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Abstract.—Genome-scale data sets result in an enhanced resolution of the phylogenetic inference by reducing stochastic
errors. However, there is also an increase of systematic errors due to model violations, which can lead to erroneous phylo-
genies. Here, we explore the impact of systematic errors on the resolution of the eukaryotic phylogeny using a data set of
143 nuclear-encoded proteins from 37 species. The initial observation was that, despite the impressive amount of data, some
branches had no significant statistical support. To demonstrate that this lack of resolution is due to a mutual annihilation
of phylogenetic and nonphylogenetic signals, we created a series of data sets with slightly different taxon sampling. As
expected, these data sets yielded strongly supported but mutually exclusive trees, thus confirming the presence of con-
flicting phylogenetic and nonphylogenetic signals in the original data set. To decide on the correct tree, we applied several
methods expected to reduce the impact of some kinds of systematic error. Briefly, we show that (i) removing fast-evolving
positions, (ii) recoding amino acids into functional categories, and (iii) using a site-heterogeneous mixture model (CAT)
are three effective means of increasing the ratio of phylogenetic to nonphylogenetic signal. Finally, our results allow us to
formulate guidelines for detecting and overcoming phylogenetic artefacts in genome-scale phylogenetic analyses. [Compo-
sitional heterogeneity; data removal; eukaryotic phylogeny; inconsistency; long-branch attraction; nonphylogenetic signal;
phylogenomics; systematic error.]

The use of large multigene data sets to infer phy-
logenetic trees (phylogenomics) has been successfully
applied to resolve evolutionary questions for which
single-gene phylogenies failed (Bapteste et al., 2002; Del-
suc et al., 2005, 2006; Madsen et al., 2001; Murphy et al.,
2001; Philippe et al., 2005a; Qiu et al., 1999; Rodrı́guez-
Ezpeleta et al., 2005; Soltis et al., 1999). This increase in
resolution results from the reduction of sampling er-
ror through the addition of phylogenetically informa-
tive positions. However, higher statistical support does
not necessarily lead to more accurate results, because
the potential for systematic errors also grows with the
increasing size of data sets, which in some cases may
lead to strongly supported but incorrect phylogenies
(Brinkmann et al., 2005; Jeffroy et al., 2006; Philippe et al.,
2004, 2005b; Stefanovic et al., 2004).

In the probabilistic framework (maximum likelihood
and Bayesian inference), systematic errors can be traced
back to misspecifications in the model of sequence
evolution (model violations). Known causes of model
violations are across-site rate variation (Yang, 1994),
heterotachy (the across-site rate variation through time)
(Kolaczkowski and Thornton, 2004; Philippe et al.,
2005c; Spencer et al., 2005), site-interdependent evolu-
tion (Robinson et al., 2003; Rodrigue et al., 2005), com-
positional heterogeneity (Foster, 2004; Galtier and Gouy,
1995; Lockhart et al., 1992), and site-heterogeneous nu-
cleotide/amino acid replacement (Lartillot and Philippe,
2004; Pagel and Meade, 2004). In the following, we will
call the apparent signal arising from such model viola-
tions ”nonphylogenetic” signal, as opposed to genuine
phylogenetic signal that corresponds to bona fide shared-
derived characters.

The impact of model violations on phylogenetic accu-
racy is greatly exaggerated when multiple substitutions

occur at given sites (mutational saturation). In the ab-
sence of model violation, mutational saturation would
result in random sequences simply leading to poorly re-
solved trees (but see Susko et al., 2005). In contrast, when
the model is violated, systematic error becomes manifest.
Because long branches (either due to fast evolutionary
rate or long time span) accumulate more multiple substi-
tutions, they are most affected by long branch attraction
(LBA), the well-known case of systematic error that pro-
vokes the clustering of fast-evolving species regardless of
their true phylogenetic relationship (Felsenstein, 1978).
Several complementary approaches have been applied
to overcome systematic errors such as LBA: (i) increased
taxon sampling and improved models of sequence evo-
lution, allowing a more efficient detection of multiple
substitutions; and (ii) removal of fast-evolving species
(Aguinaldo et al., 1997), genes (Brinkmann et al., 2005;
Philippe et al., 2005b), or sequence positions (Brinkmann
and Philippe, 1999; Burleigh and Mathews, 2004; Hirt
et al., 1999; Ruiz-Trillo et al., 1999).

