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Abstract12

Cellular genetic heterogeneity is common in many biological conditions including cancer, mi-13

crobiome, co-infection of multiple pathogens. Detecting and phasing minor variants, which is to14

determine whether multiple variants are from the same haplotype, play an instrumental role in15

deciphering cellular genetic heterogeneity, but are still difficult because of technological limitations.16

Recently, long-read sequencing technologies, including those by Pacific Biosciences and Oxford17

Nanopore, have provided an unprecedented opportunity to tackle these challenges. However, high18

error rates make it difficult to take full advantage of these technologies. To fill this gap, we in-19

troduce iGDA, an open-source tool that can accurately detect and phase minor single-nucleotide20

variants (SNVs), whose frequencies are as low as 0.2%, from raw long-read sequencing data. We21

also demonstrated that iGDA can accurately reconstruct haplotypes in closely-related strains of the22

same species (divergence ≥ 0.011%) from long-read metagenomic data. Our approach, therefore,23

presents a significant advance towards the complete deciphering of cellular genetic heterogeneity.24
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Introduction25

Cellular genetic heterogeneity is prevalent in multiple biological conditions. For example, the mi-26

crobiome contains multiple bacterial species with distinct genomes, and patients with infections may27

carry multiple bacterial strains. Likewise, in cancer, tumors are typically characterized by multiple28

cell types and cell lineages with different genomes. Deconvoluting such complex cellular genetic het-29

erogeneity is critical to basic biology and precision medicine. Minor variants, which are defined as the30

variants with frequencies lower than 10% in a cell population, play a central role in deciphering cellular31

genetic heterogeneity. Short-read genome sequencing can effectively characterize a large number of32

cells simultaneously but cannot phase minor variants directly due to the limitation of read length,33

which is generally under 300 bp1. Long-read sequencing, on the other hand, can be used to overcome34

this limitation. The latest long-read sequencing technologies, including those by Pacific Biosciences35

(PacBio) and Oxford Nanopore (ONT), enable sequencing more than 100 billion bases in a single run36

and yield reads with lengths that can exceed 10 kb2–4. These advantages make it feasible to adopt37

long-read sequencing to study cellular genetic heterogeneity in the microbiome, bacterial co-infection,38

and cancer in finer details. Because of its long read-length and high throughput, long-read sequencing39

has the potential to be applied to detect and phase minor variants at the single-molecule level without40

amplification. However, the error rate of raw long-read sequencing data is usually higher than 10%1,3,41

and makes it difficult to detect variants whose frequency is lower than the sequencing error rate.42

Most of the existing methods to detect minor SNVs are based on short-read sequencing data5–14.43

The vast majority of these methods scan the reference genome and detect SNVs or other variants44

locus-by-locus. These methods cannot be used for long-read sequencing data because they are based45

on the error pattern of short-read sequencing data, which is different from long-read sequencing data.46

Researchers have also tried to leverage the information of multiple SNVs to increase detection accu-47

racy. V-Phaser and V-Phaser215,16, which were designed for short-read sequencing data, use the joint48

probability of SNV pairs to detect SNVs. However, to avoid combinatorial explosion, they only use49

the joint probability of two SNVs. We will discuss the limitations of such a restriction for long-read50

sequencing and demonstrate how it leads to false negatives in Results.51

There are several methods designed specifically to detect variants from long-read sequencing data.52

The GenomicConsensus module (https://github.com/PacificBiosciences/GenomicConsensus) de-53

veloped by PacBio generates a consensus sequence from the aligned PacBio reads and compares it to54

the reference genome to identify variants. Nanopolish17 is a variant caller designed specifically for ONT55
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data, and Clairvoyante18 is a deep-learning based tool for Illumina, PacBio, and ONT data. These56

methods assume that samples only have one or two haplotypes and therefore cannot be applied to57

detect minor variants. MinorSeq (https://github.com/PacificBiosciences/minorseq), developed58

by PacBio, is designed to detect minor variants but requires its input to be Circular Consensus Se-59

quencing (CCS) reads19. CCS is a special protocol of PacBio sequencing, which sequences each DNA60

molecule multiple times to increase accuracy. However, CCS reduces read length by 10 to 20 fold to61

achieve low error rates, and read length is critical to phasing minor SNVs. Recently, several tools62

have been developed to detect variants by leveraging haplotype information from long-read sequencing63

data20–22, but they also assume that the number of haplotypes is one or two. Thus, they cannot be64

applied to detect minor variants. To our best knowledge, there is currently no tool available to detect65

minor SNVs from raw data of long-read sequencing.66

There are several short-read based methods available to phase minor SNVs23–29. These methods67

cluster the reads locally and phase distant SNVs, whose distances are longer than read length, using68

statistical models with strong assumptions. The major limitation of these methods is that they phase69

distant minor SNVs only based on indirect evidence because the read length is too short to span over70

the distant SNVs. This limitation can be overcome by using long-read sequencing data. The existing71

haplotyping methods for long-read sequencing data20–22 assume there are only one or two haplotypes,72

and thus cannot be used to phase minor SNVs because the number of haplotypes is unknown.73

To address the challenges of detecting and phasing minor SNVs, we developed a novel tool named74

iGDA (in vivo Genome Diversity Analyzer), which can accurately detect and phase minor SNVs, whose75

frequencies are as low as 0.2%. To detect minor SNVs, iGDA leverages the information of multiple76

loci without restricting the number of dependent loci, and uses a novel algorithm, Random Subspace77

Maximization (RSM), to overcome the issue of combinatorial explosion. To phase minor SNVs, iGDA78

uses a novel algorithm, Adaptive Nearest Neighbor clustering (ANN), which makes no assumption79

about number of haplotypes. To evaluate the performance of iGDA, we tested it on four pooled long-80

read sequencing datasets. The number of samples pooled in each dataset ranges from 65 to 755. The81

results demonstrate that iGDA can detect 85.8% to 96.7% of the real SNVs in these datasets at false82

discovery rate (FDR) lower than 1%. Finally, iGDA can phase minor SNVs at average accuracies range83

from 90.7% to 98.7%. We also tested iGDA on a pooled long-read metagenomic dataset consisting84

of 11 Borrelia burgdorferi strains and 744 other bacterial species, and discovered that the accuracy85

of iGDA is sufficient to reconstruct haplotypes in closely-related conspecific strains (strains belonging86
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to the same species) only using one reference genome. The divergences between the distinguishable87

conspecific strains are as low as 0.011%. These results shed light on tackling a number of challenges88

such as extracting strain-resolved genome sequences from long-read metageonmic data and identifying89

multiple strains in co-infection.90

Results91

Detecting minor SNVs by leveraging information of multiple loci92

The major challenge of detecting minor SNVs is to distinguish between real SNVs and sequencing93

errors. It is especially difficult for raw data of long-read sequencing technologies, including those94

by PacBio and ONT, because they have relatively high error rates. However, we could leverage the95

fact that long reads can cover multiple SNVs to substantially increase detection accuracy. Intuitively,96

assuming that sequencing errors are independent, multiple sequencing errors are unlikely to repeatedly97

occur together on the same read. For example, in a pooled PacBio sequencing dataset consisting of98

