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Abstract 
It is well known that the projection of depth or orien­
tation discontinuities in a physical scene results in im­
age intensity edges which are not ideal step edges but 
are more typically a combination of steps, peak and 
roof profiles. However most edge detection schemes 
ignore the composite nature of these edges, resulting 
in systematic errors in detection and localization. We 
address the problem of detecting and localizing these 
edges, while at the same time also solving the prob­
lem of false responses in smoothly shaded regions with 
constant gradient of the image brightness. We show 
that a class of nonlinear filters, known as quadratic 
filters, are appropriate for this task, while linear filters 
are not. A series of performance criteria are derived 
for characterizing the SNR, localization and multiple 
responses of these filters in a manner analogous to 
Canny's criteria for linear filters. A two-dimensional 
version of the approach is developed which has the 
property of being able to represent multiple edges at the 
same location and determine the orientation of each 
to any desired precision. This permits junctions to be 
localized without rounding. Experimental results are 
presented. 

1 Introduction 

The problem of detecting and localizing discontinuities 
in greyscale intensity images has traditionally been ap­
proached as one of finding step edges. This is true both 
for the classical linear filtering approaches as well as 
the more recent approaches based on surface recon­
struction. 

Unfortunately, step edges are an inadequate model 
for the discontinuities in the image that result from 
the projection of depth or orientation discontinuities 
in physical scene. Mutual illumination and speculari­
ties are quite common and their effects are particularly 
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Figure 1: Some examples of edges. 

significant in the neighborhood of convex or concave 
object edges. In addition, there will typically be a 
shading gradient on the image regions bordering the 
edge. As a consequence of these effects, real image 
edges are not step functions but more typically a com­
bination of steps, peak and roof profiles {Figure 1). 
This had been noted experimentally by Herskovits and 
Binford back in 1970. Quantitative analyses of the as­
sociated physical phenomeifa have also been provided­
Horn[5] and more recently Forsyth and Zisserman [4]. 

The aim of this paper is to address the computa­
tional problem of detecting and localizing these com­
posite edges. 

Most local edge detection methods are based on 
some decision making stage following a linear filter­
ing stage. Typically one looks for maxima in the fil­
tered image perpendicular to the orientation of the 
edge. Such an approach (e.g. Canny [3] )results in 
a systematic error in localization whenever there is a 
composite edge( [ll]{page 9), or [2](Fig. 2. 1)). In 
section 2, we prove that this problem is not specific to 
the Gaussian derivative filters used by Canny, but is 
present whatever the linear filter used. For any such 
filter there is a systematic localization error for com­
posite edges. Using any {finite) number oflinear filters 
does not help. However, we are able to show that a 
quadratic filtering approach is adequate. Instead of 
looking for maxima in (I * f) one looks for maxima in 
W = (I* 1!)2 +(I* /2) 2

, or more generally 'L{I * /;) 2
. 

A special case of this approach, when two filters which 
are Hilbert pairs are used, gives the energy based ap-



proach due to Morrone, Owens and their colleagues 
[9, 8]. 

In section 3, we look at the problem of false re­
sponses in the presence of smooth shading. A lin­
ear filter which does not suffer from this problem is 
presented. A suitable quadratic filter is designed and 
tested on several one-dimensional examples. It cor­
rectly localizes composite edges and does not not give 
false responses in areas of smooth shading. 

If one is to design an 'optimal' quadratic filtering 
approach, one needs to formulate computable forms of 
design criteria, analogous to the ones used by Canny 
[3] for linear filtering. We do this in Section 4. We are 
not yet able to analytically derive the 'optimal' filter­
however one can use the criteria to compare competing 
choices of quadratic filters. 

So far, our analysis was in 1-D. To detect edges in 
2D, we use a Gaussian window to compute the 2D 
extension of the filter. Rotated copies of the filter are 
used to (conceptually) compute W(x, y, 0 ). A finite 
representation is developed which provides an optimal 
approximation to W(x, y, 0). At each point, the locally 
dominant orientations 0; which correspond to the local 
maxima(over 0) are determined. Allowing for multiple 
orientations enables junctions to be correctly localized 
without any rounding. Edge points are defined as the 
points where the directional derivative in the direction 
perpendicular to a locally dominant orientation is 0. 
Experimental results are presented. 

2 Dealing with composite edges 

We want to detect and localize edges which are arbi­
trary combinations of lines, steps and roofs. For speci­
ficity and simplicity, in this section we assume that the 
composite edge is I = c18 + c28(- 1), though similar 
considerations apply for other composite edges. 

