
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

6-1-2010

Detecting and Parsing Architecture at City Scale from Range Data Detecting and Parsing Architecture at City Scale from Range Data

Alexander Toshev
University of Pennsylvania

Philippos Mordohai
Stevens Institute of Technology

Ben Taskar
University of Pennsylvania, taskar@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_papers

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation

Alexander Toshev, Philippos Mordohai, and Ben Taskar, "Detecting and Parsing Architecture at City Scale

from Range Data", . June 2010.

Toshev, A.; Mordohai, P.; Taskar, B.; , "Detecting and parsing architecture at city scale from range data," Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on , vol., no., pp.398-405, 13-18 June 2010 doi:
10.1109/CVPR.2010.5540187
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/517
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_papers
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_papers/517
mailto:repository@pobox.upenn.edu

Detecting and Parsing Architecture at City Scale from Range Data Detecting and Parsing Architecture at City Scale from Range Data

Abstract Abstract
We present a method for detecting and parsing buildings from unorganized 3D point clouds into a
compact, hierarchical representation that is useful for high-level tasks. The input is a set of range
measurements that cover large-scale urban environment. The desired output is a set of parse trees, such
that each tree represents a semantic decomposition of a building – the nodes are roof surfaces as well
as volumetric parts inferred from the observable surfaces. We model the above problem using a simple
and generic grammar and use an efficient dependency parsing algorithm to generate the desired
semantic description. We show how to learn the parameters of this simple grammar in order to produce
correct parses of complex structures. We are able to apply our model on large point clouds and parse an
entire city.

Disciplines Disciplines
Computer Sciences

Comments Comments
Toshev, A.; Mordohai, P.; Taskar, B.; , "Detecting and parsing architecture at city scale from range data,"
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on , vol., no., pp.398-405, 13-18
June 2010 doi: 10.1109/CVPR.2010.5540187

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/517

https://repository.upenn.edu/cis_papers/517

Detecting and Parsing Architecture at City Scale from Range Data

Alexander Toshev

GRASP Laboratory

University of Pennsylvania

Philadelphia, PA, USA

toshev@cis.upenn.edu

Philippos Mordohai

Department of Computer Science

Stevens Institute of Technology

Hoboken, NJ, USA

mordohai@cs.stevens.edu

Ben Taskar

GRASP Laboratory

University of Pennsylvania

Philadelphia, PA, USA

taskar@cis.upenn.edu

Abstract

We present a method for detecting and parsing buildings

from unorganized 3D point clouds into a compact, hierar-

chical representation that is useful for high-level tasks. The

input is a set of range measurements that cover large-scale

urban environment. The desired output is a set of parse

trees, such that each tree represents a semantic decomposi-

tion of a building – the nodes are roof surfaces as well as

volumetric parts inferred from the observable surfaces. We

model the above problem using a simple and generic gram-

mar and use an efficient dependency parsing algorithm to

generate the desired semantic description. We show how

to learn the parameters of this simple grammar in order to

produce correct parses of complex structures. We are able

to apply our model on large point clouds and parse an en-

tire city.

1. Introduction

We address a central scene understanding problem: the

inference of semantic information from raw, unorganized

data and the encoding of this information in a representa-

tion that is suitable for higher level tasks. Specifically, we

are interested in interpreting architecture in terms of parts,

which are either observable surfaces, such as roofs and fa-

cades, or unobserved volumetric parts that are enclosed by

these surfaces.

The main contribution of our work is a framework for si-

multaneous building detection and parsing into a compact,

symbolic representation. The input is an unorganized point

cloud and the end result is a parse tree whose nodes are

volumetric parts and surfaces (see Fig. 1). Unlike previous

methods [9, 15, 18] that operate on the observed surfaces,

we also consider the volumetric parts that can be inferred

from subsets of their bounding surfaces. This dramatically

increases robustness to occlusion and allows us to infer con-

sistent parsings based on the volumetric parts, even when

some of the surfaces are missing. The intuition is that a

building can be viewed as a tree, whose nodes are volumet-

ric parts that lie on or next to each other and are covered

by planar patches such as roofs and roof parts, which we

consider as children of the volumes (see Fig. 2).

