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Abstract—Wireless networks are vulnerable to identity-based
attacks, including spoofing and Sybil attacks, which allows for
many other forms of attacks on the networks. Although the iden-
tity of a node can be verified through cryptographic authenti-
cation, authentication is not always possible, because it requires
key management and additional infrastructural overhead. In this
paper, we propose a method for detecting both spoofing and Sybil
attacks by using the same set of techniques. We first propose a gen-
eralized attack-detection model that utilizes the spatial correlation
of received signal strength (RSS) inherited from wireless nodes.
We further provide a theoretical analysis of our approach. We then
derive the test statistics for detection of identity-based attacks by
using the K-means algorithm. Our attack detector is robust when
handling the situations of attackers that use different transmission
power levels to attack the detection scheme. We further describe
how we integrated our attack detector into a real-time indoor
localization system, which can also localize the positions of the
attackers. We show that the positions of the attackers can be
localized using either area- or point-based localization algorithms
with the same relative errors as in the normal case. We further
evaluated our methods through experimentation in two real office
buildings using both an IEEE 802.11 (WiFi) network and an IEEE
802.15.4 (ZigBee) network. Our results show that it is possible to
detect wireless identity-based attacks with both a high detection
rate and a low false-positive rate, thereby providing strong evi-
dence of the effectiveness of the attack detector utilizing the spatial
correlation of RSS and the attack localizer.

Index Terms—Identity-based attack, localization, received sig-
nal strength (RSS), sensor network, spoofing attack, Sybil attack,
transmission power, wireless network.

I. INTRODUCTION

A S MORE WIRELESS and sensor networks are deployed,

they will increasingly become tempting targets for mali-
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cious attacks. Due to the shared nature of the wireless medium,

attackers can gather useful identity information during passive

monitoring and further utilize the identity information to launch

identity-based attacks, in particular, the two most harmful but

easy to launch attacks: 1) spoofing attacks and 2) Sybil attacks.

In identity-based spoofing attacks, an attacker can forge its

identity to masquerade as another device or even create mul-

tiple illegitimate identities in the networks. For instance, in an

IEEE 802.11 network, it is easy for an attacker to modify its

Media Access Control (MAC) address of network interface card

(NIC) to another device through vendor-supplied NIC drivers

or open-source NIC drivers. In addition, by masquerading as an

authorized wireless access point (AP) or an authorized client,

an attacker can launch denial-of-service (DoS) attacks, bypass

access control mechanisms, or falsely advertise services to

wireless clients.

On the other hand, in Sybil attacks, a Sybil node can forge

different identities to trick the network with multiple fake

nodes. The Sybil attack can significantly reduce the network

performance by defeating group-based voting techniques and

fault-tolerant schemes (e.g., redundancy mechanisms [1], dis-

tributed storage [2], and multipath routing [3]).

Therefore, identity-based attacks will have a serious impact

to the normal operation of wireless and sensor networks. It is

thus desirable to detect the presence of identity-based attacks

and eliminate them from the network. The traditional approach

to address identity-based attacks is to apply cryptographic

authentication. However, authentication requires additional in-

frastructural overhead and computational power associated with

distributing and maintaining cryptographic keys. Due to the

limited power and resources available to the wireless devices

and sensor nodes, it is not always possible to deploy authen-

tication. In this paper, we take a different approach by using

the physical properties associated with wireless transmissions

to detect identity-based attacks. In particular, we utilize the

received signal strength (RSS) measured across a set of land-

marks (i.e., reference points with known locations) to perform

detection of identity-based attacks. We focus on static nodes,

which are common for most identity-based attacks scenarios

[4]. Our scheme can detect both spoofing and Sybil attacks by

using the same set of techniques and does not add any overhead

to the wireless devices and sensor nodes.

We formulate a generalized attack-detection model by us-

ing statistical significance testing. We then provide theoretical

analysis of exploiting the spatial correlation of the RSS inher-

ited from wireless nodes for attack detection. In our theoretical

analysis, we first derived the mathematical relationship between
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the distance of RSS in signal space and the node distance in

physical space. We then developed the analytical expression of

the detection rate, false-positive rate, and accuracy of determin-

ing whether two nodes reside at the same location based on

the RSS distance in signal space. In addition, we derived the

optimal threshold that can minimize the detection errors. The

theoretical analysis provides both the theoretical support for

detecting identity-based attacks by using the spatial correlation

of RSS and the analytic results on detection effectiveness.

Furthermore, by examining the clustering effects of RSS

over time in signal space, we found that the distance between

the centroids of clusters derived by the K-means algorithm in

signal space is a good test statistic for effective attack detec-

tion. In addition, we developed a mechanism called difference

of two (DoT), which utilizes the difference of RSS between

landmarks to help detect Sybil attacks launched by a Sybil

node that varies its transmission power levels to trick the attack-

detection scheme. Thus, our attack detector is robust to detect

identity-based attacks that use different transmission power

levels.

Detecting the presence of identity-based attacks in the net-

work provides first-order information toward defending against

attackers. Furthermore, learning the physical location of the

attackers allows the network administrators to further exploit

a wide range of defense strategies. We then explore how we can

find the positions of the adversaries by integrating our attack

detector into a real-time indoor localization system. Our cluster-

analysis-based attack detector is not specific to any RSS-based

localization algorithms and is thus general. For two kinds of

algorithms, area- and point-based algorithms, we show that

using the centroids of the clusters that are returned by the attack

detector in signal space as the input to the localization system,

the positions of the attackers can be localized with the same

relative estimation errors as under normal conditions.

Moreover, to evaluate the effectiveness of our attack detector,

we conducted experiments by using both an IEEE 802.11 net-

work and an IEEE 802.15.4 network in two real office building

environments. In particular, we have built an indoor localization

system that can localize any transmitting devices on the floor in

real time. We evaluated the performance of our attack detector

by using a detection rate and receiver operating characteristic

(ROC) curve. We found that the performance of the attack

detector is in line with the analytical results, suggesting that our

attack detector is highly effective with more than 95% detection

rates and less than 5% false-positive rates.

In addition, we observed that, when using the centroids

of clusters returned by the attack detector in signal space,

a broad family of localization algorithms achieve the similar

performance as when using the averaged RSS in traditional

localization attempts. In particular, for spoofing attacks, our ex-

perimental results show that the distance between the localized

results of the spoofing node and the original node is directly

proportional to the true distance between the two nodes, thereby

providing strong evidence of the effectiveness of both our

detection scheme and our approach of localizing the positions

of the adversaries.

The rest of this paper is organized as follows. In Section II,

we first study the feasibility and threats of identity-based at-

tacks and their impacts. In Section III, we then formulate the

detection problem of identity-based attacks, provide theoretical

analysis of using the spatial correlation of RSS for attack de-

tection, and propose our cluster-analysis-based attack detector

for both spoofing and Sybil attacks. We next describe our

evaluation metrics in Section IV and present our experimental

methodology in Section V. We present the performance eval-

uation of detecting spoofing and Sybil attacks in Sections VI

and VII, respectively. We introduce the real-time localization

system and present how we can find the positions of the

attackers in Section VIII. Section IX describes the previous

research in addressing spoofing and Sybil attacks. Finally, we

conclude our paper in Section X.