A word about notation: we will write f(- 1)(x) for 
f~oo f(t)dt, and f(-n)(x) = (f(-n+l))(-1)(x). So 

8(- 1) will be the step function and 8(-2) a ramp. 
First we establish a proposition which show that 

edge localization by looking at peaks in the responses 
of a fixed, finite family of linear filters leads to system­
atic errors. 

Proposition 1 For any fixed finite family of filters 
{h, h, ... , /k}, there exists an image I = c18+c28(-l) 
for which none of the filter responses have a maximum 
at x = 0 

Proof. Edges are declared at the maxima of the 
response I* f(x) = cd(x) + c2J<- 1}{x). To ensure 
correct localization, there should be a maximum at 
x = 0 for any combination of c1, c2. For a filter /;, its 
response has a maximum at x = 0 only if (I* /;)'(0) = 
0. Now (I*/;)'= cd' + c2f, implying that the vector 
[c1 c2JT is orthogonal to [ff(O) /;(O)]T. To establish 
the proposition, one has only to pick a composite edge 
for which the vector [c1 c2]T is not orthogonal to any 
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of the vectors in the fixed, finite family of the k 2D 
vectors [/i(O) /;(O)]T, i = 1, ... , k. 

In other words, if we had available to us the outputs 
of k different filters with a clever strategy which would 
enable us to pick the 'right' filter /; whose response 
should be used to localize the edge, we would still be 
unable to guarantee zero localization error. 

Somehow the problem seems to be that for any par­
ticular linear filter we are able to construct a com­
posite edge for which the filter is not matched. This 
suggests an alternative view-construct a parametrized 
filter which is a linear combination of an even filter 
fe (matched to 8(x)) and an odd filter fo (matched to 
8( - 1 )) and try to 'adapt' it to the particular composite 
edge in the image by picking the parameter value that 
maximizes the filter response at each point. 

Call fa(x) =cos afe(x) +sin af0 (x) the filter, I= 
c16 + c28(-l) the image, and U(a, x) = (I* fa)(x) 
the response. We want to choose a such that at each 
point x the response is maximized. Define V(x) = 
maXa U(a, x) and call a(x) the maximizing parame­
ter (i.e. V(x) = U(a(x), x)). Notice that a(x) must 
satisfy the equation 8

8aU(a(x), x) = 0. 
We would like the 'maximal' response V(x) to have 

a maximum in zero, corresponding to the location of 
the edge: V'(O) = (Uaax + Ux)(a(O), 0) = 0. Since 
Ua(a(x), x) = 0 then it must be Ux(a(O), 0) = 0. Mak-
ing use of the fact that /o(O) = J£- 1)(0) = 0 we get 
the following system of equations: 

Ux(a(O), 0) = c1 sin a/~(0) + c2 cos afe(O) = 0 (1) 

Ua(a(O), 0) = -c1 sin a/e(O) + c2 cos a/~- 1 )(0) = 0 (2) 

The maximizing value of a, a(O), can be obtained from 
Equation 2. Substituting this into Equation 1 gives the 
following condition: 

!1(0) =-t£-l)(0)/~(0) (3) 

If this condition is satisfied, the mixed edge c18 + 
c28( - 1) will be localized exactly by the maximum of 
V(x) defined above. 

An alternative approach yields the same condition. 
Define the vector of filters F(x) = [fe(x),/o(x)]T. We 
localize features by looking for local maxima in the 
norm of the (vector) response to this filter of I. The 
squared norm of the response, I I* F 1

2 is 

Equating the derivative of this expression with respect 
to x at the origin to 0 gives the condition 

which is the same as Equation 3 
Thus, we have the possibility of getting arbitrarily 

precise localization of composite edges simply by look­
ing for peaks in the response to a quadratic filter, i.e. 
in"£(!* /;) 2

. 



This is similar in form to the approach used by Mor­
rone, Owens et al. Morrone et al [7] by a series of 
psychophysical experiments demonstrated that the hu­
man visual system detects features at points of strong 
phase congruency-these could be edges (spectral com­
ponents have 0 phase), narrow bars (spectral compo­
nents have 90 phase) or points on trapezoids where 
ramps meet plateaus (spectral components have 45 or 
135 phase). To detect points of phase congruency, 
Morrone and Owens [9] find maxima of a local en­
ergy function E(z) = F 2(z) + H 2(z) where F(z) is 
the result of a convolution I* f(z), and H(z) is its 
Hilbert transform (equivalently I could be convolved 
with the Hilbert transform of f). Morrone and Owens 
show good empirical results for a particular choice of 
f. 