In this paper, we study the relative contribution of phy-
logenetic and nonphylogenetic signal to genome-scale
phylogenies and explore different methods to overcome
systematic error. We use the global eukaryotic phylogeny
as a case study for two reasons. First, the eukaryotic di-
versification is difficult to resolve, possibly because of
closely spaced speciation events (Knoll, 1992; Philippe
and Adoutte, 1998), implying that the phylogenetic sig-
nal would be limited, and second, multiple substitutions
are expected given the long time span of eukaryotic
evolution, most likely making nonphylogenetic signal
significant.

Using a data set of 143 nuclear encoded protein
sequences from 37 eukaryotic species, we show that
slight deviations in the evolutionary rate or amino acid
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composition of the sequences can lead to strongly sup-
ported but incorrect phylogenies. This occurs when the
phylogenetic signal for a given branch is significantly
weaker than the nonphylogenetic signal. Alternatively,
when both signals are of equivalent strength, they may
counterbalance each other, leading to unresolved trees,
even with large data sets. We demonstrate that (i) vari-
ations in taxon sampling, (ii) removal of fast-evolving
sites, (iii) use of a site-heterogeneous mixture model
(Lartillot and Philippe, 2004), and (iv) amino acid cod-
ing into functional categories have the potential to over-
come some types of systematic errors in genome-scale
data sets.

MATERIALS AND METHODS

Phylogenetic Analyses

The analyses were performed on a previously de-
scribed data set of 143 nuclear-encoded proteins (30,244
amino acid positions) from 39 eukaryotic species
(Rodrı́guez-Ezpeleta et al., 2005), excluding the two
fastest-evolving lineages (Trichomonas vaginalis and
Giardia lamblia). Trees were inferred using maximum par-
simony (MP), Bayesian inference (BI), and maximum
likelihood (ML) methods. The alignments (including cor-
responding trees) have been submitted to TreeBASE un-
der accession numbers SN3166-13372 to SN3166-13377.

Heuristic Analyses

MP analyses were performed using PAUP* (Swofford,
2000), with tree bisection and reconnection search and
10 random additions of species. The support was evalu-
ated based on 1,000 bootstrap replicates. BI analyses were
conducted using MrBayes 3.0 b4 (Ronquist and Huelsen-
beck, 2003) or PhyloBayes (http://www.lirmm.fr/mab/
article.php3?id article=329). MrBayes analyses were
performed with the WAG amino acid replacement ma-
trix (Whelan and Goldman, 2001), gamma-distributed
rates across sites (four discrete categories), and station-
ary amino acid frequencies estimated from the data set
(WAG+F+Ŵ4 model). Three independent analyses with
120,000 generations gave identical results. PhyloBayes
analyses were performed with the CAT mixture model,
which accounts for across-site heterogeneities in the
amino acid replacement process (Lartillot and Philippe,
2004). Two independent runs were performed with a to-
tal length of 2500 cycles (250 topological moves per cy-
cle), with the same operators as in Lartillot et al. (2006).
The first 500 points were discarded as burn-in, and the
posterior consensus was computed on the 2000 remain-
ing trees. Preliminary ML analyses were performed on
the concatenated data set using heuristic searches with
PhyML 2.4 (Guindon and Gascuel, 2003) and TreeFinder
(Jobb et al., 2004) with the WAG+F+Ŵ4 model. The sup-
port was evaluated based on 100 bootstrap replicates.

Exhaustive Analyses

The probability of getting trapped in a local mini-
mum during heuristic topology searches is high for large