II. FEASIBILITY OF ATTACKS

In this section, we provide a brief overview of identity-based

attacks and their impact to the wireless and sensor networks.

A. Spoofing Attacks

Due to the shared nature of the wireless medium, attackers

can gather useful identity information during passive moni-

toring and utilize the identity information to launch identity-

based spoofing attacks in wireless and sensor networks. For

instance, in an 802.11 network, it is easy for a wireless device to

acquire a valid MAC address and masquerade as another device.

The IEEE 802.11 protocol suite provides insufficient identity

verification during message exchange, including most control

and management frames. Therefore, the adversary can utilize

this weakness and request various services as if it were another

user. Identity-based spoofing attacks are a serious threat in the

network, because they represent a form of identity compromise

and can facilitate a series of traffic injection attacks, including

spoofing-based DoS attacks.

For instance, an adversary can launch a deauthetication at-

tack. After a client chooses an AP for future communication,

it must authenticate itself to the AP before the communica-

tion session starts. Both the client and the AP are allowed

to explicitly request for deauthentication to void the existing

authentication relationship with each other. Unfortunately, this

deauthentication message is not authenticated. Therefore, an

attacker can spoof this deauthentication message, either on

behalf of the client or on behalf of the AP [5], [6]. The adversary

can persistently repeat this attack and completely prevent the

client from transmitting or receiving.

Furthermore, an attacker can utilize identity spoofing and

launch the rogue AP attack against the wireless network. In

the rogue AP attack, the adversary first sets up a rogue AP

with the same MAC address and service set identifier as the

legitimate AP but with a stronger signal. When a station enters

the coverage of the rogue AP, the default network configuration

will make the station automatically associate with the rogue AP,

which has a stronger signal. Then, the adversary can take ac-

tions to influence the communication. For example, it can direct

fake traffic to the associated station or drop the requests made

by the station. Aside from the basic packet-flooding attacks,

the adversary can make use of identity spoofing to perform
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more sophisticated flooding attacks on APs, such as probe

request, authentication request, and association request flooding

attacks [7].

B. Sybil Attacks

The term Sybil attack was first introduced in [8] to denote

an attack where the attacker, i.e., a Sybil node, tries to forge

multiple identities in the context of peer-to-peer distributed

systems. Sybil attacks are particularly easy to launch in wire-

less sensor networks where the communication medium is

open and broadcast. By broadcasting messages with multi-

ple identifications, a Sybil node can rig the vote on group-

based decisions and also severely disrupt network middleware

services [9].

Furthermore, by using a single node to present multiple

identities in the network, the Sybil attack can significantly

reduce the effectiveness of fault-tolerant schemes such as re-

dundancy mechanisms [1], distributed storage [2], dispersity

and multipath routing [3], and topology maintenance [10]. The

Sybil attack can defeat the redundancy mechanisms, storage

partitions, and routing algorithms by making the mechanisms

believe that they are using multiple nodes but are, in fact, using

a single Sybil node.

Therefore, the identity-based attacks, both spoofing and

Sybil attacks, will significantly impact the network perfor-

mance. The conventional approaches to address identity-based

attacks use authentication. However, the application of authen-

tication requires reliable key distribution, management, and

maintenance mechanisms. It is not always desirable to apply

authentication because of its infrastructural, computational, and

management overhead. Furthermore, cryptographic methods

are susceptible to node compromise, which is a serious concern,

because most wireless nodes are easily accessible, allowing

their memory to be easily scanned.

Thus, it is desirable to use properties that do not require

overheads and changes on nodes and cannot be undermined

even when nodes are compromised. We propose to use RSS,

a property that is associated with the transmission and recep-

tion of communication (and, hence, does not rely on cryp-

tography), as the basis for detecting identity-based attacks.

Employing RSS as a means of detecting spoofing and Sybil

attacks will not require any additional cost to the wireless

devices themselves—they will merely use their existing com-

munication methods, whereas the wireless network will use a

collection of APs to monitor RSS for the potential of identity-

based attacks. Our proposed techniques will handle the prob-

lem of the unreliable time-varying nature of RSS [11], [12].

These techniques will also address the issues when an attacker

varies its transmission power to launch attacks and trick the

system.

III. ATTACK DETECTOR

In this section, we present our attack detector. We first for-

mulate the attack-detection problem using significance testing.

We then provide a theoretical analysis on our RSS-based attack

detection. We next develop the test statistics for attack detection

and present the detection philosophy for spoofing and Sybil

attacks.

A. Formulation of Attack Detection

RSS is widely available in deployed wireless communication

networks, and its values are closely correlated with location

in physical space. In addition, RSS is a common physical

property used by a widely diverse set of localization algorithms

[13]–[16]. In spite of its several-meter-level localization accu-

racy, using RSS is an attractive approach, because it can reuse

the existing wireless infrastructure, and it is sufficient to meet

the accuracy requirement of most applications. For example,

during health care monitoring, a doctor may only need to know

in which room the tracked patient resides. We thus derive an at-

tack detector for identity-based attacks by utilizing properties of

the RSS.

We formulate attack detection as a statistical significance

testing problem, where the null hypothesis is

H0 : normal (no attack).

In significance testing, a test statistic T is used to evaluate

whether observed data belong to the null hypothesis. For a

particular significance level α (defined as the probability of

rejecting the hypothesis if it is true), there is a corresponding

acceptance region Ω such that we declare the null hypothesis

valid if an observed value of the test statistic T
obs ∈ Ω and

reject the null hypothesis if T
obs /∈ Ω (i.e., declare that an

attack is present if T
obs ∈ Ωc, where Ωc is the critical region

of the test). In our attack-detection problem, the region Ω and

decision rule are specified according to the form of the detection

statistic T (e.g., when using distance in signal strength space for

T, the decision rule is compared with a threshold), and rejection

of the null hypothesis corresponds to declaring the presence of

an attack.

B. Theoretical Analysis of the Spatial Correlation of RSS

Although affected by random noise, environmental bias, and

multipath effects, the RSS measured at a set of landmarks (i.e.,

reference points with known locations) is closely related to the

transmitter’s physical location and is governed by the distance

to the landmarks [17]. The RSS readings at different locations

in physical space are distinctive. Thus, the RSS readings present

strong spatial correlation characteristics.

According to the propagation model, the RSS at a landmark

from a wireless node is given by [18]

P (di) [dBm] = Pi(d0) [dBm] − 10γ log

(

di

d0

)

+ Si (1)

where i is the ith wireless node, Pi(d0) represents the transmit-

ting power of node i at the reference distance d0, di is the dis-

tance between the wireless node and the landmark, γ is the path

loss exponent, and Si is the shadow fading that follows zero-

mean Gaussian distribution with δ standard deviation [18], [19].

