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Abstract

We propose a theoretical framework for assessing whether a forecast model estimated over

one period can provide good forecasts over a subsequent period. We formalize this idea by

defining a forecast breakdown as a situation in which the out-of-sample performance of the

model, judged by some loss function, is significantly worse than its in-sample performance.

Our framework, which is valid under general conditions, can be used not only to detect past

forecast breakdowns but also to predict future ones. We show that main causes of forecast

breakdowns are instabilities in the data generating process and relate the properties of our

forecast breakdown test to those of existing structural break tests. The main differences are

that our test is robust to the presence of unstable regressors and that it has greater power than

previous tests to capture systematic forecast errors caused by recurring breaks that are ignored

by the forecast model. We find evidence of a forecast breakdown in the Phillips’ curve forecasts

of U.S. inflation over the past three decades, and link it to inflation volatility and to changes in

the monetary policy reaction function of the Fed.
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1 Introduction

This paper proposes a new method for evaluating a forecasting model for a macroeconomic or

financial variable. There is a large literature claiming that certain models are good at predicting

macroeconomic variables such as output growth and inflation (Stock and Watson, 2003b) and that

a range of variables have predictive power for stock market returns (e.g., the references in Goyal and

Welch, 2004 and Campbell and Thompson, 2005). These claims are based either on some measure

of a model’s in-sample fit (most of the literature on stock return predictability), or on the model’s

out-of-sample performance (Stock and Watson, 2003b). The robustness of these results has been

however recently challenged. On the one hand, Goyal and Welch (2004) showed that for models of

stock returns good in-sample fit does not necessarily imply good out-of-sample performance. On the

other hand, even models that fare well out-of-sample may not do so when different subsamples of a

time series are considered (Stock and Watson, 2003a). Underlying these findings is the possibility

that the economy - and the forecasting ability of models - may not be stable over time, as has been

forcefully argued by Clements and Hendry (1998, 1999).

From the perspective of the forecaster, it is thus important to know whether a model estimated

over one period can provide good forecasts over a subsequent period. The goal of this paper

is to provide a formal testing framework for answering this question. Note that our question is

different from asking whether the model is a good approximation of the underlying data-generating

process, or whether the forecasts satisfy some optimality properties. Rather, our concern here is

with whether a model’s future performance is consistent with what’s expected based on its past

performance, which fundamentally hinges on the success of the model at adapting to changes in

the economy. This in turn reflects a desire to mimic as closely as possible the environment faced by

actual forecasters, where models are likely misspecified, variables are inherently difficult to forecast,

and data-generating processes may be unstable, so that consistency with expected performance can

be viewed as a minimal requirement that a forecasting model should satisfy.

Formally, we define a forecast breakdown as a situation in which the out-of-sample performance

of a forecast model, judged by some loss function, is significantly worse than its in-sample per-

formance. We propose a forecast breakdown test for detecting whether a forecast model broke

down in the past and further suggest relating the differences between the model’s out-of-sample

and in-sample performance to economic factors, with the ultimate goal of trying to predict future

forecast breakdowns.

Our notion of forecast breakdown is a formalization and generalization of what Clements and

Hendry (1998, 1999) called a “forecast failure”, described as a “deterioration in forecast performance

relative to the anticipated outcome” (Clements and Hendry, 1999, p. 1). We formalize the definition

of a forecast breakdown by comparing the model’s out-of-sample performance to its in-sample
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performance computed in one of three ways: (1) over a fixed initial sample (“fixed” scheme); (2)

over a rolling window that includes only most recent observations (“rolling scheme”); and (3) over

an expanding window that includes all observations from the beginning of the sample (“recursive

scheme”). The fixed scheme presumes an interest in comparing performance before and after a

specific date, whereas the rolling and recursive schemes can be viewed as two different methods for

adaptive forecasting.

We illustrate how to construct an appropriate estimator for the asymptotic variance to be used

in the forecast breakdown test, that depends on the forecasting scheme and that explicitly takes

into account the effect of estimation uncertainty in the model’s parameters. Our test is valid under

general assumptions. In particular, we allow the data to be heterogeneous (e.g., the variables in

the model can have time-varying marginal distributions) and impose only weak restrictions on the

loss function used for evaluation and on the type of estimators used in constructing the forecasts.

We show, however, that in the common case in which the same loss function is used for estimation

and evaluation (e.g., OLS and quadratic loss), estimation uncertainty is asymptotically irrelevant

and the asymptotic variance is simpler to compute.

A further contribution aims at understanding the causes of forecast breakdowns. We show

that forecast breakdowns are caused by instability in the model’s parameters as well as by other

instabilities in the data-generating process that result in a non-constant expected loss (e.g., for

a quadratic loss, changes in the variance of the disturbances). We also investigate the role of

overfitting - which we define as the difference between in-sample and out-of-sample performance

present in finite samples when parameter estimates are chosen to minimize the average in-sample

loss - and propose a simple correction to the test statistic that eliminates its effects.