data sets (Salter, 2001), but an exhaustive search is im-
possible in our case given the large number of possi-
ble topologies for 37 species (1049). This problem was
addressed by constraining relationships supported by
consistently more than 95% bootstrap values (MP and
ML) and 1.0 posterior probability (BI) (opisthokonts—
animals, choanoflagellates and fungi, red algae, green
plants, glaucophytes, apicomplexans, stramenopiles and
kinetoplastids). This reduces the number of topologies to
be exhaustively analyzed to 135,135. To further alleviate
computational cost and memory usage, we proceeded in
two steps. First, exhaustive ML analyses without taking
rate across-site variation into account were performed
with PROTML (Adachi and Hasegawa, 1996) and the
JTT amino acid replacement matrix (Jones et al., 1992)
for each protein separately (for details, see Rodriguez-
Ezpeleta et al., 2005). The resulting 135,135 tree topolo-
gies were sorted by likelihood value, and the top 1733
trees were selected. These trees were augmented by sam-
pling every 500th subsequent topology, for a total of 2000
trees. For these 2000 trees, likelihood values were calcu-
lated with TREE-PUZZLE (Schmidt et al., 2002) and the
concatenated WAG+F+Ŵ4 model (all parameters esti-
mated for the concatenated data set). We verified that
retention of the 1733 top ranking topologies was suffi-
cient: first, the correlation between the likelihood values
obtained with the separate JTT+F and the concatenated
WAG+F+Ŵ4 models for the 2000 selected topologies
is excellent (R2

= 0.9693; Fig. S1 [supplementary fig-
ures available online at www.systematicbiology.org]);
second, the order of topologies is almost identical with
and without considering rates across sites; and third,
the nine best topologies from the separate JTT+F anal-
ysis receive a total of 98% of the RELL bootstrap sup-
port (Kishino et al., 1990) (the 83 best topologies receive
100% of the RELL bootstrap support). Indeed, retain-
ing 100 topologies gives virtually identical results (not
shown). In order to estimate statistical support for each
branch, the RELL bootstrap method (Kishino et al., 1990)
was used. In brief, site-wise likelihood values were cal-
culated with PAML (Yang, 1997) with the concatenated
WAG+F+Ŵ4 model and used to perform RELL bootstrap
analyses with 10,000 replicates.

The relationship between the number of sequence
positions and the bootstrap support values (BVs) was
calculated as described (Lecointre et al., 1994). Briefly,
different numbers of positions (3000, 6000, etc.) were ran-
domly drawn from the complete data set 100 times. RELL
bootstrap values (100 replicates) were then computed for
each of the 100 samples and for each size fraction (site-
wise likelihoods were not recomputed for each sample
for obvious computation time reasons but are expected
to be similar with this large number of positions; see be-
low). The average of the BV of all branches for each size
fraction was plotted against its size.

Removal of Fast-Evolving Sites

Fast-evolving sites were identified using a modifica-
tion of the method proposed by Ruiz-Trillo et al. (1999)
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and Burleigh and Mathews (2004). Instead of eliminat-
ing sites according to the discrete gamma category to
which they most likely belong, they were eliminated
according to their site-wise rates calculated by PAML
(i.e., weighted-average rates over all categories with the
weights given by the posterior probabilities of each cate-
gory) on the concatenated data set for each topology. Sites
were then sorted according to (i) the rates estimated on a
given topology or to (ii) the mean of the rates estimated
on all topologies. Then, fast-evolving sites were progres-
sively removed in steps of 1000. RELL bootstrap analyses
(1000 replicates) were performed after each step, and the
resulting values plotted against the alignment size.

The computational burden associated to site removal
is only circumvented if the BVs are computed using the
RELL method. However, two important assumptions of
this method may be violated if too many sites are re-
moved: (i) the parameters of the model estimated on the
complete data set (in particular, branch lengths) should
remain similar for the reduced data set and (ii) the topo-
logical constraints imposed should remain valid. First,
the constraints were verified after the removal of 15,000
and 20,000 sites by performing heuristic analyses with
TreeFinder; and second, the parameters and the site-wise
likelihoods were reestimated on these two data sets. Af-
ter the removal of 15,000 sites (half of the data set) all
constraints are still respected, and the results obtained
with and without reestimating site-wise likelihood val-
ues are similar (the correlation coefficient between BVs is
0.86). However, after removal of 20,000 sites, some of the
constraints are no longer supported (e.g., the sister group
of apicomplexans and ciliates), and the RELL bootstrap
values obtained before and after parameter reestimation
differ substantially. We thus stopped after the removal of
15,000 sites in all analyses.

Testing for Saturation

The saturation of the alignments was measured by
plotting the number of observed differences (p distances)
against the number of substitutions that are computed
as patristic distances (in our case, derived from the ML
tree) using TREEPLOT of the MUST package (Philippe,
1993; Philippe et al., 1994). Both distance matrices were
compared, and the slope of the graph was calculated us-
ing the COMP MAT program in the MUST package. The
greater the number of inferred substitutions with respect
to the number of observed differences (small slope), the
greater the saturation of the data (Jeffroy et al., 2006).