We assume that the wireless nodes have the same transmission

power. In Sections VI-B and VII-B, we will discuss how we
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Fig. 1. CDF of the distance in signal space when the distance between two nodes are 0, d, and 2d, respectively. The distance between the landmark and the
closer node is d. (a) δ = 2 dB. (b) δ = 3 dB.

can detect identity-based attacks when attackers use different

transmission power levels. Thus, the RSS distance between two

nodes in signal space at the landmark is given by

∆P = 10γ log

(

d2

d1

)

+ ∆S (2)

where ∆S follows zero-mean Gaussian distribution with δ/
√

2
standard deviation.

We depict the cumulative distribution function (CDF) of

the RSS distance in signal space in Fig. 1 when the distance

between two nodes are 0, d, and 2d, respectively, whereas the

distance from the landmark to the closer node is d. The path

loss exponent is set to 2.5. In Fig. 1(a), the standard deviation

of shadowing is 2 dB, whereas it is 3 dB for Fig. 1(b). We

found that the curves shift to the right with the increasing

RSS distance when the physical distance between two nodes

increases. It is obvious that, when two nodes are at the same

location, the RSS distance is small, i.e., around 5 dB, which is

most likely caused by the variation of RSS under different σ.

Based on the key observation of the strong spatial correlation

of RSS, it is thus important to analyze how we can derive

a threshold under which the RSS distance can effectively be

exploited to perform attack detection with low false positives.

According to (2), when the two wireless nodes are at the same

location (i.e., d1 = d2), the RSS distance in signal space fol-

lows a normal distribution with zero mean and δ/
√

2 standard

deviation, whereas the distance follows a normal distribution

with 10γ log(d2/d1) mean and δ/
√

2 standard deviation if

these two nodes are at different locations. The probability den-

sity functions (PDFs) of the distance under these two different

conditions can be represented as follows:

f∆P (p | same location) =
1√
πδ

e
−p2

δ2 (3)

f∆P (p | different location) =
1√
πδ

e
−

(

p−10γ log

(

d2
d1

))2

δ2 . (4)

Fig. 2 depicts these two PDFs. The left side of the figure

f∆P (p | same location) describes the RSS distance when two

wireless nodes are at the same location, whereas the right side

Fig. 2. PDFs of RSS distance in signal space when two wireless nodes are at
the same location and at different locations, respectively.

of the figure f∆P (p | different location) corresponds to the RSS

distance when two nodes are at different locations.

Given the threshold τ in the signal space, the probability that

we can determine the two nodes are at different locations in 1-D

physical space (i.e., detection rate) based on the RSS distance

distribution is given by

DR = Prob(∆P > τ | different locations)

= 1 − φ

⎛

⎝

τ − 10γ log
(

d2

d1

)

σ√
2

⎞

⎠ (5)

and the corresponding false-positive rate is

FPR = Prob(∆P > τ | same locations) = 1 − φ

(

τ
σ√
2

)

(6)

where φ(·) is the CDF of standard normal distribution. In

addition, the accuracy of classifying whether these two nodes

are at different locations is given by

Accuracy =

φ

(

τ
σ
√

2

)

+ 1 − φ

(

τ−10γ log
(

d2
d1

)

σ
√

2

)

2
. (7)

To analyze the feasibility of using RSS distance in signal

space to diagnose whether two nodes are at different locations
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Fig. 3. Detection accuracy for the optimal threshold τ = 5γ log(d2/d1)
when the standard deviation of shadowing is 2, 3, and 4 dB, respectively. The
path loss exponent is 2.5.

for attack detection, our objective is to select the value of

threshold τ that minimizes the average decision errors. In

Fig. 2, the probability of erroneously classifying the RSS

distance from the same physical location as the RSS distance

from different locations is

e1(τ) =

τ
∫

−∞

f∆P (p | different location) ds. (8)

This is indicated as the shadowing area under the curve of

f∆P (p | different location) to the left of the threshold. Simi-

larly, the probability of erroneously classifying the RSS dis-

tance from different locations as the RSS distance from the

same location is

e2(τ) =

+∞
∫

τ

f∆P (p | same location) ds (9)

which is indicated as the shadowing area under the curve of

f∆P (p | same location) to the right of τ . Then, the overall

probability of classification error can be obtained as

e(τ) = e1(τ) + e2(τ). (10)

To find the threshold value for which this error is minimal

requires differentiating e(τ) with respect to τ and equating the

result to 0, i.e.,

f∆P (τ | same location) − f∆P (τ | different location) = 0.
(11)

This equation is solved for τ to find the optimum threshold.

Substituting (3) and (4) into the aforementioned equation yields

the optimum threshold, i.e.,

τ = 5γ log

(

d2

d1

)

. (12)

Fig. 3 presents the numerical results of detection accuracy

under the optimal threshold τ = 5γ log(d2/d1) when the stan-

dard deviation of shadowing is 2, 3, and 4 dB, respectively. In

the figure, we observed that the farther away the two nodes

are separated, the better the accuracy we have. In addition,

we obtained better accuracy with lower standard deviation σ
of shadowing. It is encouraging that, under the theoretical

analysis, even with a single landmark in 1-D physical space, our

approach of utilizing the RSS distance can obtain an accuracy

of more than 90% when the two wireless nodes are separated by

the distance of 0.5d and beyond. When additional landmarks

are employed to calculate RSS distance in signal space, we

expect to obtain a better accuracy.

We next extend our theoretical model in the 1-D physical

space to the 2-D physical space. Suppose that there are n
landmarks that monitor the RSS of the wireless nodes. Each

RSS vector s = {s1, s2, . . . , sn} corresponds to a point in an

n-dimensional signal space [15]. Then, the RSS distance in

n-dimensional signal space is determined by

∆D =
√

∆P 2
1 + · · · + ∆P 2

n (13)

where ∆Pi, with i = 1, 2, . . . , n, is the RSS distance at the ith
landmark and is given by (2).

Subject to (3), we know that, when these two wireless

nodes are at the same location, the distance (2/δ2)∆D2 in n-

dimension signal space follows a chi-square distribution with n
degree of freedom [20], i.e.,

2

δ2
∆D2 =

n
∑

i=1

(

1√
2π

e−
1
2
p2

i

)2

∼ χ2
n,0. (14)

However, when these two wireless nodes are at different loca-

tions, (2/δ2)∆D2 becomes a noncentral chi-square distribution

with a noncentrality parameter λ, i.e.,

2

δ2
∆D2 =

n
∑

i=1

(

1√
2π

e
− 1

2
(pi−10γ log

(

di2
di1

)2
)2

∼ χ2
n,λ (15)

where di1 and di2 are the distances from two wireless nodes to

the ith landmark, and

λ =

n
∑

i=1

(

10γ log

(

di2

di1

)2
)

. (16)

Given the threshold τ , the probability that we can determine the

two nodes are at different locations in a 2-D physical space with

n landmarks (i.e., detection rate) is given by

DR=Prob(∆D>τ | different locations)=1−Fχ2
n,λ

(

2

δ2
τ2

)

(17)

and the corresponding false-positive rate is

FPR=Prob(∆D>τ | same locations)=1−Fχ2
n,0

(

2

δ2
τ2

)

(18)

where FX(·) is the CDF of the random variable X .
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Fig. 4. RSS readings from two physical locations.