While their reasoning was in the Fourier domain and 
aimed at detecting phase congruency based on a psy­
chophysical definition of a feature, we arrive at a sim­
ilar formulation purely motivated by a computational 
criterion of localizing composite edges exactly. 

From our formulation it follows that there is noth­
ing particularly sacred about the use of Hilbert filter 
pairs as done by Morrone, Owens et al. In fact, if the 
composite edge consists of, say a bar and a step edge 
at quite different scales, one should probably use fe 
and fo tuned to different widths (scales) and thus not 
Hilbert pairs. To make a proper choice of these filters, 
one should instead bring to bear the criteria of having 
a good signal-to-noise ratio, low stochastic localization 
error etc. analogous to the approach used by Canny 
for linear filters. 

3 Dealing with shading gradients 

A well known problem of first derivative edge detec­
tors is that they respond with false edges in areas with 
smooth shading even when the gradient of brightness is 
constant. To avoid these false positives, one may have 
to set a threshold which leads to the rejection of gen­
uine low-contrast edges. This problem has persisted in 
the 'modern' approaches based on surface reconstruc­
tion. Whether the formulation is a probabilistic one 
using MRFs (e.g. Geman and Geman) or a variational 
one (e.g. Blake and Zissserman [2]), ifthe cost function 
includes terms like the squared gradient there will be a 
tendency towards piecewise constant reconstructions. 

In the linear filtering framework, Binford [1] describ­
ing the Binford-Horn line finder discusses one solution 
to this problem- a lateral inhibition stage preceding 
the stage of finding directional derivatives. Essentially 
this amounts to using third derivatives, and suffers 
from the expected weakness-low signal to noise ratio 
compared to first derivative operators. A simple cal­
culation using the SNR criterion defined by Canny [3] 
confirms this. 

A compact characterization of filters which do not 
suffer from the linear gradient problem can be obtained 
as follows: suppose that the image just consists of a 
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Figure 2: 1 dimensional examples. The energy peaks 
correspond to the edge position and the constant gra­
dient areas generate zero energy. 

ramp function I(z) = oC- 2)(z). The response of a 
linear filter f to such a ramp is I* f = JC- 2)(z). It 
can be seen that JC- 2)(z) should satisfy the following 
two conditions: 

1. llf(- 2)(z)ll-> 0 for llzll-> oo. This ensures that 
far enough from the roof junction, the response to 
a ramp is negligible. 

2. JC- 2)(x) either has a zero crossing or a maximum 
or a minimum at the origin. This is to enable the 
localization of onset of the ramp without any bias. 

While the third derivative of a Gaussian G~'(z) 
is one filter which would satisfy these criteria, there 
are others which do so without that significant a 
drop in SNR. One such choice is the Hilbert Trans­
form of G~(z) which is an odd-symmetric filter. We 
computed Canny's SNR and localization criteria for 
this filter and compared it with G~(zJ . It turns 
out that for G~ ( z), the SNR is 1.062u ·5 and local-



ization is 0.8673u- 0·5 . For (G~)H(x) , the SNR is 
0.6920u0·5 and localization is 0.87535u-0 ·5 . Consider­
ing the product of the SNR and the localization, the 
numbers are 0.92 and 0.606 respectively implying that 
(G~)H is worse by about 34%. However, its r value is 
0.676 which is 32 % better than r = 0.51 for the G~. 
In other words, while the ( G~)H is roughly compara­
ble to the G~ filter used by Canny, its immunity to 
smooth shading makes it preferable. 

For a particular choice of quadratic filter, namely 
fe = G~ and / 0 = (G~)H, Figure 2 shows the response 
to a number of different stimuli. Note how in each case, 
the composite edge is correctly localized and that the 
filter is insensitive to linear shading. 

4 Computation of the performance 
criteria 

In the choice of a filter one would like to mimmize 
different types of edge-detection errors. What follows 
is a list of criteria for evaluating quadratic filtering­
based edge-detectors 

Signal to noise ratio - Ratio of signal response to 
the variance of the response due to noise. 

Stochastic Localization error - Localization er­
ror due to noise. 

Systematic Localization error - Error commit­
ted in locating the edge in the no-noise situation. 

Multiple responses -Edges detected in the neigh­
bourhood of a true one due to noise in the data. 

After establishing some notation we report the for­
mulae for computing the criteria for a given filter. For 
a derivation of the formulae see [6]. 