Compositional Heterogeneity

The amino acid composition bias of the species in
the data set was visualized by assembling a 37 × 20
matrix containing the percentage of each amino acid
per species using the NET program from the MUST
package (Philippe, 1993). This matrix is displayed as a
two-dimensional plot in a principal component analysis
(PCA), as implemented in the SAS program (SAS, 1999).
To calculate the overall compositional bias in the data,
the Bowker’s test for compositional symmetry (Ababneh

et al., 2006; Bowker, 1948) was applied. Bowker’s values
were calculated for each pair of sequences and the me-
dian value was computed. Large Bowker’s values indi-
cate strong heterogeneity in the data set, whereas lower
Bowker’s values indicate that the sequence composition
is homogeneous (note that the phylogenetic dependency
among all Bowker’s values is not corrected for here).

Two attempts to reduce the potential impact of com-
positional bias were performed, by (i) constructing
neighbour-joining trees based on LogDet+Ŵ pairwise
distances, calculated with the LDDist perl module (Thol-
lesson, 2004) and using the rate categories estimated by
TREE-PUZZLE; and (ii) recoding the data using the com-
mon six groups of amino acids that usually replace one
another (Hrdy et al., 2004). To allow for a general-time-
reversible (GTR) matrix implemented in most programs,
the data set was recoded to four categories instead of six,
by combining aromatic (FYW) and hydrophobic (MVIL)
amino acids and coding the rare cysteine as missing data.
The four amino acid categories were named A, T, G, and
C, respectively, and the parameters of the GTR matrix
were estimated by PAUP. The 2000 best topologies from
the exhaustive search were analyzed by TREE-PUZZLE
with a GTR+F+Ŵ4 model. RELL bootstrap (10,000 repli-
cates) analyses were performed as described above. The
constraints were verified after the recoding with heuris-
tic ML analyses using TreeFinder.

RESULTS AND DISCUSSION

Phylogenomic Analyses Do Not Resolve Every Branch

Figure 1 shows the ML tree based on 143 nuclear
protein-coding genes (30,244 amino acid positions) from
37 eukaryotic species. The monophyly of all major eu-
karyotic groups and the relationships within them are re-
covered with 100% bootstrap support value (BV) and are
in agreement with current knowledge of eukaryotic evo-
lution (Baldauf et al., 2000; Simpson and Roger, 2004), un-
derlining that the use of a large number of genes notably
improves overall statistical support. Only four branches
receive BVs below 100%. Among them, the monophyly
of primary photosynthetic eukaryotes or Plantae (green
plants, rhodophytes, and glaucophytes) requires spe-
cial attention. This grouping has already been suggested
based on genomic features and molecular phylogenies of
plastid and nuclear proteins (Cai et al., 2003; Huang and
Gogarten, 2006; McFadden and van Dooren, 2004; Mor-
eira et al., 2000; Rodrı́guez-Ezpeleta et al., 2005); how-
ever, with a particular taxon sampling (Fig. 1), it only
receives statistically nonsignificant support (64% BV).

Unsupported trees are usually attributed to a lack of
phylogenetic information in the data, suggesting that the
addition of more genes or positions will increase res-
olution (Bapteste et al., 2002; Rodrı́guez-Ezpeleta et al.,
2005; Rokas et al., 2003; Saitou and Nei, 1986). There-
fore, we studied the variation of the BVs obtained for
the monophyly of Plantae with respect to the number
of amino acid positions considered. As shown in Fig-
ure 2 (open triangles), the BVs rapidly increase as more
positions are added. But when more than about 10,000
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FIGURE 1. Eukaryotic phylogeny based on 143 nuclear-encoded proteins (30,244 amino acid positions) inferred by exhaustive ML analysis
with the concatenated WAG+F+Ŵ4 model. The same topology is obtained with PhyML, TreeFinder, and MrBayes. Numbers indicate bootstrap
values obtained by analyzing 10,000 RELL replicates on the exhaustive ML analysis. Branches without values are supported by BVs of 100 and
posterior probabilities of 1.0 in the ML (PhyML and TreeFinder) and BI (MrBayes) analyses, respectively, and were constrained in the exhaustive
analysis. The scale bar denotes the estimated number of amino acid substitutions per site.

amino acid positions are considered, the BVs attain a
plateau, suggesting that the addition of more data (even
of complete genome sequences) will most likely not lead
to a statistically significant support for the monophyly
of Plantae, given this taxon sampling and this tree recon-
struction method. In fact, an alternative grouping, the
sister group relationship of red algae and kinetoplastids
(Fig. 2; closed circles), displays very similar behavior, ris-
ing rapidly to a plateau of 40% BV.