The two closest literatures to the present paper are the literature on forecast optimality testing

(e.g., Mincer and Zarnowitz, 1969, Patton and Timmermann, 2003, Elliott, Komunjer and Tim-

mermann, 2005) and the literature on structural break testing (e.g., Brown, Durbin and Evans,

1975; Andrews, 1993; Andrews and Ploberger, 1994; Dufour, Ghysels and Hall, 1994; Chu, Hornik

and Kuan, 1995a, 1995b; Bai and Perron, 1998; Bai, 1999; Hansen, 2000; Elliott and Muller, 2003;

Rossi, 2005). Regarding the former, even though our objective is different (testing consistency

with expectations rather than optimality), we point out that the same theory derived here could in

principle be applied to forecast optimality testing. For example, a forecast unbiasedness test could

be viewed as a forecast breakdown test that considers the first moment properties of the forecast

errors. Regarding the latter, although our focus is again different from that of structural break

tests (stability of forecast performance vs. stability of model’s parameters), the two are related

since instability in model’s parameters is a cause of forecast breakdowns. In the paper, we shed

some light on the properties of our forecast breakdown test relative to those of structural break

tests both analytically and in Monte Carlo simulations. Our main findings can be summarized as
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follows: (1) the forecast breakdown test is robust to the presence of unstable regressors, whereas

structural break tests cannot distinguish between instability in model’s parameters and instability

in the distribution of the regressors (see also Hansen, 2000); (2) the magnitude of the parameter

instabilities that cause forecast breakdowns depend on whether the loss functions used for estima-

tion and evaluation are equal or different. When the losses are equal, only parameter instabilities

of greater magnitude than those considered by the structural break testing literature cause a fore-

cast breakdown; (3) structural break tests have greater power when instabilities are permanent,

whereas the forecast breakdown test can have greater power when there are recurring instabilities

that are not captured by the forecast model (see also Carrasco, 2002). A further difference with

structural break tests is that they only focus on past breaks and provide no information on the

likelihood of future breaks (an exception is Pesaran, Pettenuzzo and Timmermann, 2004). Instead,

an innovation of our approach with useful practical implications is the possibility of predicting the

likelihood that a forecast model will break down at a future date.

To illustrate the methods proposed in this paper, we investigate whether there is evidence of

a forecast breakdown in the Phillips curve model of inflation in the United States. Using both

real-time and revised data, we find striking empirical evidence in favor of a forecast breakdown in

the Phillips curve. We further investigate whether monetary policy parameters would have been

useful predictors of forecast breakdowns and find that inflation volatility as well as changes in the

monetary policy behavior of the Fed played a key role.

2 Theory

2.1 Description of the environment

Let W ≡ {Wt : Ω −→ Rs+1, s ∈ N, t = 1, . . . , T} be a stochastic process defined on a complete
probability space (Ω,F , P ) and partition the observed vector Wt as Wt ≡ (Yt,X 0

t)
0, where Yt : Ω→

R is the variable of interest and Xt : Ω→ Rs is a vector of predictors.

We generate a sequence of τ−step-ahead forecasts of Yt+τ using an out-of-sample procedure,
which involves dividing the sample of size T into an in-sample window of sizem and an out-of-sample

window of size n = T −m− τ + 1. Which data constitute the in-sample window depends on the

forecasting scheme. We allow for three forecasting schemes: (1) a fixed forecasting scheme, where

the in-sample window includes observations indexed 1, . . . ,m; (2) a rolling forecasting scheme,

where the in-sample window at time t contains observations indexed t −m + 1, . . . , t, so that as

t increases older observations are discarded; and (3) a recursive forecasting scheme, where the in-

sample window includes observations indexed 1, . . . , t, so that all observations from the beginning

of the sample are used.

We let ft(bβt) be the time-t forecast produced by estimating a model over the in-sample window
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at time t, with bβt indicating the k × 1 parameter estimate. We assume that multi-step forecasts
are produced by the “direct method” (that is, the model specifies the relationship between Yt and

Xt−τ ). Each time−t forecast corresponds to a sequence of in-sample fitted values ŷj(bβt), with j

varying over the in-sample window.

The forecasts are evaluated by a loss L (·), with each out-of-sample loss Lt+τ (bβt) ≡ L(Yt+τ , ft(bβt))
corresponding to in-sample losses Lj(bβt) ≡ L(Yj , ŷj(bβt)). For example, for the linear model Yt =
X 0
t−τβ + εt estimated by OLS, the parameter estimate is bβt = ¡Pm−τ

s=1 XsX
0
s

¢−1Pm−τ
s=1 XsYs+τ

for the fixed scheme; bβt = ¡Pt−τ
s=t−m+1XsX

0
s

¢−1Pt−τ
s=t−m+1XsYs+τ for the rolling scheme andbβt = ¡Pt−τ

s=1XsX
0
s

¢−1Pt−τ
s=1XsYs+τ for the recursive scheme. The out-of-sample loss corresponding

to the forecast at time t is Lt+τ (bβt) ≡ L(Yt+τ ,X
0
t
bβt) and the corresponding in-sample losses are

Lj(bβt) ≡ L(Yj+τ ,X
0
j
bβt), where j = 1, . . . ,m− τ for the fixed scheme; j = t−m+ 1, . . . , t− τ for

the rolling scheme and j = 1, . . . , t− τ for the recursive scheme.