4.1 Notation 

Edge - G(x) = c16(- 2)(x) + c26(-l)(x) + c36(x) 

Noise - N(x) = n0 77(x), 17(x) being white zero-mean 
unit-variance Gaussian noise. 

Image - I(x) = G(x) + N(x)- Signal+ noise. 

Filters - f(x)T = [fl(x), ... , fn(x)], and, for con­
venience, F(x)T = [F(x)I, ... , F(x)n], with 
F"(x) = f(x) 

Responses - rG(x) = (f*G)(x), rN(x) = (f*N)(x), 
r(x) = rG(x) + rN(x) 

Power - W(x) = llr(x)ll2 

Correlations -The nxn correlation matrix R(t) de­
fined componentwise by: 

~j(t) = (/;(- + t), /j(-))L 2 

R"(t) defined similarly as: 

R";j(t) ='=(If(-+ t), Jj(-))L2 

ss 

X= 0 X= Xo 

Figure 3: Localization error due to noise. 

4.2 Signal to noise ratio 

Define signal to noise ratio as the ratio of the response 
to pure signal at the edge and the standard deviation 
of the response to pure noise. In the special case that 
the edge is a combination of roof, step and line: G = 
c16(- 2) + c26(-l) + c36 the signal to noise ratio is: 

SN R = IIH(O)cii 
noJtr(R(O)) 

(6) 

Where c indicates the vector of components 
cl,c2,c3, and His defined componentwise by H;j 

F(i-l) . - 1 3 d . - 1 i , z- , ... , an J - , ... , n. 

4.3 Stochastic localization error 

Label x = 0 the position where the response WG(x) 
to noiseless signal peaks (i.e. Wb(O) = 0), and x = 
x0 the coordinate where the response to noisy signal 
W(x) does (i.e. W'(xo) = 0, see Fig 3). 

The expectation of the stochastic localization error 
is zero, and the variance is: 

E 2 ,...._ 2E((h~0 * 7J)(xo)) 2 _ 2 R~0 (0) 
Xo "' no Wc';(0)2 - no Wc';(0)2 

where hx0 is defined by: 

(hxo * 7J)(xo) ='= 2(G * ff(xo)(f * 7J)(xo) 

R~0 (0) is the autocorrelation matrix of h~0 • 

4.4 Systematic localization error 

(7) 

(8) 

Consider a signal G defined as in section 4.1; what­
ever the choice of the coefficients c, the edge is located 
at x = 0. Call Xe the position of the corresponding 
maximum of W(x), which we use to localize the edge; 
Xe - 0 = Xe is a systematic localization error. 

A necessary and sufficient condition for Xe to be a 
maximum point is that W'(xe) = 0 and W"(xe) < 
0. Expanding W' in Taylor sum around x = 0 and 
computing it in x = Xe we obtain: 

0 = W'(xe) = W'(O) + W"(O)xe + O(x;) (9) 



which gives us an estimate of x. in terms of the deriva­
tives of W at the origin: 

W'(O) cTHtT(O)H(O)c 
Xe ~ -W"(O) = cTH'IT(O)H(O)c + IIH'(O)cll 2 

(10) 
where cT = [c1, c2, c3) and His defined componentwise 

b H F (j- 1) • 1 3 d . 1 Y ij = i , J = , ... , an z = , ... , n. 
A sufficient condition for the systematic localization 

error to be zero is therefore (see [6]) that the filter 
collection f satisfies the conditions: 

n n 

LF:(O)F~i- 1 )(0) =- LFj(O)F~i- 1)(0) i,j = 1 ... 3 
k=1 k=1 

This is a more general form of equation 3. 

4.5 Spacing of the maxima in the 
neighbourhood of an edge 

(11) 

We suppose that the noise variance, n0 , is small with 
respect to the magnitude of the signal. Therefore we 
approximate the value of W(x) disregarding the terms 
that are quadratic in n0 : 

W(x) ~ II(G * f)ll 2 + 2no(G * rf(r * 77) = 
= WG(x) + 2no[G * fTf) * 77 = 
= WG(x) + noh., * 77 (12) 

Where h is the scalar space-varying kernel defined 
as h.,(r)::::: 2(G * rf(x)f(r). 

We may apply Rice's formula to compute the ex­
pected value of the distance between maxima of the 
random process Wa(x) = W(x)- WG(x) = n0 h., * 77: 

dw4 (x) = 21r (13) 

The expectation has an argument x since it depends 
on the distance from the location of the edge G( x). In 
a neighbourhood of the edge we expect the derivative 
of W G to be close to zero and thus the estimate of the 
spacing of the maxima of W a ( x) to be a good estimate 
of the spacing of the maxima of W ( x). 