To formalize the above representation, we introduce a

simple grammar, which captures generic geometric prop-

erties between planar patches and volumes. Additionally,

the grammar contains two supernodes called “building” and

“non-building” which serve as ascendants of all other nodes

except for the root node. In this way, we can perform de-

tection while parsing – all parse trees rooted at supernode

“building” are considered to represent buildings.

The simplicity of the above grammar allows us to use de-

pendency parsing, which is an efficient parsing technique.

This makes it possible to parse a whole city into a single

tree. Additionally, we can use labeled data to estimate op-

timal parameters of the grammar by employing structured

learning. In this way, we do not have to specify complex

rules, but learn to parse in a data-driven way. As we show

in Sec. 4, we can obtain semantical parses of complex ar-

chitectural structures using our generic grammar.

2. Related Work

In this section, we review related work on building detec-

tion and on parsing architectural structures. Building detec-

tion and description from airborne imagery has been the fo-

cus of long-term efforts of several research groups in com-

puter vision. The resulting systems [23, 16, 7, 11, 26, 13, 4,

17] detect buildings among clutter from aerial imagery by

reasoning on simple primitives.

Range data have been extensively used as input for build-

ing detection in photogrammetry [20]. Techniques based on

generic primitives, parametric models and rule-based rea-

soning have been published recently by Verma et al. [27]

and Brédif et al. [3]. Matei et al. [21] and later Poullis and

You [24] presented building segmentation results on very

large scale range datasets with an emphasis on robustness.

1

main building part secondary building parts roofs

Figure 1. We extract from a raw unorganized 3D point clouds buildings and parse them into geometric and semantically meaningful parts,

which are structured in a natural way and represent the topology of the building.

Several authors have used ground-level images as inputs.

Werner and Zisserman [28] presented a multi-view method

that reconstructs facades and estimates features, such as

windows and balconies, by sweeping polygonal primitives

in directions parallel to the facades. Berg et al. [2] ad-

dressed facade detection and segmentation from a single

image using a conditional random field.

Haala et al. [14] detect buildings from merged airborne

and terrestrial LIDAR data by decomposing the space into

3D cells using planes fitted to the data. The cells are classi-

fied as building or non-building, and buildings are extracted

as connected components.

A multi-view method for parsing buildings using a gram-

mar was present by Dick et al. [9] who represent build-

ings, imaged from the ground level, as collections of planes

and parameterized primitives. MCMC is used to optimize

structure taking into account global properties, such as sym-

metry. Han and Zhu [15] tackled the single image case in

a combined bottom-up top-down framework that employs

a grammar with rectangular primitives. Recently, Kout-

sourakis et al. [18] used a parametric grammar and an MRF

for each rule to delineate floors and windows in a single

view. Ripperda and Brenner [25] also use a grammar and re-

versible jump MCMC for inferring facade descriptions from

LIDAR data in the form of a derivation tree. Lafarge et al.

[19] use very simple parametric models to infer building de-

scriptions from a digital surface model. A Bayesian formu-

lation enables the propagation of structure between adjacent

primitives and evaluates the likelihood of larger assemblies.

A key difference between the above methods and ours is

that the former employ a domain dependent grammar, while

we use a more generic grammar which is based on simple

geomertic relations. Moreover, our grammar formulation

allows for exact inference in polynomial time using depen-

dency parsing, while the above methods resort to approxi-

mate inference, mainly using MCMC.

3. Generic Tree Representation for Buildings

A common way to represent buildings is to use planes

endowed with geometric features [20, 28, 15, 27] or use

more complex primitives manually designed to represent

building parts [9, 3, 19]. The former approaches are generic

and hence have the advantage of broad applicability, while

the latter are potentially more robust to missing parts and

noise but require more domain knowledge.

In order to combine the best of both worlds – generic

representation which reasons over larger building parts – we

choose to make volumes, which are implicit in plane-based

representations, explicit and use them as primitives. At a

coarse level, a building can be viewed as a tree of volumet-

ric parts that lie on or next to each other and are covered by

planar patches such as roofs and roof parts (Fig. 2). Such

hierarchical description is a natural way to describe archi-

tecture, because a building has usually a main body to which

smaller building parts are attached. Thus, the building parse

tree can be formed by making each volume a child of either

the ground or of a neighboring volume of larger prominence

in the building description. The children of the volumes in

this representation are roofs and roof parts of the buildings

which are described as planar patches.