2.2 Assumptions

1. {Wt} is mixing with α of size −r/(r−2), r > 2; 2. (a) Lt(β) is measurable and twice continuously

differentiable with respect to β; (b) Under H0 in (3) below, in a neighborhood N of β∗, there exists

a constant D < ∞ such that for all t, supβ∈N
¯̄
∂2Lt(β)/∂β∂β

0¯̄ < mt, for a measurable mt such

that E (mt) < D. 3. Under H0, bβt− β∗ = B∗tH
∗
t + op(1), where bβt is k× 1, B∗t is a (nonstochastic)

k × q matrix of rank k, such that supt≥1B∗t < ∞; H∗
t = m−1

Pm
s=1 hs(β

∗) (fixed scheme), H∗
t =

m−1
Pt

s=t−m+1 hs(β
∗) (rolling scheme), H∗

t = t−1
Pt

s=1 hs(β
∗) (recursive scheme) for a q×1 orthog-

onality condition hs(β
∗) such that E (hs(β∗)) = 0; 4. supt≥1E||[Lt(β

∗), ∂Lt(β
∗)/∂β, h0t(β

∗)]0||2r <
∞, where ∂Lt(β

∗)/∂β is 1×k; 5. T−1
PT

t=1E (∂Lt(β
∗)/∂β) <∞ for all T ; 6. var

³
T−1/2

PT
t=1 Lt(β

∗)
´
>

0 for all T sufficiently large; 7. m,n→∞, n
m → π, 0 < π <∞.

Comments: 1. Assumption 1 restricts the memory in the data (ruling out, e.g., unit root

processes) but allows the data to be heterogeneous, for example permitting the marginal distribution

of the regressors to change over time. This is a more general assumption than the assumption of

stationarity made in the majority of the structural break testing literature.

2. Assumption 2 is the same as Assumption 1 of West (1996), allowing for a number of loss

functions typically used in the forecast evaluation literature. The assumption of differentiability is

adopted for convenience and can be relaxed along the lines of McCracken (2000).

3. Assumption 3 is related to Assumption 2 of West (1996), permitting a number of estimating

procedures for the model’s parameters, including OLS, (quasi-) maximum likelihood and GMM. For

example, for OLS estimation of the parameters in the linear model Ys = X 0
sβ
∗+εs, s = 1, . . . , t, we

have B∗t =
³
E
³
t−1

Pt
s=1XsX

0
s

´´−1
and hs(β∗) = Xsεs. For maximum likelihood estimation, B∗t is

the expectation of the inverse of the Hessian evaluated at β∗ and H∗
t is the score. The assumption

also states that under the null hypothesis of no forecast breakdown the pseudo-true values of the
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parameters are constant (note that we do not assume correct specification of the model under the

null hypothesis).

4. Assumption 5 is a regularity condition restricting the heterogeneity of the means of the loss

derivatives. The condition is trivially satisfied when the loss used for estimation is the same as the

loss used for evaluation, in which case E (∂Lt(β
∗)/∂β) = 0 for all t.

5. Assumption 7 shows that our asymptotics assume that the in-sample and out-of-sample sizes

go to infinity at the same rate. This assumption is necessary in order to obtain a non-degenerate

asymptotic distribution.

2.3 Forecast breakdown test

As motivated in the introduction, we define a forecast breakdown as a deterioration in the out-of-

sample performance of the forecast model relative to its in-sample performance. We formalize this

idea by defining a “surprise loss” at time t+ τ as the difference between the out-of-sample loss at

time t+ τ and the average in-sample loss:

SLt+τ (bβt) = Lt+τ (bβt)− L̄t(bβt) for t = m, . . . , T − τ , (1)

where L̄t(bβt) is the average in-sample loss computed over the in-sample window implied by the

forecasting scheme. We then consider the out-of-sample mean of the surprise losses

SLm,n ≡ n−1
T−τX
t=m

SLt+τ (bβt), (2)

and propose a test based on the idea that, if a forecast is reliable, this mean should be close to

zero. Specifically, we test

H0 : E

Ã
n−1

T−τX
t=m

SLt+τ (β
∗)

!
= 0 for all m,n. (3)

The forecast breakdown test statistic is

tm,n,τ =
√
nSLm,n/σ̂m,n, (4)

where the expression for the asymptotic variance estimator σ̂2m,n is given in Section 2.4.

A level α test rejects the null hypothesis whenever tm,n,τ > zα, where zα is the (1 − α) − th

quantile of a standard normal distribution. In the remainder of the paper, we focus on a one-sided

test to reflect the assumption that a lower-than-expected loss may be desirable and thus does not

constitute a forecast breakdown. In certain applications, however, it might be of interest to consider

deviations of the out-of-sample loss from its expected value in either direction, in which case a two-

sided test is appropriate. For example, for an investor forming a portfolio based on forecasts of
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stock returns, the precision of the forecast is a key determinant of how much risk exposure to

accept. Hence, if the out-of-sample forecast error variance is smaller than anticipated, this results

in an opportunity cost: had the forecaster known about the lower forecast error variance, he would

in all likelihood have chosen a different portfolio allocation.1 The asymptotic justification for the

forecast breakdown test is provided by Theorem 2 in Section 2.4.

To see how the forecast breakdown test relates to existing tests for structural change, first note

that H0 can be interpreted as saying that the expected loss, calculated at the stable pseudo-true

parameters, is stable over time. That is, we can rewrite H0 as

H0 : E [Lt (β
∗)] = constant for all t, (5)

and thus one could in principle use existing structural break tests to test (5). In particular, for loss

functions that only depend on the forecast errors, H0 postulates stability of specific aspects of the

distribution of the model’s residuals (e.g., their second moment for a quadratic loss), which relates

the forecast breakdown test to residual-based approaches to structural break testing, such as the

CUSUM approach (Brown et al., 1975) (related to the forecast breakdown test with a recursive

scheme) or the MOSUM approach (Chu et al., 1995b) (related to the forecast breakdown test with a

rolling scheme). The main differences are that we allow for general transformations of the residuals

(through Lt (·)) and compare their in-sample and out-of-sample average properties, rather than
comparing the fluctuations of the empirical process based on the cumulative (or moving) sum of

residuals to the fluctuations of the corresponding limiting process.