186 Bordetella spp. samples (Figure 1A), the substitutions from the five marked loci occur together99

on 28 reads and there are 23,432 reads covering these five loci. The observed joint probability that100

these five substitutions occur together on the same read is 28/23432 = 0.00119, while the expected101

joint probability is less than 0.15 = 0.00001 because substitution error rate of raw PacBio reads is102

less than 0.1 on this dataset (Figure 1B). The observed joint probability is over 100 times higher than103

the expected joint probability, so it is very likely that some of the five substitutions are real SNVs.104

However, the substitution rates of these five SNVs are 0.00569, 0.00845, 0.00748, 0.00960, and 0.00915105

respectively and it is difficult to distinguish them from sequencing errors only based on substitution106

rate (Figure 1B). Based on these observations, we propose a novel framework that uses conditional107

substitution rate instead of substitution rate to detect SNVs. In this framework, for each substitution,108

we adopt the maximal probability of observing the substitution conditional on observing substitutions109

at p other loci, defined as maximal conditional substitution rate, to detect whether the substitution110

is a real SNV. We call these p loci dependent loci. However, as the p dependent loci are unknown,111

it is infeasible to enumerate all combinations of these p loci to calculate the maximal conditional112

substitution rate due to high computational cost. As p is unknown, the number of combinations is113

about
∑2l

p=1C
p
2l = 22l − 1 for each locus if the average read length is l. We propose a novel algorithm114

called Random Subspace Maximization (RSM) to estimate the maximal conditional substitution rate115
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Figure 1: SNVs are dependent on each other. A, An IGV (Integrative Genomics Viewer)30

snapshot demonstrating how to use the information of multiple loci to increase detection accuracy of

SNVs. The number of reads containing the five SNVs marked by black boxes is 28 and the number of

reads covering the five SNVs is 23,432. The observed and expected joint probabilities of the five SNVs

are shown to the left of the IGV snapshot. Some reads are not shown in the figure due to the limit of

figure size. B, The distribution of substitution rate on the Bordetella spp. data. No outlier is removed

in the Sina plot. C, The distribution of maximal conditional substitution rate estimated by the RSM

algorithm on the Bordetella spp. data. No outlier is removed in the Sina plot.
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efficiently (Figure 2A-C) (details are in Methods). As shown in Figure 1C, on the Bordetella spp. data,116

the real SNVs and the sequencing errors are highly distinguishable based on the maximal conditional117

substitution rate calculated by the RSM algorithm.118

It is very important to note that the number of dependent loci p should not be fixed. Figure119

S1 shows an example that fixing p can induce false negatives. In this example, the substitution120

at the locus 1 is independent with the substitutions at locus 2 and locus 3 respectively, but highly121

dependent on the combination of the substitutions at locus 2 and locus 3. Thus, the SNV at locus 1122

is difficult to be detected if p is fixed to 1, but is easy to be detected if there is no restriction on p.123

The existing algorithms V-Phaser and V-phaser215,16 were designed to identify minor variants from124

short-read sequencing data and only leveraged dependence between substitutions at two loci to avoid125

combinatorial explosion. This is equivalent to fixing p to 1, and making these algorithms unable to126

detect the SNVs in Figure S1. The proposed RSM algorithm has no restriction on p and can avoid127

combinatorial explosion.128

If a SNV is the only SNV in the genome, we call it an orphan SNV. The proposed framework129

that uses conditional substitution rate to detect SNVs cannot detect orphan SNVs because its basic130

assumption is that there are multiple real SNVs in the same genome. We propose a single-locus based131

algorithm to overcome this limitation (Figure 2D). We discovered that substitution error rate is very132

different from locus to locus and it is highly predictable by sequence context (Figure 3). We trained133

a gradient boosting model31 on independent public data and predicted substitution error rate for134

each locus. We then adopted a likelihood ratio test to compare the observed substitution rate to the135

predicted substitution error rate and reported a SNV if they are significantly different (details are in136

Methods).137

Phasing minor SNVs138

Intuitively, the reads of the same genome should be clustered together and the consensus sequence of139

each cluster can be used to phase minor SNVs. Herein, we propose a novel algorithm called Adaptive140

Nearest Neighbor (ANN) to cluster the reads and the consensus sequence of each cluster is called a141

draft contig (Figure 2E and Figure 2F) (details are in Methods). To reduce noise, loci with no detected142

SNVs are masked before applying ANN algorithm. A major advantage of ANN algorithm is that it143

can estimate the number of clusters automatically while clustering the reads. To reduce false positive144

rate of the draft contigs, we adopted a two-step filter to remove unreliable draft contigs (Figure 2G).145
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7

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.314252doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.314252


Intuitively, the SNVs in the same draft contig should be dependent with each other and the difference146

between two similar draft contigs should be statistically significant.147

The lengths of the draft contigs are usually smaller than genome size. To maximize the range where148

the minor SNVs can be phased, we assemble the draft contigs using an algorithm inspired by overlap149

graph32 (Figure 2H) (details are in Methods). The assembled draft contigs are called contigs.150

Evaluating performance on pooled PacBio sequencing data151

We constructed two datasets to test the accuracy of iGDA. The first dataset is a mixture of PacBio152

sequencing data of 186 Bordetella spp. samples, and the second dataset is a mixture of 155 Escherichia153

coli samples. The datasets have been previously published and their accession IDs in the SRA database154

(https://www.ncbi.nlm.nih.gov/sra) are listed in Table S1. The average sequencing depths of155

pooled data are 29,208x for Bordetella spp. and 19,175x for Escherichia coli. We downloaded the raw156

data in HDF format from SRA, and filtered the reads by requiring the estimated read quality (rq)157

greater than 0.75. The estimated read quality were extracted from the native HDF file. Bases with158

quality value (QV) less than a threshold were masked. We tested four thresholds, 0, 8, 10, and 12,159

respectively. We aligned the filtered reads to the reference genomes of Bordetella pertussis Tohama I160

(NCBI Reference Sequence ID is NC_002929.2) for the Bordetella spp. data and Escherichia coli K12161

MG1655 (NCBI reference sequence ID is NC_000913.3) for the Escherichia coli data by minimap2162

(version 2.12)33 respectively. To minimize the alignment ambiguity caused by the aligner, we realigned163

the reads mapped to the negative strand by aligning their reverse complementary sequences. We164

only retained the reads aligned to the concatenated rpoB and rpoC region, which is highly conserved.165

The 1-based coordinates of the reference genomes is [11662, 20018] for Bordetella pertussis Tohama166

I and [4181245, 4189573] for Escherichia coli K12 MG1655. We pooled the realigned reads aligned167

to the concatenated rpoB and rpoC region for Bordetella spp. and Escherichia coli respectively to168

construct the two datasets. To evaluate accuracy of iGDA, we ran PacBio’s genome consensus module169