C. Test Statistics for Detection of Identity-Based Attacks

The aforementioned analysis provides the theoretical support

of using the spatial correlation in RSS inherited from wireless

nodes to perform attack detection. It also showed that the

RSS readings from a wireless node over time fluctuate under

different σ and should cluster together. In particular, the RSS

readings from the same physical location over time will belong

to the same cluster points in the n-dimensional signal space,

whereas the RSS readings from different locations over time

should form different clusters in signal space, as shown in

Fig. 4, which presents RSS reading vectors of three landmarks

(i.e., n = 3) from two different physical locations. This obser-

vation suggests that we can conduct cluster analysis on top of

RSS readings to find out the distance in signal space in practice.

Furthermore, we can detect the identity-based attacks based on

the observed RSS distance between clusters.

We explore the K-means algorithm, which is one of the most

popular iterative descent clustering methods [21]. The squared

Euclidean distance is chosen as the dissimilarity measure. If

there are M RSS sample readings for a node, the K-means

clustering algorithm partitions M sample points into K disjoint

subsets Sj with Mj sample points to minimize the sum-of-

squares criterion. We have

Jmin =
K

∑

j=1

∑

sm∈Sj

‖sm − µj‖2 (19)

where sm is an RSS vector that represents the mth sample

point, and µj is the geometric centroid of the sample points

for Sj in signal space. We further choose the distance between

two centroids as the test statistic T for identity-based attack

detection. We have

Dc = ‖µi − µj‖ (20)

with i, j ∈ {1, 2, . . . ,K}.

D. Detection Philosophy

1) Detecting Spoofing Attacks: Under normal conditions,

when examining the RSS stream from a node identity, the dis-

tance between the centroids from the K-means cluster analysis

in signal space should be close to each other, because there

is only one cluster from a single physical location. However,

under a spoofing attack, there is more than one node at different

physical locations, which claim the same node identity. As a

result, when examining the RSS stream over time from a node

identity, the RSS sample readings from the attacked node (i.e.,

the original node) will be mixed with RSS readings from at

least one different location. Thus, more than one clusters will

be formed in the signal space, and the distance between the

centroids is larger (i.e., Tobs > τ ) as the centroids are derived

from the different RSS clusters associated with different loca-

tions (the original node plus spoofing nodes) in physical space.

When the RSS reading vectors, as shown in Fig. 4, is from

one wireless node identity, we observed that two RSS clusters

are formed, and the distance between two centroids is large.

This result clearly indicates that the RSS readings come from

two different physical locations and thus declares the presence

of a spoofing attack. Furthermore, based on our analysis in

Section III-B, the farther the attacker is from the original

node, the more the likelihood that their RSS patterns signifi-

cantly differ, and the higher the accuracy that the detector can

achieve.

2) Detecting Sybil Attacks: Similarly, the basic idea behind

using the K-means cluster analysis to detect Sybil attacks relies

on the RSS correlation in the physical locations of nodes. When

examining the RSS readings from two nodes with different

identities over time, we can apply the K-means cluster analysis

to the mixture of these two RSS streams. Under normal con-

ditions without a Sybil attack, the observed value of the test

statistic T
obs (i.e., Dobs

c ) should be large, because there are

two different RSS clusters from two physical locations, whereas

when a Sybil attack is present, the T
obs is small and satisfies

T
obs < τ , because the RSS readings originated in one physical

location (i.e., the location of a Sybil node), and thus, there is

only one cluster in the signal space.

IV. METRICS

In this section, we present our metrics for evaluating the per-

formance of our attack detector by using spatial correlation of

RSS based on the K-means cluster analysis in real experiments.

Detection Rate and False-Positive Rate: An identity-based

attack will cause the significance test to reject H0. We are

thus interested in the statistical characterization of the attack-

detection attempts over all the possible attacks on the floor. The

detection rate is defined as the percentage of attack attempts that

are determined to be under attack. Note that, when the attack

is present, the detection rate corresponds to the probability of

detection Pd, whereas under normal (nonattack) conditions, it

corresponds to the probability of declaring a false positive Pfa.

The detection rate and false-positive rate vary under different

thresholds.

ROC Curve: To evaluate an attack detection scheme, we

want to study both the false-positive rate Pfa and the probabil-

ity of detection Pd. The ROC curve is a plot of attack detection

accuracy compared to the false-positive rate. It can be obtained

by varying the detection thresholds. The ROC curve provides a

direct means of measuring the tradeoff between false positives

and correct detections.
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Fig. 5. Landmark setups and testing locations in two networks within two
office buildings. (a) IEEE 802.11 network. (b) IEEE 802.15.4 network.

Distance Between Wireless Nodes: In a spoofing attack,

when a spoofing node is close to an original node, the resulting

test statistic Dobs
c will not be large and may affect the deci-

sion of attack detection, whereas in a Sybil attack, when two

wireless nodes are close to each other, a small test statistic

Dobs
c will be obtained. This condition may mislead our attack

detector to determine the presence of a Sybil attack. Hence, we

are interested in studying how the distance between two nodes

affects the performance of our attack detector.

V. EXPERIMENTAL METHODOLOGY

To evaluate the effectiveness of our mechanisms in detecting

identity-based attacks, we conducted experiments using two

networks: 1) an IEEE 802.11 (WiFi) network at the Wireless

Information Network Laboratory (WINLAB) and 2) an IEEE

802.15.4 (ZigBee) network in the Department of Computer

Science, Rutgers, The State University of New Jersey. The

size of these two floors are 219 × 169 ft and 200 × 80 ft,

respectively. Fig. 5(a) shows the 802.11 network, with five

landmarks shown in red stars, which are deployed to maximize

signal strength coverage in the yellow-shaded experimental

area. Meanwhile, the 802.15.4 network is presented in Fig. 5(b),

with four landmarks distributed in a squared setup to achieve

optimal landmark placement [17], as shown in red triangles.

The small dots in floor maps are the locations used for

testing. For the 802.11 network, there are 101 locations, and

we collected 300 packet-level RSS samples at each location,

whereas for the 802.15.4 network, there are 94 locations, and

300 packet-level RSS samples are collected at each location.