Regarding the relationship with structural break tests based on the approach of Chow’s (1960),

Andrews (1993) and Andrews and Ploberger (1994), note that our fixed test could be related to

a Chow’s type of test, whereas our recursive test could be related to an Andrews’ (1993) type of

test. Let us focus on the relationship between the fixed forecast breakdown test and a Chow’s

type of test, which suffices for illustrating the main similarities and differences. Both approaches

involve splitting the available sample in two subsamples and comparing the properties of regression

residuals and/or forecast errors in the two samples. The essential difference is that the forecast

breakdown test compares regression residuals from the first subsample to forecast errors from the

second subsample, which are functions of the same parameter estimate based on the first subsample.

Chow’s (1960) test, instead, compares regression residuals from the first subsample to regression

residuals from either the second subsample (Chow’s test) or from the full sample (Chow’s predictive

test), obtained by re-estimating the model on the corresponding sample. Since it compares residuals

that are functions of different parameter estimates, Chow’s test (and as a consequence Andrew’s

(1993) test) will capture not only changes in the model’s parameters, but also changes in the

marginal distribution of the regressors. This is a drawback of most existing structural break tests,

1We thank Allan Timmermann for point out the desirability of two-sided tests in such applications.
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as pointed out by Hansen (2000). The forecast breakdown test, instead, does not suffer from this

problem, because it does not involve re-estimating the parameters over different subsamples. This

in turn allows us to relax the assumption of stationary regressors that the structural break testing

literature is forced to make in order to distinguish changes in model’s parameters from changes in

the marginal distribution of the regressors.

2.4 Asymptotic variance estimators

This section shows how to construct a valid asymptotic variance estimator for the forecast break-

down test statistic (4) and provides the asymptotic justification for the forecast breakdown test.

We provide three estimators: an estimator that is valid under general assumptions (Theorem

2) and two estimators that are easier to compute under more restrictive conditions (Corollaries 3

and 4).

The following algorithm shows the steps involved in constructing the general asymptotic vari-

ance estimator. The basic intuition is to acknowledge that the average surprise loss (2) is a weighted

average of in-sample and out-of-sample losses, with weights depending on m, n and on the forecast-

ing scheme. When estimation uncertainty is asymptotically irrelevant, σ̂2m,n is simply a (rescaled)

heteroskedasticity- and autocorrelation-robust (HAC) estimator of the variance of the weighted

average of the full-sample losses. When estimation uncertainty matters, σ̂2m,n contains additional

terms that depend on the estimator used.

Algorithm 1 (General variance estimator) Construct the following: (1) the 1 × T vector of

in-sample and out-of-sample losses, with element Lt :

L ≡ [L1(bβm), . . . , Lm(bβm)| {z }
m

, Lm+1(bβm+1), . . . , Lm+τ−1(bβm+τ−1)| {z }
τ−1

, Lm+τ (bβm), . . . , LT (bβT−τ )| {z }
n

]

and the corresponding vector eL of demeaned losses, where eLt ≡ Lt − T−1
PT

j=1 Lj ;
2 (2) the q × T

matrix of orthogonality conditions, with element ht :

h ≡ [h1(bβm), . . . , hm(bβm)| {z }
m

, hm+1(bβm+1), . . . , hT−τ (bβT−τ )| {z }
n−1

, 0, . . . , 0| {z }
τ

].3

2The first m terms of L are in-sample losses from the first estimation window and the last n terms are out-of-

sample losses. For the fixed scheme L ≡ [L1(βm), ..., Lm(βm)

m

, 0, ..., 0

τ−1

, Lm+τ (βm), ..., LT (βm)

n

];. For the rolling and

recursive schemes, each of the middle τ − 1 terms is an in-sample loss from the estimation sample ending at the

corresponding date.
3The first m terms of h are orthogonality conditions from the first estimation window. For the fixed scheme

h = [h1(βm), ..., hm(βm)

m

, 0, ..., 0

T−m

]. For the rolling and recursive schemes, each of the middle n − 1 terms is the

orthogonality condition from the estimation sample ending at the corresponding date.
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Let Dt+τ ≡ ∂Lt+τ (bβt)/∂β−∂L̄t(bβt)/∂β, t = m, . . . , T −τ indicate the sequence of 1×k derivatives

of the surprise losses, and let Bt be a consistent estimate of B∗t from assumption (iii) that substitutesbβt for β∗.4 Construct the following weights, depending on the forecasting scheme:
Fixed : wL

1×T
= [− n

m
, . . . ,− n

m| {z }
m

, 0, . . . , 0| {z }
τ−1

, 1, 1, . . . , 1| {z }
n

]; wh

1×qT
= [

Bm
PT−τ

t=mDt+τ

m
, . . . ,

Bm
PT−τ

t=mDt+τ

m| {z }
m

, 0, . . . , 0| {z }
T−m

].

Rolling (n < m): wL

1×T
= [− 1

m
, . . . ,− n

m| {z }
n

,− n

m
, ..,− n

m| {z }
m−n

,−n− 1
m

, . . . ,−n− τ + 1

m| {z }
τ−1

, 1− n− τ

m
, . . . , 1− 1

m| {z }
n−τ

,

1, . . . , 1| {z }
τ

];

wh

1×qT
= [

Dm+τBm

m
, . . . ,

PT−τ
t=mDt+τBt

m| {z }
n

,

PT−τ
t=mDt+τBt

m
, . . . ,

PT−τ
t=mDt+τBt

m| {z }
m−n

,

PT−τ
t=m+1Dt+τBt

m
, . . . ,

DTBT−τ
m| {z }

n−1

, 0, . . . , 0| {z }
τ

].