While parsing the point cloud of a city, we aim to ex-

tract a set of building trees, as described above, designat-

ing all buildings in the city. To combine all the building

parses in a single tree we introduce two supernodes desig-

nating “building” and “non-building”. Then, all building

trees would be rooted at the “building” node, while all re-

maining primitives, extracted from the input point cloud,

should be attached to the “non-building” node. Thus, a sin-

gle parse tree of a city represents parses of individual trees

as well as classification of the point cloud into “buildings”

and “non-buildings” – all primitives descending from the

“building” supernode should represent city architecture.

An appropriate formalism to describe the above notion

Step 1 Step 2

Step 3 Step 4

Figure 2. Parsing of a building and the resulting tree. Step 1: the non-vertical planar patches of the input building are terminal nodes. Step

2: merging of two neighboring co-planar roof patches through production P1. Step 3: merging of several touching planar patches through

production P2. Step 4: each roof has as a parent a volume (green boxes). Using dependency parsing we obtain a full parse tree of the

building representing its natural structure – the chimneys and the smaller building being children of the main building.

is a grammar G = (VT ,VN ,P,S, w) consisting of a set of

terminals VT , a set of non-terminals VN , a production set

P , two supernodes S = {SB , SNB}, designating “build-

ing” and “non-building”, and a scoring function w(·) for

the instantiation of each production. Next, we provide a

description of the grammar.

Grammar Symbols The terminal nodes VT =
{p1 . . . pn} are planar patches extracted from the point

cloud of the detected building. The non-terminals

VN = A ∪ K ∪ S are of two types. A designates roof

components constructed as groups of planar patches (see

nodes A1 and B1 in Fig. 2). Further, the volumes enclosed

by the roofs construct the last set K, the non-terminals.

Finally, we have two supernodes S = {SB , SNB}.

In order to instantiate A and B, we need to detect pla-

nar patches in a point cloud. This choice is motivated by

the fact that man-made structures, and buildings in partic-

ular, are well described using polyhedral representations,

whose building blocks are planar patches. These primitives

are extracted using RANSAC-based [12] plane detection in

the point cloud. The points on each detected plane are split

into connected components and the largest component is re-

tained as a planar patch. Two points are connected if they lie

within 0.5 m. We sample plane hypotheses from the point

cloud until we either explain 80% of the points or we have

reached a limit on the number of sampled planes, which in

our experiments is set to 2000.

P1: co-planar patch collection inference

p1 . . . pk → A, A ∈ A, pi ∈ VT if the set {p1 . . . pk}
is a maximal connected component in the graph with

vertices VT and edges {(pi, pj)|touching(pi, pj) ∧
coplanar(pi, pj)}
P2: connected patch collection inference

A1 . . . Ak → B for Ai, B ∈ A ∪ VT if the

set {A1 . . . Ak} is a maximal connected compo-

nent in the graph with vertices A ∪ VT and edges

{(Ai, Aj)|touching(Ai, Aj) ∧ ¬coplanar(pi, pj)}
P3: volume inference

B → V for B ∈ A ∪ VT and V ∈ V
P4: volume inference

V1 . . . Vk → V for V, Vi ∈ V
P5: class inference

V → S for Vi ∈ V and S ∈ S one of two supernodes
Table 1. Productions for building parsing (see Sec. 3.1 for details).

3.1. Productions

The design of the productions P should enable the infer-

ence of a hierarchy among roof parts and a set of volumes

on which the roofs and facades are anchored as well as a

set of child-parent relations between the volumes and roof

parts. This set of relations should be hierarchical in nature

and represent a natural topological structure of the building

in 3D. For this purpose we introduce a set of productions

P = {P1, . . . P5} as defined in Table 1.

Roofs and roof parts The first production P1 finds large

planar patches by merging neighboring co-planar patches.

