3, to rate
the prediction quality of predicted semantic segmentation masks. Here, the meta task
is to estimate the segment-wise IoU first, see Fig. 4, on which we apply thresholding
(at τ = 0.5) to determine potential anomalies, cf. [ORF20]. We employ gradient
boosting as meta model, which achieves a coefficient of determination of R2 =
82.51% in estimating the segment-wise IoU on the Cityscapes validation split.

In accordance to Sect. 2 and as already observed in Sect. 4.3, the softmax entropy
is again one of the main metrics included in the meta model to identify anomalous
predictions. Thus, the entropy shows to have great impact on meta classification
performance, which, similarly, has also been observed in [CRH+20, CRG21].

Given anomaly segmentation masks, we perform image embedding using the
encoder of the image classification network DenseNet201 [HLMW17], that is pre-
trained on ImageNet [DDS+09]. Next, we reduce the dimensionality of the resulting
feature vectors to 50 via PCA and further to 2 by applying t-SNE. In [ORF20], a qual-
itative and quantitative evaluation of different embedding approaches is provided.
Note that t-SNE is non-deterministic, i.e., we obtain slightly different embedding
spaces for different runs. In our experiment, employing DBSCAN with parame-
ters ε = 2.5 and δ = 15 produces a human-cluster including 91 components from
76 different images. The most frequently predicted class of these components are
car, motorcycle, and bicycle with νrel

11 = 24.84%, νrel
15 = 26.69% and νrel

16 = 33.53%,
respectively, see Fig. 5.

We train the extended model F+ as described in Sect. 5.2 for 70 epochs, weighting
the loss functions in (33) equally, i.e., λ = 0.5. The extendedmodel shows the ability
to retain its initial knowledge by achieving an mIoU score of 68.24% on the old
classes when evaluating on the Cityscapes validation data. This yields a marginal
loss of only 0.39% compared to the initial model F. At the same time, F+ predicts
the novel human class with a class IoU of 41.42%, without a single annotated human
instance in the training data DS+1. A visual example of our unsupervised novelty
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Fig. 6 Comparison of the
predicted semantic
segmentation masks before
(top) and after (bottom)
adapting the model to the
novel human class (orange)
for one example of the
Cityscapes validation split
(middle). Here, the novel
components are highlighted
in orange, green contours
indicate the ground truth
annotation of the novelty

[Prediction of initial model]

[Novel class in validation image]

[Prediction of extended model]

Fig. 7 A comparison of anomaly scores obtained by meta classification (left) and entropy (right)
on an image from RoadObstacle21. The dog on the image is the anomaly of interest (indicated by
green contours), which would have been overlooked by meta classification but entirely detected by
the entropy

segmentation approach is provided in Fig. 6, more details on the numerical evaluation
is given in Table3.
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5.4 Outlook on Improving Unsupervised Learning of Novel
Classes

In the preliminary experiments presented in this section, we demonstrated that a
semantic segmentation network can be extended by a novel class in an unsupervised
fashion. As a basis to start, our unsupervised learning approach requires anomaly
segmentation masks. Currently, these are obtained by meta classification [RCH+20],
which is, however, not a method specifically tailored for the task of anomaly seg-
mentation. In other words, the obtained masks are possibly inaccurate. To be even
more precise on the limitation of plain meta classification, this method is only able
to find anomalies when the segmentation model produces a (false positive) object
prediction on those anomalies. By design, meta classifiers cannot find overlooked
instances, e.g., obstacles on the road which also have been classified as road. As an
illustration of this issue, we refer to Fig. 7.

Having now several methods at hand, that we, e.g., introduced in Sect. 4.1, it
seems obvious to replace the underlying anomaly segmentation method by a more
sophisticated one as future work. In particular, given the decent performance of our
unsupervised learning approach relying only on meta classification and the entropy
measure as highly beneficial metric for meta classification, combining entropy max-
imization and meta classification is a promising approach to improve the presented
novelty training approach.

Conclusions

Semantic segmentation as a supervised learning task is typically performedbymodels
that operate on a given set containing a fixed number of classes. This is in clear
contrast to the open world scenarios to which practitioners contemplate the usage of
segmentation models. There are important capabilities that standard segmentation
models do not exhibit. Among them is the capability to know when they face an
object of a class they have not learned – i.e., to perform anomaly segmentation –
as well as the capability to realize that similar objects, presumably of the same (yet
unknown) class, appear frequently and should be learned either as a new class or be
attributed to an existing one. In this chapter, we have seen first promising results for
two tasks, for anomaly segmentation as well as for the detection and unsupervised
learning of new classes.

For anomaly segmentation, we considered a number of generic baseline methods
stemming from image classification as well as some recent anomaly segmentation
methods. Since the latter clearly outperforms the former, this stresses the need for
the development of methods specifically designed for anomaly segmentation. We
have demonstrated with our entropy maximization method empirically as well as
theoretically that good proxies in combinationwith training on anomaly examples for
high entropy are key to equip standard semantic segmentation models with anomaly
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segmentation capabilities. Particularly on the challenging RoadObstacle21 dataset
with diverse street scenarios, entropy maximization yields great performance which
is not reached by any other method so far. While there exists a moderate number of
datasets for anomaly segmentation, there is clearly still the needof additional datasets.
The number of possible unknown object classes not covered by these datasets is
evidently enormous. Furthermore, also the vast variety of possible environmental
conditions and further domain shifts that may occur, possibly also in combination
with unknown objects, continuously demand their exploration.

For detection and unsupervised learning of new classes, we demonstrated in pre-
liminary experiments that a combination of well-established dimensionality reduc-
tion and clustering methods along with the advanced uncertainty quantification
method for semantic segmentation called MetaSeg is well able to detect unknown
classes of which objects appear relatively frequently in a given test set. Indeed,
MetaSeg can also be used to define segmentation proposals for pseudo ground-truth
of new classes, which can also be learned incrementally by the segmentation model.
For the considered scenario of subsequently learning humans within the Cityscapes
dataset, this approach yields an IoU of 41.42% on the novel class without losing per-
formance on the original classes. The proposedmethodologymay help to incorporate
new classes into existing models with low human labeling effort. The necessity for
this will occur repeatedly in future. An example are the electric scooters that recently
arose in several metropolitan areas across the globe. This is an example for a global
phenomenon. However, also local phenomena, such as boat trailers at the coast, could
be of interest. Such classes can be initially incorporated into an existing model using
ourmethodology. Afterwards, the initial performance could be further improvedwith
active learning approaches, such as [CRGR21], still requiring only a small amount
of human labeling effort. It is also an open question, to which extent the proposed
method can be used iteratively to improve the performance on a new class. Also for
this track of research, the lack of data for pursuing that task is a limiting factor as of
now.
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