Rolling (n ≥ m) : wL

1×T
= [− 1

m
, . . . ,−m

m| {z }
m

,−m
m
, . . . ,−m

m| {z }
τ−1

, 0, . . . , 0| {z }
n−m−τ+1

, 1− m− 1
m

, . . . , 1− 1

m| {z }
m−1

, 1, . . . , 1| {z }
τ

];

wh

1×qT
= [

Dm+τBm

m
, . . . ,

P2m−1
t=m Dt+τBt

m| {z }
m

,

P2m
t=m+1Dt+τBt

m
, . . . ,

PT−τ
t=n Dt+τBt

m| {z }
n−m

,

PT−τ
t=n+1Dt+τBt

m
, . . . ,

DTBT−τ
m| {z }

m−1

, 0, . . . , 0| {z }
τ

].

Recursive: wL

1×T
= [−am,0, . . . ,−am,0| {z }

m

,−am,1, . . . ,−am,τ−1| {z }
τ−1

, 1− am,τ , . . . , 1− am,n−1| {z }
n−τ

, 1, . . . , 1| {z }
τ

];

wh

1×qT
= [bm,0, . . . , bm,0| {z }

m

, bm,1, . . . , bm,n−1| {z },
n−1

0, . . . , 0| {z }
τ

], where

am,j =
1

m+ j
+

1

m+ j + 1
+ . . .+

1

T − τ
; (6)

bm,j =
Dm+τ+jBm+j

m+ j
+

Dm+τ+j+1Bm+j+1

m+ j + 1
+ . . .+

DTBT−τ
T − τ

.

4For example, for OLS estimation of Ys = X0
sβ
∗ + εs, s = 1, ..., t, Bt = (t−1 t

s=1XsX
0
s)
−1. For maximum

likelihood estimation, Bt is the inverse of the Hessian evaluated at the parameter estimate.
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Let

VT =

Ã
V LL
T V Lh

T

V Lh
T V hh

T

!
, where (7)

V LL
T ≡ T−1

TX
t=1

(wL
t
eLt)

2 + 2T−1
pTX
j=1

vT,,j

TX
t=j

wL
t
eLtw

L
t−j eLt−j ; (8)

V hh
T ≡ T−1

TX
t=1

wh
t hth

0
tw

h0
t + T−1

pTX
j=1

vT,,j

TX
t=j

³
wh
t hth

0
t−jw

h0
t−j + wh

t−jht−jh
0
t−jw

h0
t

´
; (9)

V Lh
T ≡ T−1

TX
t=1

wL
t
eLth

0
tw

h0
t + T−1

pTX
j=1

vT,,j

TX
t=j

³
wL
t
eLth

0
t−jw

h0
t−j + wL

t−j eLt−jh
0
t−jw

h0
t

´
, (10)

with {pT} a sequence of integers such that pT → ∞ as T → ∞, pT = o(T ) and {vT,j : T =

1, 2, . . . ; j = 1, . . . , pT} a triangular array such that |vT,j | < ∞, T = 1, 2, . . . ; j = 1, . . . , pT and

vT,j → 1 as T →∞ for each j = 1, . . . , pT (cf. Andrews, 1991 or Newey and West, 1987).

Theorem 2 (Asymptotic justification of forecast breakdown test) (a) If E (∂Lt(β
∗)/∂β)

is constant for all t, σ̂m,n =
q
(T/n)V LL

T , V LL
T given in (8). Then, tm,n,τ

d→ N(0, 1) under H0 in

(3). 5

(b) If VT in (7) is p.d., σ̂m,n =
q
(T/n) (V LL

T + V hh
T + 2V Lh

T ), V LL
T , V hh

T and V Lh
T given in

(8)-(10). Then, tm,n,τ
d→ N(0, 1) under H0 in (3).

Comments: 1. Theorem 2-(a) shows that if the loss scores have constant mean under the null

hypothesis, then estimation uncertainty is asymptotically irrelevant and the asymptotic variance

estimator is easier to compute. Theorem 2-(b) gives the correction to the asymptotic variance esti-

mator needed when estimation uncertainty does not vanish asymptotically. Whether the condition

for asymptotic irrelevance in Theorem 2-(a) is satisfied depends in general on the model, the loss

function and the estimation procedure, and its plausibility must thus be verified on a case-by-case

basis. Corollary 3 below shows that an important case in which this condition is satisfied is when

the loss function used for estimation is the same as that used for evaluation. This is a common sit-

uation in forecasting applications, where parameters are typically estimated by OLS and forecasts

are evaluated using a quadratic loss.

2. The use of a HAC estimator for the asymptotic variance is motivated by the possible presence

of serial correlation in the sequence of forecast losses. This is easy to see for a quadratic loss, in

which case serial correlation in the losses is induced by the presence of GARCH in the data.

3. The same theory outlined in Theorem 2 can be applied to forecast unbiasedness tests, by

redefining the loss as simply being the forecast error. If the estimation procedure is such that
5A Matlab code computing σ̂m,n in the case of asymptotically irrelevant estimation uncertainty can be downloaded

from http:\\www.econ.ucla.edu\giacomin.
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the in-sample errors have zero mean (e.g., when using OLS), the surprise losses (1) coincide with

the out-of-sample forecast errors, and the forecast breakdown test becomes a test of zero mean

of the out-of-sample forecast errors, that is, a forecast unbiasedness test. Note that in this case

the derivation of the asymptotic variance is simplified by the fact that the numerator of the test

statistic is a simple average, rather than a weighted average (which implies, e.g., that the estimator

of Corollary 4 has λ = 1 for all forecasting schemes).