The shape of the curves obtained in Figure 2 suggests
that the unsupported monophyly of Plantae is not due
to a lack of phylogenetic signal. Rather, it seems as if two
competing signals exist in the data: one that supports
the monophyly of Plantae and another one that sup-

ports a sister-group relationship between red algae and
kinetoplastids.

Coexistence of Phylogenetic and Nonphylogenetic
Signal in the Data

Because kinetoplastids present the longest unbroken
branch in the data set (Fig. 1), the hypothesis of an LBA
artefact as the cause for their clustering with red algae can
be advanced. To test if the two red algae (Cyanidioschy-
zon and Porphyra; both have moderate evolutionary rate
differences) are differently affected by this artefact, two
data sets were created, using either Porphyra or Cyani-
dioschyzon as the single representative of the red algae.
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FIGURE 2. Bootstrap values for the monophyly of Plantae (open
triangles) and the sisterhood of red algae and kinetoplastids (closed
circles) as a function of the number of amino acid positions. Bootstrap
values were obtained by sampling different numbers of positions (3000,
6000, etc.) 100 times and by averaging the RELL bootstrap values (100
replicates) for samples of the same size.

Surprisingly, the use of one or the other red algae has
drastic effects on the outcome. With Porphyra as the sole
red algal representative, the BV for Plantae raises from
64% to 99% (Fig. 3a), whereas with Cyanidioschyzon alone,
the support for Plantae drops to 0% and the support for
the sisterhood of red algae and kinetoplastids raises to
100% (Fig. 3b). Because we share the view with others
that red algae are indisputably monophyletic (e.g., Ra-
gan and Gutell, 1995; see also Fig. 1), one of the two
trees in Figure 3 has to be wrong. Because Cyanidioschy-
zon evolves somewhat faster than Porphyra, our working
hypothesis is that the monophyly of Plantae observed in
Figure 3a is the product of genuine phylogenetic signal,
whereas the grouping of red algae and kinetoplastids
(Fig. 3b) is an LBA artefact.

As Cyanidioschyzon evolves only 1.25 times faster than
Porphyra (Fig. 1), the radical difference in the resulting
tree topologies (Fig. 3a, b) may seem surprising. We
posit that this can be explained by the large number of
amino acid positions in this data set. More than 15,000
amino acid positions (Fig. 3d) are required to recover the
sister-group of Cyanidioschyzon and kinetoplastids with
BV >95%, suggesting that the nonphylogenetic signal is
weak; however, the phylogenetic signal for the mono-
phyly of Plantae is as weak (Fig. 3c).

Testing the LBA Hypothesis Using Differences
in Taxon Sampling

If the grouping of Cyanidioschyzon and the kinetoplas-
tids is due to LBA, this artefact should be reproduced
with other long unbroken branches in this data set. To
explore this hypothesis, three combinations of taxa were

created that induce long unbroken branches. Starting
from the data set of Figure 3b, the kinetoplastids were
removed and (i) Saccharomyces was kept as the only rep-
resentative of the Dictyostelium/opisthokont clade, and
either (ii) Theileria and Phytophthora or (iii) Plasmodium
and Phytophthora were kept as the only representatives
of alveolates and stramenopiles, respectively.