In addition, we built a real-time localization system to local-

ize the positions of attackers. We use the leave-one-out method

in localization algorithms, which means that we choose one

location as the testing node, whereas the rest of the locations

are chosen as training data. For the 802.11 network, the size

of the training data is 100 locations, whereas for the 802.15.4

network, the size of the training data is 73 locations. The

detailed description of our localization system is presented in

Section VIII.

To test our approach’s ability to detect identity-based attacks,

for spoofing attacks, we randomly chose a point pair on the floor

and treated one point as the position of the original node and

the other point as the position of the spoofing node, whereas for

Sybil attacks, we randomly chose a location, split the collected

RSS samples, and applied with multiple node identities.

We ran the identity-based attack detection test through all

the possible combinations of point pairs on the floor by using

all the testing locations in both networks. There are a total

of 5050 pairs for the 802.11 network and 4371 pairs for the

802.15.4 network. The experimental results will be presented

in the following sections for the attack detector and the attack

localizer.

VI. EXPERIMENTAL EVALUATION OF DETECTING

SPOOFING ATTACKS

In this section, we focus on detecting spoofing attacks. We

first describe how we can determine the threshold of test

statistics and detect attacks when adversaries use different

transmission power levels. The experimental results are then

presented to evaluate the effectiveness of detecting spoofing

attacks.

A. Determining the Threshold of Test Statistics

Based on the analysis in Section III-B, it is important to

choose the appropriate threshold τ , which will allow the attack

detector to be robust to false detections. The thresholds define

the critical region for the significance testing. In our experi-

ments, the threshold is obtained through empirical training of

the K-means algorithm. Fig. 6 shows the results of the CDF

of the Dc in signal space for both the 802.11 and 802.15.4

networks. We found that the curve of Dc greatly shifted to the

right under spoofing attacks, which is in line with our analytical

results in Section III-B, thereby suggesting that using Dc as a

test statistic is an effective way of detecting spoofing attacks.

We will examine the performance of the attack detector under

various τ .

B. Detecting Attacks Using Different Transmission

Power Levels

If an attacker sends packets at a transmission power level

that is different from the original node with the same identity,

there will be two distinct RSS clusters in signal space. The
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Fig. 6. Spoofing attack detection: CDF of the test statistic Dc in the signal space. (a) IEEE 802.11 network. (b) IEEE 802.15.4 network.

TABLE I
SPOOFING ATTACK DETECTION: DETECTION RATE AND

FALSE-POSITIVE RATE IN TWO NETWORKS

spoofing attack will thus be detected based on the test statistics

of Dc, obtained from the RSS clusters. Therefore, our K-means

detector is robust when an attacker launches a spoofing attack

from different transmission power levels.

C. Detection Results

In this section, we present the evaluation of the effectiveness

of the attack detector in detecting spoofing attacks.

1) Effectiveness of Attack Detector: Table I presents the

detection rate and false-positive rate for both the 802.11 and

802.15.4 networks under different threshold settings. The cor-

responding ROC curves are displayed in Fig. 7. The results are

encouraging, showing that for false-positive rates less than 5%,

the detection rates are more than 95%. Even when the false-

positive rate goes to zero, the detection rate is still more than

92% for both the 802.11 and 802.15.4 networks.

Table II presents the detection rate and false-positive rate

for the 802.11 network when the spoofing attacker varies its

transmission power level to launch attacks. In our experiments,

the attacker used transmission power of 10 dB to send packets,

whereas the original node used 15 dB of transmission power.

Compared with Table I, Table II shows that we can achieve

a higher detection rate when the attacker uses different trans-

mission power levels. Thus, our attack detector can effectively

detect the spoofing attacks that are launched by using different

transmission power levels.

2) Impact of the Distance Between the Spoofing Node and

the Original Node: Our analytical results in Section III-B show

that the distance between the spoofing node and the original

node will affect the detection accuracy. We further study how

likely a spoofing node can be detected by our attack detector

when it is at varying distances from the original node in

physical space. Fig. 8 presents the detection rate as a function of

the distance between the spoofing node Pspoof and the original

node Porg. We found that the farther away Pspoof is from Porg,

the higher the detection rate becomes. For the 802.11 network,

the detection rate goes to more than 90% when Pspoof is about

23 ft away from Porg under τ equal to 8 dB. On the other hand,

for the 802.15.4 network, the detection rate is more than 90%

when the distance between Pspoof and Porg is about 20 ft by

setting threshold τ to 9 dB. This result is in line with the average

localization-estimation errors using RSS [15], which are about

15 ft. When the nodes are less than 15 ft apart, they have a high

likelihood of generating similar RSS readings, and thus, the

spoofing-detection rate falls below 90% but is still greater than

55%. However, when Pspoof moves closer to Porg, the attacker

also increases the probability to expose itself. The detection rate

goes to 100% when the spoofing node is about 45–50 ft away

from the original node.

VII. EXPERIMENTAL EVALUATION OF DETECTING

SYBIL ATTACKS

In this section, we first describe how we can determine the

threshold of test statistics for detecting Sybil attacks and then

develop the DoT mechanism to handle attacks launched by

Sybil nodes that use different transmission power levels to

create different identities. Finally, the experimental results are

presented to evaluate the effectiveness of detecting Sybil attacks

that use our attack detector.

A. Determining the Threshold of Test Statistics

Similar to detecting spoofing attacks, the thresholds define

the critical region for the significance testing. In detecting Sybil

attacks, we show how we determine the thresholds through

empirical training for our attack detector. During the offline

phase, we collected the RSS readings across a set of locations

over the experimental area and obtained the distance between

two centroids in signal space for each node. We then use

the distribution of the training information to determine the
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Fig. 7. Spoofing-attack detection: ROC curves over all the testing points across the experimental floor. (a) IEEE 802.11 network. (b) IEEE 802.15.4 network.

TABLE II
SPOOFING-ATTACK DETECTION WHEN THE ATTACKER VARIES ITS

TRANSMISSION POWER LEVEL: DETECTION RATE AND FALSE-POSITIVE

RATE WHEN THE ATTACKER USES 10-dB TRANSMISSION POWER

LEVEL, WHEREAS THE ORIGINAL NODE USES 15 dB

threshold τ . At runtime, based on the RSS sample readings

for each node pair (i.e., the mixture of two RSS streams

from different identities), we can calculate the observed value

Dobs
c . Our condition for declaring the presence of a Sybil

attack is

Dobs
c < τ. (21)

Fig. 9 presents the CDF of the Dc in signal space for both

the 802.11 and 802.15.4 networks. We found that the value of

Dc is small under Sybil attacks, whereas the value of Dc is

large under normal situations. This observation clearly indicates

that using Dc as a test statistic is effective for detecting Sybil

attacks.

B. DoT Mechanism

An adversary may vary the transmission power levels to

create different identities to trick the system. In our analysis,

different signal strength clusters will then be formed in the

signal space due to different transmission power levels used,

although they are from the same physical location.