This production rectifies mistakes of plane detection –

it groups patches which lie on the same plane but were

grouped in different planes in the plane detection phase.

The application of this production is exemplified in Fig. 2

by the grouping of patches p3 and p4 into A1.

The second production P2 further groups planar patches,

which are neighboring but not coplanar, in connected planar

components; this step usually detects roofs. In Fig. 2 this

results in grouping patches p1, p2, and A1 into tree node

B1.

To define these productions we use two predicates:

touching(pi, pj) is true if the two patches have common

boundary; coplanar(pi, pj) holds if the angle between the

planes of pi and pj is smaller than 10 degrees. Then, to as-

sess the applicability of a production r : p1 . . . pk → A, we

assign a score

P1 : score(r) =

{

0 if touching(pi, pj) ∀i 6= j

−∞ otherwise
(1)

P2 : score(r) =

{

0 if coplanar(pi, pj) ∀i 6= j

−∞ otherwise
(2)

Volumes The reasoning about volumes is performed in

the next two productions. Volumes are generated by apply-

ing production P3, which attaches volumes to roofs. The

production P4 is used to establish a hierarchy among the

volumes. There are two challenges – the hierarchy among

volumes is ambiguous and one needs to ensure that two con-

nected volumes are of the same class.

The ambiguity of volume hierarchy is exemplified in

Fig. 2, where the building has two main roofs and hence

two main volumes. The one is V1 below the large build-

ing roof B1, while the second V2 is smaller and positioned

in the front under roof B2 (see resulting tree in step 4 of

the figure). Hence, the aim of this production would be

to infer that the smaller volume V2 is a child of the larger

V1. We expect a child volume to be a volume neighbor-

ing its parent whose size is smaller than the size of the par-

ent node. Hence, in case nodes C and C ′ are touching,

C,C ′ ∈ VT ∪ VN , we can capture the above notion using a

normalized difference of the areas of the nodes:

a(C,C ′) =
area(C) − area(C ′)

max(area(C), area(C ′))
(3)

where area(·) is the area of the projection of the node onto

the ground plane.

Moreover, one needs to ensure that two volumes are con-

nected only if they are of the same class. In other words, a

volume of a building can be a parent of another volume of

a building but not of a volume designating a non-building

structure, e. g. car, tree, power line, etc. To define this, we

use a volume classification score c(V), defined in eq. (5) in

the next subsection. This score is positive if V is part of a

building and negative otherwise (see next section for def-

inition). Then, the score of this criterion for a production

r : V1 . . . Vk → V can be formalized as:

P4 : score(r) =

∑

i

(θ1a(Vi, V) + θ2c(Vi)c(V))

if touching(Vi, V) for all i

−∞ otherwise

(4)

where θ1 and θ2 are parameters weighting the contribution

of the individual terms.

Classification of volumes In order to perform building
detection while parsing, we use the two supernodes S =
{SB , SNB} which are ancestors of all nodes in the city
parse tree except for the root and designate the class of all
their descendants. This is implemented using production
P5 which should ensure that building volumes are descen-
dants of SB , while all non-building nodes are descendants
of SNB . This is achieved by scoring each instantiation of
P5 by how likely a volume is a building or non-building.
This score is based on a set of features, which can be ex-
tracted for a volume V from the set of all non-vertical pla-
nar patches PV = {p1, . . . , pk}, which enclose this vol-
ume. Such planar patches usually represent the upper sur-
face of the volume and in the case of buildings are roofs. If
we define by p̂i the projection of pi onto the ground plane,

P̂V = {p̂1, . . . , p̂k}, then the features are defined as fol-
lows:

f1 : Elevation computed as the mean value of the difference of the

elevation of each point included in the planar patches in PV

and the mean ground plane elevation. This feature captures

the fact that buildings tend to be quite elevated with respect

to the ground.

f2 : Distance to the nearest ground point, computed as the me-

dian distance of the centroid of the points contained in P̂V

to the 30 closest ground points. Most of the buildings have

centroids farther away from the ground, while the centroids

of other objects such as cars and trees are much closer to the

ground.