Corollary 3 (Variance estimator under equal loss) If bβt = argminβ L̄t(β), then σ̂m,n =q
(T/n)V LL

T , V LL
T given in (8).

Corollary 4 (Variance estimator under equal loss and covariance-stationarity) Given the

assumptions of Theorem 2-(a), further assume that Γj ≡ cov (Lt(β
∗), Lt−j(β

∗)) depends on j but

not on t under H0.
6 Then, σ̂m,n =

p
λSLL

n , where

Forecasting scheme λ

Fixed 1 + n
m

Rolling, n < m 1− 1
3

¡
n
m

¢2
Rolling, n ≥ m 2

3
m
n

Recursive 1

(11)

and SLL
n = n−1

PT−τ
t=m

eL2t+τ + 2n−1Ppn
j=1 vn,,j

PT−τ
t=m+j

eLt+τ
eLt+τ−j , whereeLt+τ ≡ Lt+τ (bβt)− n−1

PT−τ
j=m Lj+τ (bβj) and with {pn} a sequence of integers such that pn →∞ as

n→∞, pn = o(n) and {vn,j : n = 1, 2, . . . ; j = 1, . . . , pn} a triangular array such that |vn,j | <∞,

n = 1, 2, . . . ; j = 1, . . . , pn and vn,j → 1 as n → ∞ for each j = 1, . . . , pn (cf. Andrews, 1991 or

Newey and West, 1987).

3 Causes of forecast breakdowns

To gain some insight into the causes of forecast breakdowns, we analyze the expectation of the

numerator of our test statistic (4)7. For simplicity, in this section we assume that parameters are

estimated by maximum likelihood and let L (·) indicate the loss used for estimation. We further
define β∗t as E (∂Lt (β∗t ) /∂β) = 0, t = 1, 2, . . . , T, and let Σj denote the relevant sample average

depending on the forecasting scheme: Σj = t−1
Pt

j=1 for the recursive scheme, Σj = m−1
Pt

j=t−m+1
for the rolling scheme, and m−1

Pm
j=1 for the fixed scheme. We following proposition decomposes

the expectation of the numerator of our test statistic into various components, grouped under the

three categories of parameter instabilities, other instabilities and estimation uncertainty.

6 In the case of quadratic loss, this rules out time-variation in the tail fatness of the forecast errors.
7We implicitly make the assumption that such expectation exists.
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Proposition 5 (Causes of forecast breakdowns)

E

Ã
n−1/2

T−τX
t=m

SLt+τ (bβt)
!

= E

Ã
n−1/2

T−τX
t=m

SLt+τ (β
∗
t )

!
| {z }

“other instabilities”

+ n−1/2
T−τX
t=m

E

Ã
∂Lt+τ

¡
β∗t+τ

¢
∂β

!¡
β∗t − β∗t+τ

¢
| {z }

“parameter instabilities I”

−n−1/2
T−τX
t=m

X
j
E

Ã
∂Lj

¡
β∗j
¢

∂β

!¡
β∗t − β∗j

¢
| {z }

“parameter instabilities I”

(12)

+
1

2
n−1/2

T−τX
t=m

⎡⎣¡β∗t − β∗t+τ
¢0
E

⎛⎝∂2Lt+τ

³
β∗t+τ

´
∂β∂β0

⎞⎠ ¡β∗t − β∗t+τ
¢

| {z }
“parameter instabilities II”

−
X

j

¡
β∗t − β∗j

¢0
E

⎛⎝∂2Lj

³
β∗j

´
∂β∂β0

⎞⎠ ¡β∗t − β∗j
¢⎤⎦

| {z }
“parameter instabilities II”

+n−1/2
T−τX
t=m

E

∙µ
∂Lt+τ (β

∗
t )

∂β

¶³bβt − β∗t

´¸
| {z }

“estimation uncertainty I”

+n−1/2
T−τX
t=m

E

("³bβt − β∗t

´0 ∂2Lt(bβt)
∂β∂β0

− ∂Lt (β
∗
t )

∂β
+

∂Lt (β∗t )
∂β

#³bβt − β∗t

´)
| {z }

“estimation uncertainty II”

+
1

2
n−1/2

T−τX
t=m

E

"³bβt − β∗t

´0Ã∂2Lt+τ (bβt)
∂β∂β0

− ∂2Lt(bβt)
∂β∂β0

!³bβt − β∗t

´#
| {z }

“estimation uncertainty III”

.

The component “other instabilities” captures any changes in the data-generating process -

beyond parameter instabilities - that result in a non-constant expected loss. The “parameter

instabilities I” component captures instabilities of the type β∗t − β∗ = Op

¡
n1/2

¢
(which are the

same instabilities considered by the structural break testing literature), whereas the “parameter

instabilities II” component captures instabilities of the type β∗t − β∗ = Op

¡
n1/4

¢
. Note that when

the loss functions used for estimation and for evaluation are equal the component “parameter

instabilities I” disappears due to E
¡
∂Lt+τ

¡
β∗t+τ

¢
/∂β

¢
= 0, implying that forecast breakdowns are

in this case caused by instabilities of greater magnitude than those considered by the structural

break testing literature.