(https://github.com/pacificbiosciences/genomicconsensus) on the aligned reads of each sample170

with default parameters to obtain the consensus genome sequences and SNVs. The union of the SNVs171

were used as benchmark to evaluate the accuracy of detecting SNVs. The genome sequence of an172

individual sample is defined as a real contig, and was used to evaluate the accuracy of contigs reported173

by iGDA. We merged samples (real contigs) with identical SNV profiles and calculated the relative174

abundances of the merged samples by the ratio between number of reads aligned to each sample and175
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Figure 3: Predicting substitution error rate by sequence-context-effect model trained on

independent data. A, Prediction of substitution error rate on the PacBio Bordetella spp. data. B,

Prediction of substitution error rate on the PacBio E. coli data. C, Prediction of substitution error

rate on the ONT k. pneumoniae data with DNA methylation masked.
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the total number of aligned reads. The relative abundances of the samples distinct from the reference176

genome range from 0.25% to 3.05% for the Bordetella spp. data, and range from 0.30% to 1.92% for177

the Escherichia coli data. The average relative abundances are 0.82% and 0.74% for the Bordetella178

spp. data and the Escherichia coli data respectively.179

For detecting minor SNVs, we tested three algorithms—a single-locus method (SL), which simply180

uses substitution rate of each locus to detect SNVs; a context-aware single-locus method (SLC), which181

uses substitution rate of each locus with correcting sequence-context effect (details are in Methods);182

and the proposed RSM algorithm—on these two test datasets. The results indicate that RSM algorithm183

greatly outperforms the two single-locus methods, and achieves a high accuracy (Figure 4A and Figure184

4B). With masking bases with QV lower than 8, iGDA detected 96.7% and 85.8% of the real SNVs185

at false discovery rate (FDR) lower than 1% for the Bordetella spp. data and Escherichia coli data186

respectively. Besides, correcting sequence-context effect substantially increases detection accuracy of187

the single-locus methods. The threshold of base QV also has minor impact on the accuracy. A non-zero188

threshold increases the accuracy on the Bordetella spp. data (Figure 4A), but decreases the accuracy189

on the Escherichia coli data (Figure 4B). This might be because masking bases with low QV removes190

some sequencing errors but reduces effective sequencing depth.191

For phasing minor SNVs, we evaluated the ANN algorithm on these two datasets, where the bases192

with QV less than 8 were masked. The average accuracies (the maximal Jaccard index34 with the real193

contigs) of the assembled contigs are 98.9% and 98.1% for the Bordetella spp. data and Escherichia194

coli data respectively (Figure 5A). Jaccard index between an iGDA-inferred contig and a real contig is195

the ratio between the number of shared SNVs and the total number of unique SNVs in their overlapped196

region. The IGV (Integrative Genomics Viewer)30 snapshot of the contigs obtained from the Bordetella197

spp. data and the Escherichia coli data are shown in Figure 5B and Figure S2. The results show that198

the iGDA-inferred contigs match the real contigs very well, even for the real contigs with frequencies199

lower than 1%. In Figure 5B, there are five real contigs that are not detected by our algorithm. One200

of them has no SNV (the reference genome); two of them only have a single orphan SNV with very201

low frequency, which is hard for the RSM algorithm to detect; and two of them are highly similar to202

another genome. The results indicate that the minor SNVs can be phased effectively except for the203

genomes that have an orphan SNV or are highly similar to another genome.204
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Figure 4: The accuracy of detecting minor SNVs on pooled sequencing data. A, The

accuracy on PacBio Bordetella spp. data. B, The accuracy on PacBio E. coli data. C, The accuracy

on ONT K. pneumoniae data. D, The accuracy on ONT K. pneumoniae data with DNA methylation

masked. E, The legend of subfigures A-D. RSM = Random Subspace Maximization algorithm, SL

= Single-Locus algorithm, SLC = Single-Locus algorithm with correcting sequence-context effect, and

QV = Quality Value. True positive rate = number of correctly detected SNVs / number of real SNVs.

False discovery rate = 1 - number of correctly detected SNVs / number of detected SNVs.
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Evaluating performance on pooled ONT sequencing data205

We tested iGDA on a dataset consisting of a mixture of ONT sequencing data of 65 Klebsiella pneu-206

moniae samples. The SRA IDs are listed in Table S2. We downloaded the raw data in fastq format207

from the SRA database (https://www.ncbi.nlm.nih.gov/sra), filtered and trimmed the reads using208

fastp35. The reads with average quality value (QV) less than 8 were discarded, and the first 50 bp209

and the last 200 bp were trimmed for each read. Similar to the PacBio data, we used four thresh-210

olds, 0, 8, 10, and 12 respectively, to mask bases with low QV. The reads were then aligned to the211

reference genome of Klebsiella pneumoniae subsp. pneumoniae HS11286 (NCBI reference sequence212

ID is NC_016845.1). We realigned the reads mapped to the negative strand by aligning their reverse213

complementary sequences. We only retained the reads aligned to the concatenated rpoB and rpoC214

region, whose 1-based coordinate is [227354, 235682]. We then pooled the aligned reads to construct215

the testing data. To evaluate accuracy of iGDA, we downloaded assembly for each sample in the pooled216

data (Table S2) from NCBI (https://www.ncbi.nlm.nih.gov/assembly), and aligned the assembled217

genomes to the reference genome using MUMmer36. The union of the SNVs reported by MUMmer218

were used as benchmark to evaluate accuracy of detecting SNVs. The genome sequence of an indi-219

vidual sample is defined as a real contig, and was used to evaluate the accuracy of contigs reported220

by iGDA. We used the same method in the previous section to merge identical samples and obtain221

the relative abundance of each sample. The relative abundances range from 0.20% to 9.30%, and the222

average relative abundance is 3.20%.223

Due to the unique sequencing mechanism of ONT, DNA methylation can affect the raw sequencing224

signal and substantially increase the base-calling error rate of methylated bases (Figure S3). The225

base caller used in the public ONT data in this study is Albacore (version 2.0) (https://github.com/226

Albacore/albacore). To avoid the impact of DNA methylation, we developed an algorithm to identify227

DNA methylation motifs in bacteria without using raw-signal of ONT data (details are in Methods).228

We masked loci within 5 bases to the DNA methylation motifs before applying iGDA to this dataset.229

The result shows that the RSM algorithm substantially outperforms the single-locus methods to230

detect minor SNVs, and achieves a high accuracy (Figure 4C). With DNA methylation and bases with231

QV lower than 10 masked, iGDA detected 92.8% of the real SNVs at FDR lower than 1%. With232

masking no DNA methylation but masking bases with QV lower than 10, iGDA detected 41.3% of the233

real SNVs at FDR lower than 1%. Thus, masking DNA methylation increases the accuracy of the RSM234

algorithm (Figure 4D), which demonstrates the importance of removing DNA methylation or applying235
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Figure 5: The accuracy of phasing minor SNVs. A, The sina plot of accuracy of phasing minor