f3 : Convexity of the upper volume surface, defined as the mean

convexity of all p̂i. The convexity of a single planar patch

p̂i is the ratio between the area of the patch and the area of

its convex hull. This feature helps to discriminate trees from

man-made objects, since the planar patches detected on trees

tend to be non-convex.

f4 : Scatter is the mean value of the scatter of all points enclosed

in the volume, where the scatter of a point is the ratio of the

third to second eigenvalue of the scatter matrix computed at

that point. This features is helpful in detecting trees, which

tend to have high scatter value, while all planar structures

have low scatter value.

f5 : Mean area and aspect ratio of all p̂i. Buildings have much

larger surfaces than trees, cars, etc. Additionally, other ele-

vated structures such as power lines and cranes are thinner

than buildings and hence have smaller aspect ratio.

f6 : Degree of enclosure by empty space, defined as the portion of

the boundary of pi not touching other planar patches. This

is motivated by the observation that many small individual

objects such as cars, trees, people, poles are not adjacent to

any other planar patches, while buildings parts tend to be

tightly enclosed by planar patches.

f7 : Fitting error, as the average fitting error of all points in pi

obtained from plane detection. This features discriminates

natural structures, which are not always well described by

planes, from man-made structures.

In order to compute the above features, we need to detect

the ground plane. Assuming that the z−axis of the point

cloud coordinate system is aligned with the world z−axis,

we compute a histogram of the z coordinates of all points,

where the bins have size 3m. Since the ground plane con-

tains large objects such as streets, sidewalks, etc., and all

objects touch the ground, we can assume that the bin with

the largest value contains the ground points. The ground

plane is defined to have z coordinate equal to the elevation

of that bin and is parallel to the x and y axes.

We use the above features for a volume V to define a fea-

ture vector f(V) = (· · · fi · · · fifj · · ·)
T , i, j ∈ {1, . . . 7}.

Then we use a score c(·) for V being a building:

c(V) = bT f(V) (5)

We use not only the features but also their products in order

to capture feature correlations. Note that this is the score

we use in eq. (4).

Then we can score an instantiation r : V → S of P5:

P5 : score(r) =

{

θ3c(V) if S = SB

−θ3c(V) if S = SNB

(6)

where θ3 is a weight for this score type. Learning of these

parameters is described in the next section.

The proposed grammar is generic and simple – it con-

sists of basic geometric entities such as planar patches and

volumes, and geometric relations between them based on

relative position and size. Moreover, as we will see below,

it is also a semantic description since each node, being a

volume or surface, can be easily interpreted as a meaning-

ful building part. These descriptions are structured in a way

that reflects a natural building interpretation into parts (see

final result in Fig. 2).

3.2. Parsing

Inference The goal of the parsing is to infer a parse tree

T of a building from a set of input planar patches A =

{p1 . . . pm} such that the overall score of the parse is maxi-

mized:

T ∗ = arg max
T

score(A, T) (7)

The parse tree is constructed by applying a sequence of pro-

ductions R = {r1 . . . rn} from Table 1. As a result, the

parse score can be computed in terms of the scores of the

applied productions R:

score(A, T) = score(A,R) =
∑

i

score(ri) (8)

The parsing procedure is simplified by the observation

that the first three productions are deterministic by design.

Production P1 requires the creation of the neighborhood

graph containing all initially detected planar patches and

removes from this graph edges connecting non-coplanar

patches. Each maximal connected component in this graph

leads to an application of this production with score 1. We

proceed similarly for production P2, where the neighbor-

hood graph contains not only the initial planar patches but

also the nodes generated from P1. Finally, production P3

attaches a volume to each obtained planar component. We

will denote by V = {V1 . . . Vk} the set of the generated

volumes.

The last two productions P4 and P5 cannot be applied

deterministically. They create a hierarchy among the vol-

umes and classify them as “buildings” or “non-buildings”

by creating a tree T over V ∪S, where S are the two supern-

odes. Note that each of those two productions is a sum of

terms involving at most two nodes (see eq. (4) and eq. (6)).