Regarding the components due to parameter estimation, note that when the estimation and

evaluation losses are equal, the “estimation uncertainty II” component is a quadratic form, and is

thus always positive. Intuitively, this is due to the fact that in this case the average in-sample loss

computed at the parameter estimates is minimized by construction, and is thus smaller than the

12



expected out-of-sample loss in finite samples. We therefore interpret this component as a measure

of “overfitting”.

The following proposition characterizes the causes of forecast breakdowns in the special case of

a linear regression model, a fixed forecasting scheme and a quadratic loss.

Proposition 6 (Special case: linear model and quadratic loss) Consider a quadratic loss :

L (e) = L (e) = e2, a fixed forecasting scheme, and a linear and correctly specified model:

Yt = X 0
tβt

+ εt, εt ∼ i.i.d.
¡
0, σ2t

¢
,

where the k × 1 vector Xt is i.i.d. Let E (XtX
0
t) ≡ J. Suppose there are two breaks: a permanent

break in the parameters and a permanent break in the variance of the disturbances, so that βt =

β + n−1/4g1 · 1 (t ≥ m) and σ2t = σ2 + n−1/2g21 (t ≥ m) . We have:

E
¡√

nSLm,n

¢
= g2|{z}

“other instabilities”

+
1

2
g01Jg1| {z }

“parameter instabilities II”

+2

√
n

m
σ2k| {z } .

“overfitting"

(13)

From Proposition 6, we see that a forecast breakdown for a quadratic loss can be caused by

a “small” positive break in the variance of the disturbances and/or a “large” break (positive or

negative) in the conditional mean parameters. Overfitting is present only in finite samples and is

proportional to the number of parameters, the variance of the disturbances and the relative sizes

of in-sample and out-of-sample windows (through the factor
√
n/m).

4 An overfitting-corrected forecast breakdown test

We propose a simple correction to the forecast breakdown test statistic (4) that eliminates the

systematic difference between in-sample and out-of-sample loss that is present in finite samples when

a quadratic loss is used for both estimation and evaluation. Specifically, we propose subtracting

from the numerator of our test statistic an estimate of the “estimation uncertainty II” component

in (12), which can be interpreted as a measure of overfitting. Using similar reasonings to those in

the proof of Proposition 6, we can obtain an estimate of this component in the context of a linear

model with k covariance-stationary regressors, Yt = X 0
tβ + εt. The test statistic is modified as:

tcm,n,τ =
¡√

nSLm,n − c
¢
/σ̂m,n;

c = 2 · γ · tr
µ
X 0X

T
· bV β

T

¶
,

where: γ =
√
n/m for the fixed and rolling schemes and γ = n−1/2 ln(1 + n/m) for the recursive

scheme; X ≡ [X 0
1, . . . ,X

0
T ];

bV β
T is a consistent estimator of the asymptotic variance of the full-sample

parameter estimate bV β
T = \asyvar(

√
TbβT ); σ̂m,n is as in Theorem 2-(b) or Corollary 3.
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It is interesting to note that, if the asymptotic variance of the parameter estimates can be

consistently estimated by bV β
T = σ2(T−1X 0X)−1, the overfitting correction simply becomes

c = 2γσ2k, (14)

where σ2 = var(εt). Direct calculations further show that in this case tcm,n,τ may be equivalently

obtained by re-defining the surprise losses as the difference between the out-of-sample loss and the

average in-sample loss penalized using Akaike’s information criterion (AIC).8

5 Predicting future forecast breakdowns

In Section 2.3, we proposed a test for detecting whether a forecast method broke down in the past.

A question that may be of further interest to forecasters is whether the forecast method will break

down in the future. This is of course related to finding past breakdowns: if the surprise losses had

positive mean in the past, we expect them to continue being positive in the future. However, it is

possible that one could find additional information that predicts whether there will be a forecast

breakdown at a specific date in the future. For example, the surprise losses may be persistent (in

the case of a quadratic loss, for example, the presence of GARCH in the data will induce serial

correlation in the surprise losses) or they may be correlated with indicators of the state of the

economy.

The idea - that we illustrate in this section for the case of a quadratic loss - is to find variables

that predict the difference between in-sample and out-of-sample performance by regressing the

surprise losses on a set of explanatory variables, including, e.g., a constant, lagged surprise losses,

economically meaningful variables such as business cycle leading indicators, measures of stock

market volatility, interest rates etc.

Denote by Zt the r×1 vector collecting such variables and let bδn be the OLS parameter estimate
obtained by estimating the predictive regression

SLt+τ (bβt) = Z
0
tδ + εt+τ (15)

over the out-of-sample period t = m, . . . , T −τ . A Wald test of H0 : E
³
n−1

PT−τ
t=m ZtSLt+τ (β

∗)
´
=

0 can be performed by considering the test statistic Wm,n,τ = bδ0nΩ̂−1m,n
bδn, with Ω̂m,n given in

Proposition 7 below and rejecting H0 whenever Wm,n,τ > χ2r,1−α, where χ
2
r,1−α is the (1− α)− th

quantile of a χ2r distribution. Proposition 7 below provides the asymptotic justification for the test.

To analyze the behavior of the surprise losses over time, one may further consider the plot of

the fitted values {Z 0
t
bδn}T−τt=m from the regression (15) together with a one-sided (1−α)% confidence

8To see this, note that (for the fixed scheme) the AIC penalizes the in-sample log-likelihood as logLm + 2k/m,

which corresponds to penalizing the in-sample loss as Lm(1 + exp(2k/m)) ' Lm(1 + 2k/m). The claim then follows

from redefining SLt+τ as Lt+τ − Lm(1 + 2k/m).
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interval:
µ
Z
0
t
bδn − zα

³
Z 0tΩ̂m,nZt

´1/2
,+∞

¶
, where zα is the (1 − α) − th quantile of a standard

normal distribution.