In all cases, only Cyanidioschyzon is attracted to the
longest unbroken branch (Fig. 4). Importantly, Plantae
remain monophyletic in these three cases when Porphyra
is used (Fig. S2). This confirms that the grouping of kine-
toplastids and Cyanidioschyzon is due to LBA. Surpris-
ingly, the grouping of Plasmodium and Cyanidioschyzon
receives only 66% BV (Fig. 4c), whereas the grouping of
Theileria and Cyanidioschyzon (Fig. 4b) has 90% BV. Inter-
estingly, in a principal component analysis (Fig. 5), the
amino acid composition of Cyanidioschyzon is most sim-
ilar to that of Saccharomyces and kinetoplastids, less to
Theileria, and least to Plasmodium—the species with the
most extreme genomic A+T content (80.6%). Therefore,
even if the two alveolates (Theileria and Plasmodium) have
almost the same evolutionary rate (Fig. 1), the extreme
compositional bias in Plasmodium appears to have an ad-
ditional effect on the bootstrap support (Fig. 4b, c).

Extracting Phylogenetic Signal by Removing
Fast-Evolving Sites

Because fast-evolving sites are more likely to be sat-
urated and prone to accumulation of nonphylogenetic
signal, a progressive removal of such sites should de-
crease artefacts caused by model violations (Brinkmann
and Philippe, 1999; Burleigh and Mathews, 2004; Olsen,
1987; Ruiz-Trillo et al., 1999). We studied the impact of
the fast sites in our data set by progressively removing
blocks of the fastest-evolving sites.

The estimation of site-specific rates requires the knowl-
edge of a tree topology. To avoid circularity, we used the
best (ML) topology obtained with a data set that does not
include the red algae (which we cannot place with confi-
dence with all the data). The experiment was performed
on the data sets from Figures 3b, 4a to c. In three cases, the
removal of the fast evolving sites strengthens the sup-
port for the monophyly of Plantae and lowers the one
for the alternative position (Fig. 6a, c, d), confirming that
the removal of the fast-evolving sites increases the ratio
of phylogenetic to nonphylogenetic signal (Brinkmann
and Philippe, 1999; Brochier and Philippe, 2002). With
Saccharomyces as the only representative of opisthokonts
and Amoebozoa, the removal of the fastest-evolving sites
is insufficient to recover the monophyly of Plantae, al-
though a small increase in the BV is observed (Fig. 6b).
The number of sites that need to be removed to recover
this relationship is different in each case, which may re-
sult from different levels of nonphylogenetic signal in
various data sets.

For the experiments described above, a tree topology
without red algae was used to calculate site-wise rates
(to avoid introduction of bias). The procedure is justi-
fied in this special case, where a single taxon is added to
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FIGURE 3. Alternative topologies obtained as described in Figure 1 when only Porphyra (a) or only Cyanidioschyzon (b) was used to represent
the red algae. No value above branch indicates that the corresponding node was supported at 100% BV in the ML analyses with PhyML and
TreeFinder and was constrained in the exhaustive analysis. Grey shaded areas indicate the alternative positions of red algae. For each data set,
the bootstrap values of the two alternative positions for red algae were plotted against the number of amino acid positions (c and d).

an otherwise unquestioned topology but should proba-
bly not be applied when more complex changes are ex-
pected. To test if the choice of tree topology significantly
affects the estimation of site-wise rates, results were com-
pared for the red algae + kinetoplastids (Fig. 3b) and the
Plantae topology (Fig. 3a). When the rates were estimated
on the red algae + kinetoplastids topology, the removal
of the fastest-evolving sites does not improve phyloge-
netic accuracy (Fig. S3); in contrast, if the rates were es-
timated on the Plantae topology, the removal of even
fewer sites than in Figure 6 leads to recovery of the cor-
rect topology (Fig. S4). Evidently, the specific topology
used to estimate the rates heavily influences the results.
As a solution to this problem, we propose to use the mean
site-wise rates estimated for a given set of best topologies.
In our specific example, with the 2000 topologies, results

are virtually identical to the experiment in which a tree
without red algae was used (Fig. S5). This “mean rate
approach” is an interesting avenue that deserves further
investigation.