Hence, the parse T can be interpreted as a spanning tree in

the graph with nodes V ∪ S with a score defined using the

production scores:

score(A,R) = score(A, T ; θ) = (9)
∑

(Vi,Vj)∈T

(θ1a(Vj , Vi) + θ2c(Vi)c(Vj))

+
∑

(SB ,Vi)∈T

θ3c(Vi) +
∑

(SNB ,Vi)∈T

θ3(−c(Vi))

where T is the set of edges in the parse tree and θ =
(θ1, θ2, θ3)

T .

Maximizing the above cost is equivalent to finding a

Maximum Spanning Tree (MST) in a directed weighted

graph over V ∪ S. The MST is computed using the Chi-

Liu-Edmunds (CLE) algorithm [5]. It proceeds by greedily

trying to construct a directed MST. If this results in a cycle,

CLE contracts the cycle to a single new node and redefines

the edges adjacent to this node such that the MST in the new

graph has the same weight as the one in the original graph.

After a MST has been computed in the contracted graph by

recursively invoking the algorithm, the tree is expanded to

a MST in the original graph (see Fig. 2).

Input: Directed graph G = (V,E,w) with

w : E → R is an edge weight function.

T = CLE(G,w)
For each node v ∈ V select a predecessor a(v) such that

(a(v), v) has the highest score among all arcs enetering v.

Ga ← (V,Ea), Ea ← {(a(v), v)|v ∈ V }.
If Ga a tree then return Ga.

else find a cycle C in Ga.

Contract: Generate a graph Gc from G by contracting

C on a new node c:

Remove C from Gc and add a new node c.

For each v ∈ V \ C
Add edge (c, v) to Gc with

b(v)← arg maxv′∈C w(v′, v)
w(c, v)← w(b(v), v)

Add edge (v, c) to Gc with

b(v)← arg maxv′∈C(w(v, v′)− w(a(v′), v′)
w(v, c)← w(v, b(v))− w(a(b(v)), b(v)) + w(C)
where w(C) is the sum of all edges in cycle C

Tc ← CLE(Gc, w);

Expand MST Tc over Ga to an MST T over G:

Add C to Tc.

Add all outgoing edges from C to V \ C.

Find predecessor v′ of c in Tc and v in C with b(v) = v′.

Connect cycle to Tc by adding edge (v′, v).

Break cycle by removing (a(v), v).

return T

Table 2. Pseudocode for the Chi-Liu-Edmonds algorithm [5].

This type of parsing is called dependency parsing and

has been extensively applied in Natural Language Pro-

cessing, for example for relations extraction among others

[8, 22]. A major advantage of the proposed parsing is its

tractability. The complexity of deterministic plane parsing

is in O(|A|) and the CLE algorithm computes an optimal

parse in O(|V |3). The overall time complexity is cubic

in the number of input planes, which in our experiments

is at most several hundred. Note, that there are more effi-

cient algorithms for computing MST, which have complex-

ity quadratic in terms of the graph size [22].

Learning The productions of the building grammar, as in-

troduced in Sec. 3.1, are parametrized by paramters b and θ

in eq. (5) and eq. (9).

The score from eq. (5) should be high if a volume be-

longs to a building and low otherwise. We choose to train a

binary linear SVM on the feature vector f(V) and use the

implementation of [10].

The second set of parameters θ weights the contribution

of the different production scores during the inference de-

scribed in eq. (9). After estimating b, we learn θ using an

averaged structured perceptron [6, 22]. The structured per-

ceptron exploits the fact that the cost function is linear in

the parameters: score(A, T) = θTψ(A, T), where ψ(A, T)
is a vector containing the data terms for all edges in T from

Input: set of parses {Ai, Ti}, for i = 1 . . . N
number of iterations L

Initialize: θ0 ← 0, k ← 0
For j = 1 . . . L

For i = 1 . . . N
T ⋆ ← arg maxT score(Ai, T ; θk)
θk+1 ← θk + ψ(Ai, Ti)− ψ(Ai, T

⋆)
k ← k + 1

end

end

θ ← 1

LN

P

LN

s=1
θs

Table 3. Pseudocode for the averaged structured perceptron learn-

ing for the dependency parsing.

eq. (9). Then, the learning algorithm sequentially visits each

training example and updates the parameters such that the

above loss for the example is locally optimized (see Ta-

ble 3). Since we have few parameters, we need only a few

epochs and set L = 5.