SNVs on the four testing datasets. B, The IGV snapshot of the contigs inferred by iGDA on the

PacBio Bordetella spp. data. An inferred contig is grouped with its most similar real contig (measured

by Jaccard index). Relative abundance is shown to the left of each contig.

a methylation-aware base caller to detecting minor SNVs from ONT data. Masking bases with low236

QV can substantially increase the accuracy and different thresholds have similar accuracies (Figure 4C237

and Figure 4D). In contrast to PacBio data, correcting sequence context does not significantly increase238

detection accuracy of the single-locus methods. We speculate that this is because the prediction power239

of sequence context on the ONT data is weaker than that on the PacBio data (Figure 3).240

DNA methylation has a large impact on the accuracy of phasing minor SNVs. With masking loci241

affected by methylation and bases with QV lower than 10, the average accuracy of assembled contigs242

is 90.7% (Figure 5A). However, without masking loci affected by methylation, the average accuracy of243

assembled contigs is only 54.5% (Figure 5A). An IGV snapshot of methylation-masked contigs is shown244

in Figure S4. The result shows that the iGDA-inferred contigs match the real contigs very well with245

DNA methylation masked. It is critical to reduce the impact of DNA methylation by whole genome246

amplification or by adopting a methylation-aware base caller.247

De novo identification of multiple Borrelia burgdorferi strains from long-read248

metagenomic data249

To test whether iGDA can be applied to identify multiple strains of the same species from metage-250

nomic data, we constructed a metagenomic dataset by mixing PacBio sequencing data of 11 Borrelia251
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burgdorferi strains, the causal agent of Lyme disease37, and 744 other bacterial samples. The SRA252

IDs, species, and strains are in Table S3. We filtered the reads by requiring read quality value greater253

than 0.75. Read quality (rq) was extracted from the native HDF files. Bases with QV less than 8254

were masked. We then aligned the reads to the reference genome of Borrelia burgdorferi B31 (NCBI255

reference sequence ID is NC_001318.1), and realigned the reverse complementary of the reads mapped256

to the negative strand. To evaluate accuracy of iGDA, we assembled genome of each Borrelia burgdor-257

feri strain using flye38, and aligned the assembly to the reference genome using MUMmer36 to obtain258

benchmark SNVs.259

We ran iGDA on the realigned data and constructed 1,151 contigs. The average accuracy of260

the contigs is 95.0% (Figure 5A) and contig length is up to 139 kb. The IGV snapshots of the261

contigs reported by iGDA show that multiple strains of Borrelia burgdorferi can be clearly identified262

by iGDA (Figure 6A, Figure S5, and Figure S6). The minimal divergence of a region where the263

Borrelia burgdorferi strains can be distinguished is 0.011% (details are in Methods). To further evaluate264

the accuracy of iGDA, we performed MLST (Multilocus Sequence Typing)39 on the contigs and the265

genome sequence of each strain using the database at https://pubmlst.org/borrelia (details are in266

Methods). In MLST, we aligned iGDA-inferred contigs and the genome sequence of each strain to the267

MLST database, consisting of known alleles of the eight house-keeping genes in Borrelia spp., to find268

the best matches. The result shows that most of the alleles that present in the genome sequence of269

each strain can be found in the iGDA-inferred contigs, and there is no false positive alleles (Figure270

6B). The alleles of the adjacent house-keeping genes, pyrG, recG, clpX, and pepX, can be phased by271

the contigs reported by iGDA (Figure 6B).272

It is worth to note that some genome regions in Figure 6A are not covered by any contig. We call273

these regions missed regions, and call the SNVs not covered by any contig missed SNVs. We found274

that there are usually multiple strains that are highly similar to each other in the missed region. In275

the example shown in Figure S5, at least four samples have highly similar sequences in the missed276

region. Some missed regions have no SNV compared to the reference genome because iGDA does not277

report contigs with no SNV. In the example in Figure S6, samples SRR7967871 and SRR7967873 have278

several large missed regions, which have no SNV compared to the reference genome. To further assess279

the impact of highly similar strains on the performance of iGDA, we calculated Jaccard index of SNVs280

for each pair of the Borrelia burgdorferi samples, and found that some samples are highly similar to281

each other. The result in Figure S7A indicates that samples SRR7967879, SRR7967880, SRR7967872,282

14

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.314252doi: bioRxiv preprint 

https://pubmlst.org/borrelia
https://doi.org/10.1101/2020.09.25.314252


A

B

Real contig

Inferred contig

Distance 297 kb 120 kb 90 kb 8 kb 41 kb 18 kb 233 kb

Alleles phased Alleles phased

Detected allele

Missed allele

���� ���
 ���� ���� ���� ���� ���� ���

�

�	����	 ������� ������	 ������ ������ ������� ������ ������ �������
�

�	����� ������� ������	 ������ ������ ������� ������ ������ �������
�

�	����� ������� ������	 �����������
	�� ������ ������ ������ ������ �������
�

�	����� ������� ������	 ������ ������ ������ ������ �������� �������
�

�	����� ������� ������	 ������ ������ ������ ������ ������ ������
�
�

�	����	 ������� ������
 �����
 ������ ������� ������ �����
 �������
�

�	����� ������� ������
 �����
 ������ ������� ������ �����
 �������
�

�	����� �����
 ������ ������ ������ ������ ������ ������ �����

�

�	����� �����	 ������� ������ ������ ������ �����
�����
	�� ������ ������
�

�	����� ������ ������ ������ ������ ������ ������ ������ ������
�

�	����� ������ ������ ������ ������ ������ ������ ������ ������

Figure 6: De novo identification of multiple Borrelia burgdorferi strains from PacBio

metagenomic data. A, The IGV snapshot of the contigs inferred by iGDA from the metagenomic

data. Each contig is grouped with its closest real contig (B. burgdorferi strain). B, MLST of B.

burgdorferi in the metagenomic data. The columns are the alleles of the 8 house-keeping genes used

in MLST. Each row is the alleles of the genome of each sample (strain). The row names are the SRA

IDs of each sample. An allele is detected if it matches a contig inferred by iGDA. There are two alleles

that have no 100% match in the MLST database, and their similarities to the closest alleles in the

database are shown in the brackets. All the other alleles have a 100% match in the database.
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SRR7968340 and SRR7968341 are highly similar to each other, and sample SRR7967869 is highly283

similar to sample SRR7968342. We constructed a new dataset where only one sample is retained out of284

the highly similar strains. Specifically, we excluded samples SRR7967879, SRR7967880, SRR7967872,285

SRR7968340 and SRR7968342 from the samples listed in Table S3, and reran iGDA on the new data.286