Fast-Evolving Sites Are Mutationally Saturated and
Compositionally Biased

For each of the nonoverlapping windows of 1000 sites
that have been progressively removed, the mutational
saturation and the compositional bias were studied. As
expected, the mutational saturation (grey line in Fig. 7)
is tightly correlated to the evolutionary rates, confirm-
ing that the fast-evolving sites are the most saturated.
Because the effects of model violations are more evident
in mutationally saturated sites, the removal of the
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FIGURE 4. Same analyses as in Figure 1 but with selected combina-
tions of taxon samplings that are likely to induce an LBA artefact. In all
cases, only Cyanidioschyzon was used to represent the red algae, and the
kinetoplastids were excluded from the data set; (a) using Saccharomyces
as the only representative of the opisthokonts and Amoebozoa; using
either (b) Theileria and Phytophthora or (c) Plasmodium and Phytophthora
as the representatives of alveolates and stramenopiles, respectively. No
value above branches indicates that the corresponding node was sup-
ported at 100% BV in the ML analyses with PhyML and TreeFinder and
was constrained in the exhaustive analysis. Grey shaded areas indicate
the position Cyanidioschyzon.

fastest-evolving sites efficiently overcomes systematic
errors. We also measured a well-known source of model
violation, the compositional heterogeneity among lin-
eages. For each of the successively removed blocks of

FIGURE 5. Reduced dimensionality plot showing the main princi-
pal components of the global amino acid compositions. The variances
that explain the two first axes are respectively 32% and 25%. Grey cir-
cles denote the two red algae and black circles are other relevant species
used in previous analyses.

1000 positions, the Bowker’s test for compositional sym-
metry was computed (black line in Fig. 7). Interestingly,
the compositional heterogeneity is tightly correlated
with the rate of the sites: the most saturated sites are the
most compositionally biased. Therefore, by removing the
fast-evolving sites, we most likely overcome systematic
error due to compositional heterogeneity. Accordingly,
other sources of model violations may also be decreased
by fast-evolving site removal, and this question deserves
further studies.

The Effects of Model Violations

Another kind of model violation that may result in
phylogenetic artefacts is the heterogeneity of the amino
acid replacement process across sites (Baurain et al.,
2006; Koshi and Goldstein, 2001; Lartillot et al., 2006;
Lartillot and Philippe, 2004; Pagel and Meade, 2004).
Most sites of a protein show substitutions among a small
set of two to four biochemically equivalent amino acids
(Miyamoto and Fitch, 1996). However, homogeneous
models inherently assume that, under maximal satura-
tion, all 20 amino acids are likely to be observed at any
given site with probabilities equal to the equilibrium fre-
quencies. As a result, the probability of convergence is
strongly underestimated by standard models of evolu-
tion (Chang, 1996; Felsenstein, 2004).

The site-heterogeneous mixture model, CAT (Lartillot
and Philippe, 2004), was applied to the various taxon
samplings previously studied. The monophyly of Plan-
tae was recovered in all but two cases even when Cyani-
dioschyzon is the only red alga. In particular, in two cases
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FIGURE 6. Progressive removal of fast-evolving sites from the data sets of Figures 3b (graph a), 4a (graph b), 4b (graph c), and 4c (graph d).
The site-specific rates were calculated with the best ML topology from which Cyanidioschyzon was excluded. Dotted line represents the number
of parsimony-informative positions.

where the homogeneous model fails (Fig. 4b, c), the
inference with a more complex model is not sensitive
to systematic error: when Theileria or Plasmodium are the
only representatives of alveolates, Plantae where sup-
ported by a posterior probability (pp) of 0.98 and 0.85, re-
spectively. Nevertheless, the monophyly of Plantae was
not recovered (pp = 0) in the presence of kinetoplas-
tids or of Saccharomyces as LBA attractors. Therefore, site-
specific substitution pattern is not the only cause of the
observed artefacts.

An alternative potential source of model violation is
the nonstationarity of the amino acid replacement pro-
cess, known to affect our data set (Fig. 5). Under a
stationary model, where the same amino acid or nu-
cleotide composition is assumed along the tree, compo-
sitional heterogeneity may drastically mislead phyloge-

netic reconstruction (Hasegawa and Hashimoto, 1993;
Hendy and Penny, 1989; Lockhart et al., 1992; Phillips
et al., 2004). Although models have been developed to
overcome this violation (e.g., Foster, 2004; Galtier and
Gouy, 1995; Yang and Roberts, 1995; Blanquart and Lar-
tillot, 2006), they are computationally demanding and
have implementation limitations and are therefore of
limited value. Other ways to overcome nonphylogenetic
signal due to compositional heterogeneity have been re-
ported, such as the LogDet method (Lake, 1994; Lock-
hart et al., 1994) and the RY (Woese et al., 1991) or Day-
hoff (Hrdy et al., 2004) coding for nucleotides and amino
acids.