4. Experimental Results

We evaluate our approach by computing the building

detection and parsing accuracies. We use a large scale

dataset [1] covering downtown Ottawa and containing ap-

proximately 1 billion points collected by several passes of

airborne and terrestrial range scanners. Due to its large size,

the point cloud is partitioned into approximately 350 blocks

and we run our algorithm per block. Note, that plane ex-

traction is the bottleneck of the algorithm, since we need to

sample plane candidates from the entire point cloud. After

this step, however, we obtain between 50 and 300 planar

patches per block. As a result, the dependency parsing can

be computed in less than 1 sec per block on a 3.50 Ghz

processor, which shows the efficiency of the proposed in-

ference.

For building detection, we have manually labeled all

buildings in 87 blocks which cover an area of approxi-

mately 3km2. These buildings include tall and complex

structures from downtown Ottawa as well as low residen-

tial houses in areas covered with trees. In addition, we have

manually parsed 18 buildings in 9 blocks.

To evaluate the building detection performance, we

trained the parsing algorithm over the 9 blocks. For com-

parison, we train a binary SVM over the patches in those

9 blocks as described in the previous section. The remain-

ing 78 labeled blocks are used for testing. As evaluation

metric, we use the percentage of planar patches which have

been classified correctly as “building” or “non-building”,

here called accuracy. The accuracy of the parsing algorithm

is 89.3%, while the SVM achieves 87.9%. To analyze the

accuracy gains of the algorithm, in Fig. 3, we show the ac-

curacy over small patches and its change if we add larger

patches. Among the small patches, such as awnings, chim-

Figure 3. Accuracy of parsing and SVM patch classification. We

sort the patches in increasing order according to their area. The

graph shows classification accuracy for the p-first patches in the

above order, where p is shown as the percentile of all patches.

neys, etc., the parsing performs better than the SVM, while

for the large patches, both parsing and SVM perform com-

parably. Note that although such small structures cover rel-

atively small area of the city, they represent important build-

ing parts, which can be best detected exploiting the context

provided by the parsing.

For evaluation of the accuracy of recovering dependen-

cies, we used 3 random blocks from the 9 labeled for train-

ing and the remaining for testing (we perform 3 such splits).

We achieve accuracy of 76.2% in correctly detecting the

parent of each planar patch. As shown in Fig. 4, the root of

a building parse is naturally the main building part, while

chimneys, awnings, etc., are leaves. Note that particularly

complex roofs (examples 1 and 2) are decomposed into their

constituent planar patches.

5. Conclusion

We propose a simple and generic hierarchical represen-

tation for building detection and parsing. The main advan-

tage of our approach is efficiency: our parsing algorithm is

polynomial in the number of extracted planar patches, al-

lowing efficient parsing at a city scale. Using geometric

and shape features of building parts, we show how to learn

models to parse buildings in a way consistent with human

interpretation and potentially useful for automated search

and retrieval.

References

[1] The Wright State 100 dataset. Available after registration at

http://www.daytaohio.com/Wright State100.php.

[2] A. Berg, F. Grabler, and J. Malik. Parsing images of archi-

tectural scenes. In ICCV, 2007.

[3] M. Brédif, D. Boldo, M. Pierrot Deseilligny, and H. Maitre.

3D building reconstruction with parametric roof superstruc-

tures. In Int. Conf. on Image Processing, 2007.

[4] H. Cantzler, R. Fisher, and M. Devy. Quality enhancement of

reconstructed 3d models using coplanarity and constraints.

In DAGM, 2002.

[5] Y. Chu and T. Liu. On the shortest arborescence of a directed

graph. Science Sinica, 14, 1965.

[6] M. Collins. Discriminative training methods for hidden

markov models: theory and experiments with perceptron al-

gorithms. In EMNLP, 2002.

[7] R. Collins, C. Jaynes, Y. Cheng, X. Wang, F. Stolle, E. Rise-

man, and A. Hanson. The ascender system: Automated site

modeling from multiple aerial images. CVIU, 72(2), 1998.