We examine the pass loss part of the signal propagation that

models the received power as a function of the distance to the

landmark. We have

P (d) [dBm] = P (d0) [dBm] − 10γ log

(

d

d0

)

(22)

where P (d0) represents the transmitting power of a node at the

reference distance d0, d is the distance between the transmit-

ting node and the landmark, and γ is the path-loss exponent.

Furthermore, we can express the difference of the received

power between two landmarks i and j as

Pi(d) − Pj(d) = 10γi log

(

di

d0

)

− 10γj log

(

dj

d0

)

. (23)

Based on (23), we found that the difference of the correspond-

ing received power between two different landmarks is inde-

pendent of the transmission power. Hence, when a Sybil node

that resides at a physical location varies its transmission power

to create different identities, the difference of the RSS readings

between two different landmarks from forged identities is a

constant, because the RSS readings are obtained from a single

physical location.

We thus developed the DoT mechanism, which utilizes the

difference of the centroid vectors in signal space obtained

from cluster analysis and further applies the difference on the

obtained difference of the centroids to detect Sybil attacks

that are launched by using different power levels. We use an

example to illustrate how DoT helps detect the presence of a

Sybil attack. When there are four landmarks deployed in the

area of interest, we study the input RSS streams from two node

identities and denote the two centroid vectors that are returned

from the K-means algorithm as µ1 = {µ1
1, µ

2
1, µ

3
1, µ

4
1} and

µ2 = {µ1
2, µ

2
2, µ

3
2, µ

4
2}. DoT then calculates the difference of

the difference between the corresponding centroid components

from landmark 1 to the others as follows:

⎧

⎨

⎩

e12 =
(

µ1
1 − µ2

1

)

−
(

µ1
2 − µ2

2

)

e13 =
(

µ1
1 − µ3

1

)

−
(

µ1
2 − µ3

2

)

e14 = (µ1
1 − µ4

1) −
(

µ1
2 − µ4

2

)

.

(24)

Due to random noise, environmental bias, and multipath effects,

the difference e fluctuates around zero. We define a confidence

level α. Assuming that the centroid from each landmark is in-

dependent, when
∏K

i �=j,i,j=1 eij < 1 − α, with K =
(

N
2

)

, DoT

concludes the presence of a Sybil attack, and the two node

identities under study is, in fact, one physical node. Empirically,

we found that choosing three independent equations out of K
is enough to perform attack detection.
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Fig. 8. Spoofing-attack detection: Detection rate as a function of the distance between the spoofing and original nodes. (a) IEEE 802.11 network. (b) IEEE
802.15.4 network.

Fig. 9. Sybil-attack detection: CDF of the test statistic Dc in the signal space. (a) IEEE 802.11 network. (b) IEEE 802.15.4 network.

TABLE III
SYBIL-ATTACK DETECTION: DETECTION RATE AND FALSE-POSITIVE

RATE IN TWO NETWORKS

C. Detection Results

In this section, we present the evaluation of the effectiveness

of the attack detector in detecting Sybil attacks.

1) Effectiveness of Attack Detector: Table III presents the

detection rate and false-positive rate for both the 802.11 and

802.15.4 networks under different threshold (τ) settings. The

corresponding ROC curves are displayed in Fig. 10. We found

that the attack detector can achieve a detection rate of more

than 95% with less than a 10% false-positive rate. Even when

the detection rate reaches 100%, the false-positive rate is only

7.4% for the 802.11 network and 4.1% for the 802.15.4 net-

work, respectively. In addition, in Table III, we observed that

the similar thresholds are achieved for both networks under

detection rates of 90%, 95%, and 100%. These results indicate

that our attack detector is generic across different networks and

is highly effective in performing attack detection.

2) Evaluation of DoT: Fig. 11 presents the ROC curve by

using DoT under the situation that an adversary varies the

transmission power level from 10 dB to 15 dB to launch a Sybil

attack. We observed that DoT can achieve a 100% detection

rate when the corresponding false-positive rate is about 9.5%.

This result is encouraging, because it shows that our attack-

detection approach is robust to detect adversaries that use

different transmission power levels to launch Sybil attacks.

3) Impact of Distance Between Wireless Nodes: We further

study how the Sybil attack detection rate and the false-positive

rate are affected by the distance between two wireless nodes in

a network. We define a distance threshold Dmin, which is the

minimum distance between two nodes within one experimental

setting. Fig. 12 shows the ROC curves under different thresh-

olds of Dmin for both the 802.11 and 802.15.4 networks. We

note that each ROC curve is generated by using those distances

between two nodes larger than the corresponding Dmin in an



2428 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 5, JUNE 2010

Fig. 10. Sybil-attack detection. ROC curves over all the testing points across the experimental floor: (a) IEEE 802.11 network. (b) IEEE 802.15.4 network.

Fig. 11. DoT: ROC curve when an adversary varies transmission power levels
to launch a Sybil attack.

experimental setting. We found that the ROC curves shift to

the upper left when we increase the threshold Dmin. This result

indicates that the farther away two nodes are from each other,

the higher the detection rate, and the lower the false-positive

rate achieved.

If two wireless nodes are close to each other, the resulting test

statistic Dobs
c will be small and may be less than the threshold

(i.e., Dobs
c < τ ). Consequently, the attack detector will claim a

false positive (i.e., declaring the presence of a Sybil attack).

Thus, we further examine how likely the false-positive rate

of our detector can be reduced by varying the node distance

threshold Dmin. Fig. 13 presents the false-positive rate as a

function of Dmin under different detection rates for both the

802.11 and 802.15.4 networks. First, the curves of false-positive

rate show that a higher detection rate usually results in a higher

false-positive rate, which is in line with our observation when

using ROC curves. Second, the results indicate that the false-

positive rate decreases as the Dmin increases. For instance, by

examining the curve under a detection rate of 95%, the false-

positive rate decreases from 3.66% to 0.85% in the 802.11

network and from 2.53% to 0.49% in the 802.15.4 network,

respectively, when Dmin increases from 10 ft to 30 ft. In

addition, we observed that the detector can achieve a 100%

detection rate with a 0% false-positive rate when Dmin reaches

68 ft in the 802.11 network and 56 ft in the 802.15.4 network,

respectively.

VIII. LOCALIZING ADVERSARIES

If an identity-based attack is determined to be present by

the attack detector, we want to localize the adversaries and to

eliminate the attackers from the network. In this section, we

present a real-time localization system that can be used to locate

the positions of the attackers. We then describe the localization

algorithms for estimating the adversaries’ position. The experi-

mental results are presented to evaluate the effectiveness of our

approach.

A. Localization System

We have developed a general-purpose localization system to

perform real-time indoor positioning. This system is designed

with fully distributed functionality and easy-to-plug-in local-

ization algorithms. It is built around four logical components:

1) Transmitter; 2) Landmark; 3) Server; and 4) Solver. The

system architecture is shown in Fig. 14.

Transmitter: Any device that transmits packets can be lo-

calized. Oftentimes, the application code does not need to be

altered on a sensor node to localize it.