The result shows that the accuracy of each contig is not significantly changed by excluding highly287

similar strains (Figure S7B). However, the length of contigs and proportion of SNVs covered by contigs288

are substantially increased (Figure S7C and Figure S7D). The species other than Borrelia burgdorferi289

have limited impact on the results, because most of the reads from these species (Table S3) cannot be290

aligned to the reference genome of Borrelia burgdorferi, and 99.93% of the aligned reads are aligned to291

16S ribosomal RNA or 23S ribosomal RNA.292

Discussion293

We here present iGDA, a novel open-source tool implementing several innovative algorithms that can294

achieve a high accuracy for detecting and phasing minor SNVs. iGDA makes it feasible to study295

a number of previously challenging problems, such as constructing strain-level genome sequence in296

microbiome samples, and identifying genome sequence of pathogens in samples with co-infection. The297

RSM and ANN algorithms proposed in this work are generic methods and can be extended to apply298

to single-cell genome sequencing data or 10X genomics linked-read40 data. In addition to genome299

sequencing, these algorithms have the potential to be applied in RNA sequencing data as well. For300

example, with an alternative prepossessing procedure, these algorithms can be used to decipher the301

heterogeneity of A-to-I RNA editing using long-read sequencing.302

A major limitation of iGDA is that its high accuracy relies on the presence of multiple SNVs.303

Therefore, iGDA has reduced accuracy to detect orphan SNVs with very low frequency. Besides,304

presence of highly similar genomes will reduce accuracy of iGDA.305

DNA methylation can induce correlated substitution errors on ONT data and reduce the accuracy306

of iGDA. Masking DNA methylation can increase the accuracy of iGDA on ONT data. Using whole307

genome amplification (WGA) to remove DNA methylation is a solution to this issue. Another solution308

is to use a base caller that can correct methylation induced error, but there is no such tool currently309

available according to our best knowledge.310

In this work, we only detect minor SNVs because they are less affected by alignment ambiguity311

compared to insertions and deletions (Indel). Alignment ambiguity means an Indel might be located312
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to multiple loci in the genome but the corresponding alignment scores are equal. To extend our RSM313

and ANN algorithms to detect minor Indels or other more complicated variants, an alternative way to314

represent variants and alignments is needed.315

Methods316

Leveraging multiple loci to detect SNVs317

For the ith aligned read, we encode its substitution at locus k of the reference genome by the following318

formula:319

sik =



4k rik 6= tk, rik = A

4k + 1 rik 6= tk, rik = C

4k + 2 rik 6= tk, rik = G

4k + 3 rik 6= tk, rik = T

ε rik = tk

(1)

, where rik is the base (short for nitrogenous base) of the ith aligned read at locus k, tk is the base at320

locus k of the reference genome and ε is an empty element, which is formally defined by {ε} = ∅. The321

first locus of the reference genome is 0 throughout this paper unless otherwise stated. The ith read is322

represented as a set of substitutions and its covering range (Figure 2A), and is denoted by323

Ri =(Si, [bi, ei]) (2)

. bi and ei are the start and end loci of the region covered by the read respectively, and Si is324

Si ={sibi , sibi+1, ..., siei} (3)

. The most intuitive way to detect SNVs is to use the substitution rate of each locus. Formally, we325

denote the encoded substitution at locus k as a random variable Xk, and denote probability of the326

event {Xk = xk} as Pr(Xk = xk), where xk ∈ {4k, 4k+ 1, 4k+ 2, 4k+ 3}. Substitution rate is defined327

as the estimated Pr(Xk = xk), which is328

P̂ r(Xk = xk) =
|{i | xk ∈ Si}|
|{i | k ∈ [bi, ei]}|

(4)

, where {·} is a set and |·| is the number of elements in a set. Intuitively, in equation (4), the numerator329

is the number of reads with substitution xk at locus k, and the denominator is the number of reads330

covering locus k. Due to the high error rate of long-read sequencing data, it is inaccurate to detect minor331
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variants using substitution rate alone (Figure 1B). Herein, we leverage the information of multiple loci332

to increase the detection accuracy. Assuming sequencing errors are independent with each other, real333

SNVs are likely to be present if there are multiple reads containing the same set of substitutions (Figure334

1A). The conditional probability of {Xk = xk} given other real SNVs of the same genome is therefore335

much larger than the marginal probability of {Xk = xk} if xk is a real SNV, because these real SNVs336

are positively dependent (Figure 1A and Figure 1C). Formally, the conditional probability of event337

{Xk = xk} given p other substitutions is defined as Pr(Xk = xk|Xg1 = xg1 , Xg2 = xg2 , ..., Xgp = xgp),338

which is estimated by339

P̂ r(Xk = xk|Xg1 = xg1 , Xg2 = xg2 , ..., Xgp = xgp) =
|{i | {xk, xg1 , xg2 , ..., xgp} ⊆ Si}|

|{i | {xg1 , xg2 , ..., xgp} ⊆ Si, k ∈ [bi, ei]}|
(5)

. Intuitively, in equation (5), the numerator is the number of reads containing substitution xk and the p340

other substitutions, and the denominator is the number of reads that contain the p other substitutions341

and cover locus k. The p loci, g1, g2, ..., and gp are called dependent loci. As xg1 , xg2 , ..., xgp , and p342

in equation (5) are unknown, the estimated maximal conditional probability of event {Xk = xk} given343

p other substitutions is used to detect SNVs, and is formally defined by344

H(xk) = max
p,xg1 ,xg2 ,...,xgp

{P̂ r(Xk = xk|Xg1 = xg1 , Xg2 = xg2 , ..., Xgp = xgp)} (6)

. The substitution xk is detected as a real SNV if H(xk) is larger than a threshold (0.65 in this study).345

H(xk) is also called maximal conditional substitution rate. To avoid high variance of the estimated346

Pr(Xk = xk|Xg1 = xg1 , Xg2 = xg2 , ..., Xgp = xgp) (equation (5)), we require that |{i | {xg1 , xg2 , ..., xgp} ⊆347

Si, k ∈ [bi, ei]}| >= vmin, and vmin = 25 in this study. Sequencing errors at multiple loci that are very348

close to each other might induce slightly dependent substitutions. To avoid the impact of dependent349

substitutions induced by sequencing errors, we require that locus k and loci g1, g2, ...,gp are not too350

close. Specifically, we require HD(k, gs) ≥ 15 for any gs ∈ {g1, g2, ..., gp}. HD(k, gs) is the homopoly-351

mer distance between locus k and locus gs, and is defined as the number of homopolymers between the352

two loci. A homopolymer is a set of consecutive identical bases, and a base with no identical adjacent353

bases is also defined as a special homopolymer with size equal to 1.354

It is computationally infeasible to enumerate all combinations of p loci to estimateH(xk) in equation355

(6). It is important to note that it is insufficient to detect SNVs accurately by restricting the number356

of dependent loci p to a certain number. In the example shown in Figure S1, H(xk) fails to detect357

the real SNVs if p is restricted to 1. Likewise, we can also have similar examples if p is restricted to358
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another number greater than 1. In this work, we developed a novel algorithm called Random Subspace359