Interestingly, amino acid coding into functional cat-
egories has an impact on both kinds of model viola-
tions mentioned above; i.e., compositional effects and the
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FIGURE 7. Amino acid compositional bias and level of saturation
observed in blocks of 1000 positions when progressively removing sites
from fast to slow. For each block, the Browker’s test for amino acid com-
position (black) and the correlation between the observed differences
and estimated substitutions (grey) were performed.

expected number of amino acids per position. First, it al-
leviates compositional bias (Phillips et al., 2004; Woese
et al., 1991). For example, lysine (K) and arginine (R) are
two easily interchangeable amino acids whose codons
differ at a single position (AAR and AGR, respectively)
and that are preferred in AT- and GC-rich genomes, re-
spectively. Hence, coding pairs or groups of amino acids
such as K and R as a single character state should com-
pensate for these biases. Second, the recoding will also al-
leviate the problem of homoplasies that occur in peaked
biochemical profiles by reducing the number of character
states from 20 to 4.

Applied to our data set, the LogDet method failed to re-
cover the expected tree topology, and a strong LBA arte-
fact unites alveolates and kinetoplastids to the exclusion
of stramenopiles, a grouping that attracts Cyanidioschy-
zon. In fact, it has already been suggested that the LogDet
method may fail in the presence of rate heterogeneity
among sites or lineages (Conant and Lewis, 2001). In-
stead, a modification of the Dayhoff coding (Hrdy et al.,
2004; see Material and Methods) increases the support for
Plantae while decreasing the attraction of Cyanidioschy-
zon with long unbroken branches (Fig. 8) in all four cases
(Figs. 3b, 4a to c). Importantly, with amino acid recoding,
Plantae monophyly was recovered with Saccharomyces as
the only representative of Opisthokonts, when all other
methods failed.

Altogether, the overall pattern suggests that the arte-
facts observed in this data set are mainly caused
by a combination of compositional bias and site-
heterogeneity that operate at different levels, depending
on the attractor: a site-heterogeneity violation, dominant
in the case of Plasmodium and Theileria, and possibly com-
positional bias with kinetoplastids and Saccharomyces. As
discussed above, recoding is efficient in alleviating both

FIGURE 8. Differences in bootstrap support without (WAG+F+Ŵ4
model) and with amino acid recoding (GTR+F+Ŵ4 model). Four data
sets including Cyanidioschyzon as the only red algae were analyzed
before (NC) and after the coding (C). Support for the monophyly of
Plantae, grey; misplacement of the red algae as shown in Figures 3b
(Kineto.), 4a (Sacch.), 4b (Theile.), and 4c (Plasm.), black.

sources of systematic error simultaneously, although it
reduces the phylogenetic signal considerably.

CONCLUSION

The common view that using genome-scale data sets is
a universal remedy for resolving phylogenetic questions
(e.g., Rokas et al., 2003) is inaccurate. Tree reconstruction
artefacts that are invisible in single-gene phylogenies
may become dominant in large data sets (Jeffroy et al.,
2006). Depending on the relative contribution of phy-
logenetic and nonphylogenetic signal, certain genome-
scale data sets may either lead to predicting incorrect
tree topologies with confidence, or one or more branches
remain unresolved whatever the data size.

The identification of “misbehaving” species that con-
tribute an unproportional fraction of nonphylogenetic
signal is possible through variations in taxon sampling.
Removal of these species from the data set has been com-
mon practice to overcome some phylogenetic artefacts.
Alternatively, more general approaches include data re-
coding, removal of fast-evolving sites, or the use of more
realistic models of sequence evolution. Yet, current im-
plementations of these procedures will either eliminate
much of the phylogenetic signal, or are impracticable in
terms of computational load. In practical terms, we there-
fore recommend a combined application of all methods
that will overcome at least some of the well-known types
of systematic errors. Evidently, these approaches cannot
address all kinds of systematic error present in a data set;
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for example, none of the techniques applied here detect
or overcome heterotachy (rate heterogeneity across sites
through time).

Ultimately, the development of more sophisticated
models of sequence evolution that address simultane-
ously the different kinds of systematic biases will reduce
the requirement for intense user intervention by making
best use of phylogenetic signal.
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