[8] A. Culotta and J. Sorensen. Dependency tree kernels for re-

lations extraction. In ACL, 2004.

[9] A. Dick, P. Torr, and R. Cipolla. Modelling and interpretation

of architecture from several images. IJCV, 60(2), 2004.

[10] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.

Lin. Liblinear: A library for large linear classification. J.

Mach. Learn. Res., 9, 2008.

[11] A. Fischer, T. Kolbe, F. Lang, A. Cremers, W. Forstner,

L. Pluemer, and V. Steinhage. Extracting buildings from

aerial images using hierarchical aggregation in 2d and 3d.

CVIU, 72(2), 1998.

[12] M. A. Fischler and R. C. Bolles. Random sample consen-

sus: a paradigm for model fitting with applications to image

analysis and automated cartography. Commun. ACM, 24(6),

1981.

[13] Y. Guo, H. Sawhney, R. Kumar, and S. Hsu. Learning-based

building outline detection from multiple aerial images. In

CVPR, 2001.

[14] N. Haala, S. Becker, and M. Kada. Cell decomposition for

the generation of building models at multiple scales. In Pho-

togrammetric Computer Vision, 2006.

[15] F. Han and S. Zhu. Bottom-up/top-down image parsing by

attribute graph grammar. In ICCV, 2005.

[16] A. Huertas and R. Nevatia. Detecting buildings in aerial im-

ages. Computer Vision, Graphics, and Image Processing,

41(2), 1988.

[17] Z. Kim and R. Nevatia. Automatic description of complex

buildings from multiple images. CVIU, 96(1), 2004.

[18] P. Koutsourakis, L. Simon, O. Teboul, G. Tziritas, and

N. Paragios. Single view reconstruction using shape gram-

mars for urban environments. In ICCV, 2009.

[19] F. Lafarge, X. Descombes, J. Zerubia, and M. Pierrot Deseil-

ligny. Structural approach for building reconstruction from a

single DSM. PAMI, 2009.

[20] H. Maas and G. Vosselman. Two algorithms for extracting

building models from raw laser altimetry data. ISPRS Jour-

nal of Photogrammetry and Remote Sensing, 54(2-3), 1999.

[21] B. Matei, H. Sawhney, S. Samarasekera, J. Kim, and R. Ku-

mar. Building segmentation for densely built urban regions

using aerial lidar data. In CVPR, 2008.

[22] R. McDonald, K. Crammer, and F. Pereira. Online large-

margin training of dependency parsers. In ACL, 2005.

[23] D. McKeown, W. Harvey, and J. McDermott. Rule based

interpretation of aerial imagery. PAMI, 7(5), 1985.

[24] C. Poullis and S. You. Automatic reconstruction of cities

from remote sensor data. In CVPR, 2009.

[25] N. Ripperda and C. Brener. Reconstruction of Facade Struc-

tures Using a Formal Grammar and RjMCMC. In DAGM,

2006.

[26] J. Shufelt. Performance evaluation and analysis of monoc-

ular building extraction from aerial imagery. PAMI, 21(4),

1999.

original point cloud and detected buildings root depth 1 depth 2

1

1

2

34

2

3

4

5

6

7

8

5

6

7

8

(a)

(a)

(b)

(b)

Figure 4. We present building detection and parsing results on two blocks of the point cloud. For each block, we show on the left side (a)

the original point cloud and (b) the detected buildings overlaid on the point cloud, each individual building having a different color. For

some of the detected buildings, we show the parses, where in each column we show all the nodes at a particular depth (nodes are colored

randomly, remaining building patches and facades are colored dark blue).

[27] V. Verma, R. Kumar, and S. Hsu. 3D building detection and

modeling from aerial lidar data. In CVPR, 2006.

[28] T. Werner and A. Zisserman. New techniques for automated

architectural reconstruction from photographs. In ECCV,

2002.

	Detecting and Parsing Architecture at City Scale from Range Data
	Recommended Citation

	Detecting and Parsing Architecture at City Scale from Range Data
	Abstract
	Disciplines
	Comments

	tmp.1340731707.pdf.1fTYh