Maximization (RSM) that can estimate H(xk) efficiently without restricting p.360

Detecting SNVs by RSM algorithm361

The greedy algorithm and its theoretical accuracy362

We introduce a fast but inaccurate greedy algorithm to estimate H(xk) (equation (6)), and then363

improve its accuracy by Random Subspace Maximization (RSM) in the next section. To estimate364

H(xk) for substitution xk at locus k, we only need to consider dependent loci in range [k − tl, k + tr],365

where366

tl = max
t
{ |{i | [k − t, k] ⊆ [bi, ei]}| > 0 }

tr = max
t
{ |{i | [k, k + t] ⊆ [bi, ei]}| > 0 }

. [bi, ei] is the covering range of read Ri (equation (2)). We estimate Pr(Xk = xk|Xg = xg) by equation367

(5) for each locus g ∈ [k − tl, k + tr] ∩ {k}c ({·}c is complement of a set), and sort the loci according368

to Pr(Xk = xk|Xg = xg) in descending order. The sorted loci are denoted as {s1, s2, ..., stl+tr}, and369

Pr(Xk = xk|Xst−1 = xst−1) ≥ Pr(Xk = xk|Xst = xst). We keep adding locus st to {s1, s2, ..., st−1}370

if P̂ r(Xk = xk|Xs1 = xs1 , Xs2 = xs2 , ..., Xst = xst) > P̂r(Xk = xk|Xs1 = xs1 , Xs2 = xs2 , ..., Xst−1 =371

xst−1) and stop if otherwise. P̂ r(Xk = xk|Xs1 = xs1 , Xs2 = xs2 , ..., Xsv = xsv) based on the final v372

selected loci {s1, s2, ..., sv} is used to estimate H(xk).373

The naive greedy algorithm described above avoids combinatorial explosion but might have low374

accuracy. We assume xk, xg′1 , xg′2 , ..., xg′p are p + 1 real SNVs of the same genome, and xg′1 , xg′2 , ..., xg′p375

are the only p substitutions that can maximize P̂ r(Xk = xk|Xg1 = xg1 , Xg2 = xg2 , ..., Xgp = xgp).376

Formally, H(xk) = P̂ r(Xk = xk|Xg′1
= xg′1 , Xg′2

= xg′2 , ..., Xg′p = xg′p), and P̂ r(Xk = xk|Xg1 =377

xg1 , Xg2 = xg2 , ..., Xgp = xgp) < P̂r(Xk = xk|Xg′1
= xg′1 , Xg′2

= xg′2 , ..., Xg′p = xg′p) if {g1, g2, .., gp} 6=378

{g′1, g′2, .., g′p}. Assuming k, g′1,g′2, ...,g′p are the only loci with real SNVs in [k − tl, k + tr], we define379

signal-to-noise ratio by380

ρ0 = Pr( P̂ r(Xk = xk|Xgs = xgs) > max
xgt

{P̂ r(Xk = xk|Xgt = xgt)} )

, where xgs ∈ {xg′1 , xg′2 , .., xg′p} and gt /∈ {g′1, g′2, .., g′p}. gt /∈ {g′1, g′2, .., g′p} is equivalent to gt ∈381

[k − tl, k + tr] ∩ {k, g′1, g′2, .., g′p}c. For any locus gs ∈ {g′1, g′2, .., g′p}, the probability that it is selected382

by the greedy algorithm is denoted as Pr(gs ∈ {s1, s2, ..., sv}), where {s1, s2, ..., sv}) is the v loci383
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selected by the greedy algorithm. Without loss of generality, assuming v ≤ p and sequencing errors384

are independent,385

Pr(gs ∈ {s1, s2, ..., sv}) ≤ Pr(gs ∈ {s1, s2, ..., sp})

=
∏

gt /∈{g′1,g′2,..,g′p}

Pr( P̂ r(Xk = xk|Xgs = xgs) > max
xgt

{P̂ r(Xk = xk|Xgt = xgt)} )

= ρ
(tl+tr−p)
0

. The probability that the greedy algorithm correctly estimates H(xk) is386

Pr(H(xk) = P̂ r(Xk = xk|Xs1 = xs1 , Xs2 = xs2 , ..., Xsv = xsv)) =Pr({g′1, g′2, ..., g′p} ⊆ {s1, s2, ..., sv})

≤Pr(gs ∈ {s1, s2, ..., sv})

=ρ
(tl+tr−p)
0 (7)

. According to inequation (7), assuming tl ≥ 2000, tr ≥ 2000, and p = 1, which is a typical setting387

for long-read sequencing data, the probability that the greedy algorithm correctly estimates H(xk) is388

less than 3.5 × 10−18 even if ρ0 = 0.99. The key factor leading to the failure of the greedy algorithm389

is selecting from too many loci (tl + tr loci). We propose a novel algorithm called Random Subspace390

Maximization (RSM) to reduce the number of loci to be considered in the next section.391

Improving accuracy of the greedy algorithm by Random Subspace Maximization392

Firstly, we measure the similarity between two reads, Ri and Rj , by a modified Jaccard index34, which393

is defined by394

Jaccard(Ri, Rj) =
| Si ∩ Sj |

| (Si ∪ Sj) ∩ [4 max(bi, bj), 4 min(ei, ej) + 3] |
(8)

, where Jaccard(Ri, Rj) = 0 if the denominator is 0. We require395

| [max(bi, bj),min(ei, ej)] | ≥ lmin

where lmin is the minimal length of the overlap region between the two compared reads. We used396

lmin = 0.5(ei − bi) in this work. Intuitively, the Jaccard index between two reads is the ratio between397

number of common substitutions shared by the two reads and the total number of substitutions of the398

two reads in their overlapped region. Then, for a read Ri, we select w most similar reads according to399

Jaccard index. For each read Rj in these w selected reads, we generate a set of substitutions shared400
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by Ri and Rj . Formally,401

Cij = Si ∩ Sj

. Cij is called a subspace (Figure 2B), and we can generate w × m subspaces if there are m reads.402

We used w = 100 in this work. For a substitution Xk ∈ Cij , we estimate its maximal conditional403

probability of {Xk = xk} in subspace Cij , which is defined by404

HCij (xk) = max
{xg1 ,xg2 ,...,xgp}⊆Cij

{ P̂ r(Xk = xk|Xg1 = xg1 , Xg2 = xg2 , ..., Xgp = xgp) }

= max
xg1 ,xg2 ,...,xgp

{
| {t | {xk, xg1 , xg2 , ..., xgp} ⊆ (St ∩ Cij)} |

| {t | {xg1 , xg2 , ..., xgp} ⊆ (St ∩ Cij), k ∈ [bt, et]} |
} (9)