Landmark: The Landmark component listens to the packet

traffic and extracts the RSS reading for each transmitter. It then

forwards the RSS information to the Server component. The

Landmark component is stateless and is usually deployed on

each landmark or AP with known locations.

Server: A centralized server collects RSS information from

all the Landmark components. The identity-based detection is

performed at the Server component. The Server component

summarizes RSS information such as averaging or clustering

and then forwards the information to the Solver component for

localization estimation.

Solver: The Solver component takes the input from the

Server component, performs the localization task by utilizing

the localization algorithms that are plugged in, and returns the

localization results back to the Server component. There are
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Fig. 12. Sybil-attack detection: ROC curves when varying the node distance threshold Dmin. (a) IEEE 802.11 network. (b) IEEE 802.15.4 network.

Fig. 13. Sybil-attack detection: False-positive rate as a function of the node distance threshold Dmin. (a) IEEE 802.11 network. (b) IEEE 802.15.4 network.

Fig. 14. Localization system architecture.

multiple Solver instances available, and each Solver instance

can simultaneously localize multiple transmitters.

During the localization process, the following steps will take

place:

1) A Transmitter sends a packet. Some numbers of Land-

marks observe the packet and record the RSS.

2) Each Landmark forwards the observed RSS from the

transmitter to the Server.

3) The Server collects the complete RSS vector for the

transmitter and sends the information to a Solver instance

for location estimation.

4) The Solver instance performs localization and returns the

coordinates of the transmitter back to the Server.

If there is a need to localize hundreds of transmitters at the

same time, the server can perform load balancing among differ-

ent solver instances. This centralized localization solution also

makes enforcing contracts and privacy policies more tractable.

B. Attack Localizer

When our detector has identified an attack for a node identity,

the centroids returned by the K-means clustering analysis in

signal space can be used by the Server and sent to the Solver

for location estimation. In particular, in spoofing attacks, the re-

turned positions should be the location estimate for the original

node and the spoofing nodes in physical space. Fig. 15 shows

an example of the relationship among the original node Porg,

the location estimation of the original node Lorg, the spoofing

node Pspoof , and the localized spoofing node position Lspoof .
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Fig. 15. Relationships among the original node, the spoofing node, and their
location estimation returned by the localization system.

To show the generality of our localization system in locat-

ing the adversarial nodes, we have chosen two representative

localization algorithms that use signal strength from point- and

area-based algorithms.

RADAR: Point-based methods return an estimated point as

a localization result. One primary example of a point-based

method is the RADAR scheme [13]. In RADAR, during the

offline phase, a mobile transmitter with known position peri-

odically broadcasts beacons, and the RSS readings are mea-

sured at a set of landmarks. Collecting together the averaged

RSS readings from each of the landmarks for a set of known

locations provides a radio map. At runtime, localization is

performed by measuring a transmitter’s RSS at each landmark,

and the vector of RSS values is compared with the radio map.

The record in the radio map whose signal strength vector is

closest, in the Euclidean sense, to the observed RSS vector is

declared to correspond to the location of the transmitter. In this

paper, instead of using the averaged RSS in the traditional ap-

proach, we use the RSS centroids obtained from the K-means

clustering algorithm as the observed RSS vector for localizing

a node.

Area-Based Probability (ABP): Area-based algorithms re-

turn the most likely area in which the true location resides.

Compared with point-based methods, one major advantage of

area-based methods is that they return a region, which has an

increased chance of capturing the transmitter’s true location.

ABP returns an area, i.e., a set of tiles on the floor, bounded by a

probability that the transmitter is within the returned area [17].

ABP assumes that the distribution of RSS for each landmark

follows a Gaussian distribution. The Gaussian random variable

from each landmark is independent. ABP then computes the

probability that the transmitter is at each tile Li on the floor by

using Bayes’ rule, i.e.,

P (Li | s) =
P (s | Li) × P (Li)

P (s)
. (25)

Given that the transmitter resides at exactly one tile, satisfy-

ing
∑L

i=1 P (Li | s) = 1, ABP normalizes the probability and

returns the most likely tiles up to its confidence α.

Both RADAR and ABP are employed in our experiments to

localize the positions of the attackers.

C. Experimental Evaluation

1) Localization Metrics: To evaluate the effectiveness of

our localization system in finding the locations of the attackers,

we are interested in the following performance metrics.

Localization error CDF. We obtain the CDF of the location-

estimation error from all the localization attempts of adver-

saries. For area-based algorithms, we also report CDFs of

the minimum and maximum errors. For a given localization

attempt, these are points in the returned area that are closest

to and furthest from the true location.

Relationship between the true and estimated distances. For

spoofing attacks, the relationship between the true distance

of the spoofing node to the original node ‖Porg − Pspoof‖
and the distance of the location estimate of the spoofing

node to that of the original node ‖Lorg − Lspoof‖ evaluates

how accurate our attack localizer can report the positions

of both the original node and the attackers.

2) Experimental Results: We first present the statistical

characterization of the location-estimation errors. Fig. 16

presents the localization error CDF of the original nodes

and the spoofing nodes for both RADAR and ABP in the

802.11 and 802.15.4 networks. For the area-based algorithm,

we present the median tile error ABP − med and the min-

imum and maximum tile errors ABP − min and ABP −
max, respectively. We found that the location-estimation errors

from using the RSS centroids in signal space are about the

same as using averaged RSS as the input for localization

algorithms [15]. Furthermore, we observed that the localiza-

tion performance in the 802.11 network is similar to that in

the 802.15.4 network. Due to space limitations, we did not

present the localization results of Sybil nodes. We note that

we observed similar localization performance when localizing

Sybil nodes.

More importantly, we observed that the localization per-

formance of the original nodes is qualitatively the same as

that of the spoofing nodes. This result is very encouraging,

because the similar performance is strong evidence that using

the centroids from the K-means cluster analysis is effective in

both identifying the identity-based attacks and localizing the

attackers.

In spoofing attacks, the challenge in localizing the posi-

tions of spoofing nodes arises, because the system does not

know the positions of either the original or the spoofing node.

Thus, we would like to examine how accurate the localization

system can estimate the distance between Porg and Pspoofing.

Fig. 17 displays the relationship between ‖Lorg − Lspoofing‖
and ‖Porg − Pspoofing‖ across different localization algorithms

and networks. The blue dots represent the cases of the detected

spoofing attacks, whereas the red crosses indicate the spoofing

attacks have not been detected by the K-means attack detector.

Comparing with Fig. 8, i.e., the detection rate as a function

of the distance between Porg and Pspoofing, the results of the

undetected spoofing attack cases represented by the red crosses

are in line with the results in Fig. 8. The spoofing attacks are

100% detected when ‖Porg − Pspoofing‖ is equal to or is greater

than about 50 ft.
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Fig. 16. Localization error CDF across localization algorithms and networks when localizing both original and spoofing nodes in spoofing attacks. (a) IEEE
802.11 network. (b) IEEE 802.15.4 network.