Define a= G * g, then h = 2&Tf. The autocorrela­
tions are: 

(14) 

~Rh, (0) = atTR1(0)a' + a'TRj(O)a + aTR'j(O)a 

(15) 

5 Detecting edges in two dimensions 

To detect edges in 2D, we use a Gaussian window 
to compute the 2D extension of the filter F(x, y) = 
f(x)G"~(y). We use two kernels, even and odd; ro­
tated copies F8, F;, of the filter are used to compute 
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the square modulus W(x, y, 0) = (F8 * 1)2 + (F; * 1)2
, 

where I is the image. In practice one cannot afford 
to compute convolutions of the image with filters at 
an infinity of orientations. It turns out that it is pos­
sible to approximate kernels F(x, y, 0) with arbitrary 
precision using linear combinations of a finite number 
of functions. This technique is based on the singular 
value decomposition of the linear operator associated 
to the kernel and is described in detail in [10). What 
is important to remark here is that it is possible to 
reason on a continuum of orientations. 

5.1 Edge detection 

At edge points the filter output 'energy' W will have 
a maximum at the orientation o. parallel to the edge. 
Fix o. and consider W(x, y, O.). Along a line orthog­
onal to the edge the problem reduces to the 1D case: 
there will be an energy maximum at the edge. Edges 
can be found by marking as 'edge points' all the points 
p = ( x, y, 0) that satisfy: 

{) 
~W(p)=O 
UV(I 

(16) 

where v11 is the unit vector orthogonal to the orienta­
tion associated to 0. 

The search for the edge points has been implemented 
as follows: 

1. For each image pixel ( x, y) the angles Oi ( x, y) at 
which the response is maximized are found. For 
this operation we use Brent's method which clev­
erly combines golden section search with inverse 
parabolic interpolation. The upper bound on the 
orientation error was set at 1 degree. The angle 
space is coarsely sampled ( approx. a sample ev­
ery 5 degrees) to provide initial conditions for the 
bracketing algorithm. The energies Wi(x, y) cor­
responding to Oi(x, y) are also stored. The lower 
70% of the sampled energies at each point are av­
eraged to give a global noise .estimate. 

2. Points (x, y, Oi(x, y)) are marked as edge points 
only if the associated energy is greater than the 
energy at the two neighbouring pixels in the di­
rection orthogonal to oi. 

3. The edge pixels are thresholded. 

4. The position of the edges is refined to sub­
pixel accuracy by fitting a parabolic cylinder to 
W(x, y, Oi) at the edge pixels. The axis of the 
cylinder is taken to be the local estimate of the 
edge position. In our implementation 3x3 neigh­
bourhoods were used and the three parameters of 
the parabola estimated; see [6] for the details. 

We have tested the algorithm on both natural and 
synthetic data. We used a quadratic filter with /e = 
G~1 , /o = ( G~JH, and the 2D extension computed 
using a windowing function G"~ with u2 : u 1 = 2 or 
3. One of our series of experiments used a synthetic 
image of three concentric circles (alternate rings black 



and white) with added Gaussian noise. Comparison 
of estimates of orientation and curvature from our al­
gorithm with the ground truth yielded very good re­
sults [6]. For example, for a SNR of 6.4, and using 
a quadratic filter (u1 = 2, u2 = 6 pixels) orientation 
could be estimated on circles of radii 60 and 90 pix­
els with median absolute error of 0.8° and on a circle 
of radius 30 pixels with an error of 1.1°. Curvature, 
which was estimated pointwise by a finite difference 
approximation using orientation estimates in a 2 x 2 
window could be measured to a median error of 22%, 
18%, and 14% respectively for the circles of radii 90, 
60 and 30 pixels. 

In Figure 5 we compare the edges obtained by our 
edge detector with those found by the Canny edge­
detector. While the false positives are largely a mat­
ter of threshold selection (in this case), note how the 
junction is broken up and rounded by the Canny edge 
detector. Figure 4 shows a comparison for a more com­
plex image. 
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(a) (b) 

Figure 4: Comparison of the Canny detector and our 
2D detector. (a) Original (Paolina Borghese, Canova 
circa 1800). (b) our detector, u 1 = 1, u2 : u 1 ratio 
2:1. (c-d) Canny detector with u = 1, and threshold 
(150,250), and (200,400) respectively. 
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Figure 5: T-junction example. Top: Canny detector 
with u = 1, 3, 5. Bottom: our 2D detector, same u 1 , 

u2 : u1 ratio 3:1 