, using the greedy algorithm described in the previous section by only considering the substitutions405

in Cij . Thus, compared to the original greedy algorithm, the number of loci to be considered is406

substantially reduced. We then use407

Ĥ(xk) = max
Cij

(ĤCij (xk)) (10)

to estimate the maximal conditional probability of {Xk = xk} defined by equation (6). ĤCij (xk) is the408

maximal conditional probability of {Xk = xk} in subspace Cij estimated by the greedy algorithm. The409

whole procedure of estimating H(xk) in the w×m subspaces is called Random Subspace Maximization410

(RSM) (Figure 2C).411

Theoretical accuracy of RSM algorithm412

Without loss of generality, we denote {x′g1 , x
′
g2 , ..., x

′
gp} as the only set of substitutions that maxi-413

mizes P̂ r(Xk = xk|Xg1 = xg1 , Xg2 = xg2 , ..., Xgp = xgp), and Ω as the set of subspaces contain-414

ing {xk, x′g1 , x
′
g2 , ..., x

′
gp}. For a subspace Ct ∈ Ω, the probability that the greedy algorithm finds415

{x′g1 , x
′
g2 , ..., x

′
gp} is denoted as Pr(ĤCt(xk) = H(xk)), where Hk is defined by equation (6). The416

probability that RSM algorithm finds {x′g1 , x
′
g2 , ..., x

′
gp} is417

Pr(Ĥ(xk) = H(xk)) = Pr( ∪Ct∈Ω{ĤCt(xk) = H(xk)} )

= 1− Pr( ∩Ct∈Ω{ĤCt(xk) 6= H(xk)} ) (11)

. Assuming Pr(ĤCt(xk) = H(xk)) > 0, and according to chain rule of joint probability,418

Pr( ∩Ct∈Ω{ĤCt(xk) 6= H(xk)} )

=Pr(ĤC1(xk) 6= H(xk))

|Ω|∏
t=2

Pr(ĤCt(xk) 6= H(xk)|ĤCt−1(xk) 6= H(xk), ..., ĤC1(xk) 6= H(xk))

21

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 27, 2020. ; https://doi.org/10.1101/2020.09.25.314252doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.25.314252


, where Pr(ĤCt(xk) 6= H(xk)|ĤCt−1(xk) 6= H(xk), ..., ĤC1(xk) 6= H(xk)) < 1 if Ct 6∈ {Ct−1, Ct−2, ..., C1}.419

As sequencing depth increases, |Ω| increases, and Pr( ∩Ct∈Ω{ĤCt(xk) 6= H(xk)} ) converges to 0. Thus,420

Pr(Ĥ(xk) = H(xk)) (equation (11) ) converges to 1 as sequencing depth increases. Intuitively, with421

infinite sequencing depth, RSM algorithm is guaranteed to detect real SNVs correctly if these SNVs422

have larger maximal conditional probabilities than sequencing errors.423

Detecting orphan SNVs by correcting sequence context effect424

As RSM algorithm requires multiple real SNVs, it can not detect orphan SNVs. An orphan SNV is425

the only SNV of the genome. We have to rely on the single-locus algorithm described in equation (4)426

to detect orphan SNVs. However, the substitution rate of a locus is not only affected by real SNVs427

but also affected by the sequence context of the locus. We built a gradient boosting31 model to learn428

the sequence context effect and corrected it by the following likelihood ratio method (Figure 2D). For429

a substitution xk at locus k, its likelihood ratio is430

LR(xk) =
Binomial(tk;nk, p1)

Binomial(tk;nk, p0)
(12)

, where Binomial(x;n, p) is the probability mass function of binomial distribution with parameters n431

and p, and432

tk = |{i | xk ∈ Si}|

nk = |{i | k ∈ [bi, ei]}|

p1 =
tk
nk

p0 = Predicted sequencing error rate by sequence context

. The substitution xk is detected as a SNV if LR(xk) is larger than a threshold. We used a threshold433

of 50 in this work. Calculation of p0 is introduced in the next section. To reduce false discovery rate,434

we also required a detected SNV has a substitution rate higher than 0.1 for PacBio data and 0.2 for435

ONT data respectively.436

Modeling sequence context effect on sequencing error rate437

Error rate of long-read sequencing is strongly affected by sequence context (Figure 3). For locus i,438

we define its one upstream homopolymer and one downstream homopolymer as its sequence context439
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(Figure S8). We adopted the gradient boosting model implemented by xgboost (version 0.90)31 to440

predict substitution rate of each locus by its sequence context. For PacBio, we trained the model441

on a dataset consisting of 79 PacBio RS II runs with P6-C4 chemistry and a dataset consisting of442

24 PacBio RS II runs with P4-C2 chemistry respectively (SRA IDs of the data are listed in Table443

S4). As the sequence context effects on these two datasets are highly similar, we only used the model444

trained on the P6-C4 data for the analysis. For ONT, we trained the model on a dataset consisting445

of 8 MinION runs with R9.4 chemistry (SRA IDs of the data are listed in Table S4). We tuned three446

parameters in gradient boosting, step size (eta in xgboost), number of trees (num_round in xgboost)447

and maximal depth of trees (max_depth in xgboost) and used the parameters with the highest five-fold448

cross-validation accuracy (Table S5). We used R2 as the measurement of accuracy, which is defined by449

R2 =

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

where yi is the substitution rate of a sequence context, ŷi is the predicted substitution rate, ȳ is the450

average substitution rate, and n is the number of unique sequence contexts. For PacBio, step size,451

number of trees and maximal depth of trees with the highest accuracy are 0.01, 2000 and 10 respectively.452

For ONT, step size, number of trees and maximal depth of trees with the highest accuracy are 0.1,453

2000 and 10 respectively.454

We also masked bases with QV thresholds 8, 10 and 12, and trained three different models on the455

masked data. Each model is used in the detection algorithm which masks bases with the same QV456

threshold. In the case of not masking any base, we predicted substitution rate using the trained model457

on the three pooled sequencing datasets (Figure 3). The results show that substitution-error rate is458

strongly affected by sequence context and can be well predicted by our model.459

Phasing minor SNVs460

To detect whether multiple minor SNVs are from the same DNA molecule, we proposed a novel al-461

gorithm called Adaptive Nearest-Neighbors clustering (ANN). As the reads inevitably have errors, an462

intuitive way to phase minor SNVs is to cluster the reads and use the consensus sequences of each clus-463

ter to phase the minor SNVs. However, an intrinsic difficulty of clustering algorithms is to determine464

the number of clusters, which is unknown. The ANN algorithm can directly estimate the number of465

clusters from data.466
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Adaptive-Nearest-Neighbors clustering467

Firstly, to reduce noise level, we only retain detected SNVs for each read. Formally, for read Ri468

(equation (2)), we use469

S̃i = Si ∩ {Detected SNVs} (13)

, where Si is defined in equation (3).470

The intuitive idea of ANN algorithm is that all loci should be homogeneous by piling up the reads471

in each cluster (Figure S9). A locus is homogeneous if it satisfies the following condition. For locus k,472

its substitution rate satisfies473

P̂ r(Xk = xk) =
|{i | xk ∈ S̃i}|∑3

d=0 |{i | 4k + d ∈ S̃i}|
∈ [0, plim] ∪ [plim, 1] (14)