Fig. 17. Relationship between the true distance and the estimated distance for the original and spoofing nodes across localization algorithms and networks in
spoofing attacks. (a) IEEE 802.11: RADAR, τ = 10 dB. (b) IEEE 802.11: ABP, τ = 10 dB. (c) IEEE 802.15.4: RADAR, τ = 9 dB. (d) IEEE 802.15.4: ABP,
τ = 9 dB.

Furthermore, the relationship between ‖Lorg − Lspoof‖ and

‖Porg − Pspoof‖ is along the 45◦ straight line. This result

means that ‖Lorg − Lspoof‖ is directly proportional to ‖Porg −
Pspoof‖ and indicates that our localization system is highly

effective for localizing the attackers. At a fixed distance value

of ‖Porg − Pspoof‖, the values of ‖Lorg − Lspoof‖ fluctuate

around the true distance value. The fluctuation reflects the

localization errors of both Porg and Pspoof . The larger the

‖Porg − Pspoof‖ is, the smaller the fluctuation of ‖Lorg −
Lspoof‖ becomes, at about 10-ft maximum. This result means

that, if the spoofing node is farther away from the original

node, it is extremely likely that the K-means attack detector can
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detect it. In addition, our attack localizer can find the attacker’s

position and estimate the distance from the original node to the

spoofing node at a maximum error of about 10–20 ft.

IX. RELATED WORK

There has been active research that addresses identity-based

attacks. We cannot cover the entire body of works in this sec-

tion. Rather, we give a short overview of traditional approaches

and several new methods. We then describe the related research

in localization.

Detection of Spoofing Attacks: The traditional security ap-

proach to cope with identity fraud is to use cryptographic

authentication. An authentication framework for hierarchical

ad hoc sensor networks is proposed in [22], and a hop-by-

hop authentication protocol is presented in [23]. The work in

[24] has introduced a secure and efficient key management

(SEKM) framework. The authors of [25] implemented a key

management mechanism with periodic key refresh and host

revocation to prevent the compromise of authentication keys.

In addition, binding approaches are employed by cryptographi-

cally generated addresses (CGA) to defend against the network

identity spoofing [26].

It is not always desirable to use authentication due to lim-

ited resources on nodes and infrastructural overhead involved;

therefore, new approaches have recently been proposed to

detect spoofing attacks that use physical properties associated

with wireless transmission. The work in [27] has introduced

a security layer that is separate from conventional network-

authentication methods. The authors of [28] utilized properties

of the wireless channel at the physical layer to support high-

level security objectives. The most closely related works to our

paper are [4] and [29], in which one work proposed the use of

matching rules of signal prints for spoofing detection, whereas

the other work modeled the RSS readings using a Gaussian

mixture model. However, they did not address how they can

localize attackers.

Detection of Sybil Attacks: Employing cryptographic-

related methods [30]–[32] are the traditional approaches to

prevent Sybil attacks. To address the issues of computational

constraints on wireless and sensor nodes, [1] proposed schemes

based on symmetric key cryptography to satisfy the resource

requirements, and [33] used unique random pairwise key estab-

lishment schemes based on t-degree polynomials.

Furthermore, radio resource testing and registration ap-

proaches are two methods that deviate from the conventional

security approaches. However, the radio-resource testing [32]

process may consume much battery power, whereas registration

alone cannot prevent Sybil attacks, because a malicious attacker

may get multiple identities by nontechnical means such as

stealing. In addition, [9] employed RSS to detect wireless Sybil

attacks. However, it did not study how the Sybil nodes can be

localized.

Wireless Localization: The localization techniques can be

categorized along several dimensions. Based on localization

infrastructure, [34] used infrared methods, and [35] employed

ultrasound to perform localization. Both of them need to deploy

specialized infrastructure for localization. On the other hand, in

spite of its several-meter-level accuracy [12], using RSS [13],

[17], the work in [36] is an attractive approach, because it can

reuse the existing wireless infrastructure.

Dealing with ranging methodology, range-based algorithms

involve distance estimation to landmarks by using the mea-

surement of various physical properties [37] such as RSS

[13], [15], time of arrival (TOA) [38], and time difference

of arrival (TDOA) [35]. Range-free algorithms [39]–[41] use

coarser metrics to place bounds on candidate positions. Another

method of classification describes the strategy for mapping a

node to a location. Lateration approaches [38], [41], [42] use

distances to landmarks, whereas angulation uses the angles

from landmarks. Fingerprint-matching strategies [13]–[15] use

a function that maps observed radio properties to locations

on a preconstructed radio map. Finally, another dimension of

classification extends to aggregate [39] or singular algorithms.

Our paper differs from the aforementioned research in sev-

eral ways. First, there is little work that can detect both spoofing

and Sybil attacks using the same set of techniques. Further-

more, our approach is robust to attackers that use different trans-

mission power levels to launch attacks. Finally, much of the

aforementioned work focuses on attack detection only, whereas

our paper can perform both attack detection and localize the

adversaries’ positions.

X. CONCLUSION

In this paper, we have proposed a method for detecting

identity-based attacks, including spoofing and Sybil attacks,

and localizing the adversaries in wireless and sensor networks.

In contrast to traditional identity-oriented authentication meth-

ods, our RSS-based approach does not add additional overhead

to the wireless devices and sensor nodes. We formulated the

identity-based detection problem as a statistical-significance-

testing problem. We then provided theoretical analysis of ex-

ploiting the spatial correlation of RSS inherited from wireless

nodes for attack detection. We further utilized the K-means

cluster analysis to derive the test statistic. Our attack detector is

robust to detect attacks that are launched by adversaries that use

different transmission power levels. In addition, we have built

a real-time localization system and integrated our K-means

attack detector into the system to locate the positions of the

attackers and, as a result, to eliminate the adversaries from the

network.

We studied the effectiveness and generality of our attack

detector and attacker localizer in both the 802.11 and 802.15.4

networks in two real office building environments. The perfor-

mance of the K-means attack detector is evaluated in terms

of detection rates and ROC curves. Our attack detector has

achieved high detection rates, i.e., more than 95%, and low

false-positive rates, i.e., less than 5%. Moreover, our DoT

mechanism is highly effective in detecting a Sybil attack that

uses different transmission power levels.

When locating the positions of the attackers, we have utilized

both the point- and area-based algorithms in our real-time

localization system. We found that the performance of the

system, when localizing the adversaries that use the results of

the K-means cluster analysis, are about the same as localizing
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under normal conditions. In particular, in spoofing attacks, the

distance between the spoofing node and the original node can

be estimated with a median error of 10 ft. Our method is

generic across different localization algorithms and networks.

Therefore, our experimental results provide strong evidence of

the effectiveness of our approach in detecting identity-based

attacks and localizing the positions of the adversaries.
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