, where xk ∈ {4k, 4k + 1, 4k + 2, 4k + 3}. In this work, We set plim = 0.2 for the PacBio data and474

plim = 0.3 for the ONT data. For a read i (called seed read), we sorted its q most similar reads475

according to Jaccard index (equation (8)), and kept discarding the most dissimilar one until all loci476

covered by the seed read are homogeneous or maximal coverage of the loci is smaller than a threshold477

(10 in this work) (Figure 2F). We recorded the consensus sequence as a draft contig if all the loci are478

homogeneous (Figure S9). We calculated the Jaccard index of each read with all the draft contigs,479

and assigned the read to the contig with the largest Jaccard index. A read is assigned to the reference480

genome if its largest Jaccard index is smaller than 0.5. The abundance of a contig is defined as the481

number of reads assigned to it.482

A problem of the algorithm described above is that the alignment is affected by reference bias483

and homogeneous loci could be mistaken for heterogeneous loci. Reference bias is the phenomenon484

that the substitution rate of a real SNV at a homogeneous locus is significantly lower than 1 −485

substitution error rate (Figure S10A).486

Reference bias and local realignment487

For each detected SNV, we adopted standard Smith-Waterman algorithm implemented by SeqAn (ver-488

sion 2.4) (https://www.seqan.de) to realign reads to four modified reference sequences with A,C,G,489

or T at each locus with a detected SNV. The scores of match, mismatch, gap open, and gap extension490

are 2, -4, -4, and -2 respectively, and the score of a base aligned to base N or a masked low-QV base is 0.491

To avoid high computational cost, we only realigned 21 homopolymers whose center is the locus with492
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detected SNV. For each read, the modified base in the reference sequence with the highest alignment493

score is recorded as a substitution of the read (Figure 2E and Figure S11). We tested the realignment494

method on a single Escherichia coli dataset (SRA ID is ERS718594), which is presumably homoge-495

neous. The result shows that local realignment can substantially reduce reference bias (Figure S10B).496

The average substitution rate of loci with real SNVs is 84.8% before realignment, and the average497

substitution rate of loci with real SNV is 95.9% after realignment. We performed local realignment498

before ANN algorithm in our analysis.499

Filtering draft contigs500

To reduce false positive rate of the inferred draft contigs by ANN algorithm, we adopted a two-step501

algorithm to filter the draft contigs (Figure 2G). In the first step, we tested whether the frequency of502

each individual SNV in each contig is significantly higher than the sequencing error rate and whether503

SNVs in each contig are independent using Bayes factor. The contig is filtered if the frequency of504

any of its SNVs is not significant and its SNVs are independent (Figure S12A). In the second step,505

we compared the contigs pairwise, and the contig with lower abundance in each pair is filtered if the506

contigs are not significantly different according to Bayes factor (Figure S12B).507

Assembling draft contigs508

The length of the draft contigs obtained by ANN algorithm is usually smaller than genome size, except509

in a few cases like a virus genome. Therefore, we have to assemble the draft contigs to obtain the510

whole picture of the underlined genomes in the sequenced sample. We borrowed the idea of overlap511

graph32 from de novo genome assembly to assemble the draft contigs. We denoted each draft contig512

as a vertex in a graph and compared the contigs pairwise. For a draft contig i, we linked it to another513

draft contig j by adding a edge from vertex i to vertex j if all the three criteria are met: 1) the two514

draft contigs are identical in their overlapped region; 2) the number of overlapped SNVs is more than515

50% of the number of SNVs in contig i or that in contig j, or the length of overlapped region is more516

than 50% of the length of contig i or that of contig j; 3) the genome coordinate of the end locus of517

contig i is smaller than that of contig j. We then removed redundant edges by transitive reduction41518

(Figure S13A and Figure S13B). A contig is constructed by concatenating draft contigs which are in519

an unambiguous path. A path is an unambiguous path if the three criteria are met: 1) in-degree of520

the start vertex is not 1; 2) out-degree of the end vertex is not 1 or a daughter vertex of the end vertex521
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has more than one parental vertices; 3) in-degrees and out-degrees of the vertices other than the start522

vertex and the end vertex are 1 (Figure 2H and Figure S13C). We then filtered the contigs using the523

two-step filter introduced in the previous section. We calculated the Jaccard index of each read to all524

the contigs, and assigned the read to the contig with the largest Jaccard index. A read is assigned to525

the reference genome if its largest Jaccard index is smaller than 0.5.526

Detecting bacterial methylation motifs from ONT data without raw signal527

As the raw-signal files of ONT data are usually huge and not publicly available, we developed an528

algorithm to detect DNA methylation motifs without raw signal. For each individual ONT data file529

before pooling, we extracted the flanking sequences (40 bp long) of loci whose substitution rates are530

greater than 0.15, and detected motifs in the flanking sequences using the motif caller developed531

by PacBio (https://github.com/PacificBiosciences/MotifMaker)42. We only retained the motifs532

that matches the known bacterial methylation motifs in REBASE (http://rebase.neb.com/rebase/533

rebase_methylase_recseqs.txt)43. Thus, our methylation-motif detection algorithm is conservative534

and only detects known motifs. We only discovered two known motifs, CCWGG and CGCATC, on535

the ONT data. W represents A or T.536

Borrelia MLST537

We downloaded the allele sequences of the eight house-keeping genes from https://pubmlst.org/538

bigsdb?db=pubmlst_borrelia_seqdef&page=downloadAlleles, and aligned them to the iGDA-inferred539

contigs and the genome sequence of each Borrelia burgdorferi strain using MUMmer (version 3)36. If540

a contig or genome sequence has no 100% match in the allele database, we reported the allele with the541

highest percent identity in the MUMmer output.542

Evaluating the minimal divergence that two conspecific strains can be ditinguished543

We only retained the iGDA-reported contigs that is 100% identical to a true genome sequence and544

only has an unique closest true genome sequence. These retained contigs can be used to distinguish545

conspecific strains. We calculated the divergence between two contigs by546

Divergence(contig 1, contig 2) =
number of different SNVs
length of overlapped region
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Parameter setting in the third-party tools547

flye548

In the PacBio metagenomic data, we used "flye -t 16 –pacbio-raw -g 2m".549

MUMmer550

We used "nucmer -c 150 -g 500 -l 12 –maxmatch" for alignment, and "show-snps -l -T -H" to obtain551

SNVs. To avoid the impact of repeats we used "mummerplot −−filter" before "show-snps -l -T -H"552

for the metagenomic data.553

Software access554

iGDA is available at Anaconda Cloud https://anaconda.org/zhixingfeng/igda. Install Conda555

(https://docs.conda.io/projects/conda/en/latest/user-guide/install/) and type "conda in-556

stall -c zhixingfeng igda" to install iGDA and its dependencies. After installation, type "igda" for557

usage.558
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