Proposition 7 (Asymptotic justification of Wald test) Let Ω̂m,n = T (Z 0Z)−1 VT (Z 0Z)
−1,

where: Z ≡ [Z 0m, . . . , Z 0T−τ ] is nonstochastic and finite and such that Z 0Z is nonsingular9; VT ≡
T−1

PT
t=1wt

eL2tw0t+T−1
PpT

j=1 vT,,j
PT

t=j

³
wt
eLt
eLt−jw0t−j + wt−j eLt−j eLtw

0
t

´
, with eLt, pT and vT,j as

in Algorithm 1 for L(e) = e2; wt are weights given below for the different forecasting schemes:

Fixed : w = [−
PT−τ

t=m Zt

m
, . . . ,−

PT−τ
t=m Zt

m| {z }
m

, 0, . . . , 0| {z }
τ−1

, Zm, Zm+1, . . . , ZT−τ| {z }
n

];

Rolling , n < m : w = [−Zm

m
, . . . ,−

PT−τ
t=m Zt

m| {z }
n

,−
PT−τ

t=m Zt

m
, . . . ,−

PT−τ
t=m Zt

m| {z }
m−n

,

−
PT−τ

t=m+1 Zt

m
, . . . ,−

PT−τ
t=m+τ−1 Zt

m| {z }
τ−1

, Zm −
PT−τ

t=m+τ Zt

m
, . . . , ZT−2τ −

ZT−τ
m| {z }

n−τ

,

ZT−2τ+1, . . . , ZT−τ| {z }
τ

];

Rolling, n ≥ m : w = [−Zm

m
, . . . ,−

P2m−1
t=m Zt

m| {z }
m

,−
P2m

t=m+1 Zt

m
, . . . ,−

P2m+τ−2
t=m+τ−1 Zt

m| {z },
τ−1

Zm −
P2m+τ−1

t=m+τ Zt

m
, . . . , Zn−τ −

PT−τ
t=n Zt

m| {z }
n−m−τ+1

,

Zn−τ+1 −
PT−τ

t=n+1 Zt

m
, . . . , ZT−2τ −

ZT−τ
m| {z }

m−1

, ZT−2τ+1, . . . , ZT−τ| {z }
τ

];

Recursive: w = [−am,0, . . . ,−am,0| {z }
m

,−am,1, . . . ,−am,τ−1| {z }
τ−1

, Zm − am,τ , . . . , ZT−2τ − am,n−1| {z }
n−τ

,

ZT−2τ+1, . . . , ZT−τ| {z }
τ

],

am,j =
Zm+j

m+ j
+ . . .+

ZT−τ
T − τ

.

Then Wm,n,τ
d→ χ2r under H0 : E

¡
n−1

P
ZtSLt+τ (β

∗)
¢
= 0. 10

9The assumption of nonstochastic regressors is adopted for convenience, and can be relaxed at the cost of an

increase in technicality that is beyond the scope of this Section.
10A Matlab code computing Ω̂m,n can be downloaded from http:\\www.econ.ucla.edu\giacomin.
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6 Implications of forecast breakdowns

A natural question that arises if forecast breakdown is detected or predicted is whether the forecast

model should be changed or not. In general, the answer to this question depends on the type of

forecast (point, interval, density) and on the type of loss function (symmetric or asymmetric). For

example, when the forecast is a point forecast and the loss function is symmetric, finding a forecast

breakdown does not necessarily imply that the model used to produce the point forecast should

be changed. The reason is that the forecast breakdown could be caused by instabilities - such as

increases in the variance of the disturbances - that do not affect the optimal forecast (for a symmetric

loss, the optimal point forecast does not depend on the variance, unlike for an asymmetric loss, as

shown by Christoffersen and Diebold, 1997). Since the forecast breakdown test cannot distinguish

among the different types of instabilities, the finding of a forecast breakdown does not in this

case suggest a course of action. However, when the loss is asymmetric or when the forecaster

is interested in accompanying the point forecast with some measure of its uncertainty (e.g., an

interval or a density forecast), then the finding of a forecast breakdown indicates unreliability of

the forecast, regardless of its cause.

7 Monte Carlo evidence

This section analyzes the size and power properties of our forecast breakdown test in finite samples,

relative to the properties of in-sample structural break tests (Elliott and Muller, 2003) and forecast

unbiasedness tests.11

7.1 Size properties

We investigate the size of our test, in particular with regards to its robustness to the presence of

time-variation in the marginal distribution of the regressors and to the presence of conditionally

heteroskedastic disturbances. We let the data-generating process (DGP) be:

Yt = 2.73− 0.44ut−1 + σtεt, (16)

σ2t = 1 + α ∗ ε2t−1, εt ∼ i.i.d.N(0, 1),

and consider two experiment designs. The first (MC1) has i.i.d. regressors and conditionally

homoskedastic errors: ut ∼ i.i.d.N(0, 1) and α = 0 . The second design (MC2), inspired by our

empirical application to the Phillips curve model of U.S. inflation, lets ut be the time series of

monthly U.S. unemployment and α = .5.12 The DGP parameters and conditional mean specification
11Andrews’ (1991) and Andrews and Ploberger’s (1995) test results were qualitatively similar to those obtained by

using the Elliott and Muller’s (2003) test in the case of a single break, and are therefore not reported.
12The unemployment series is the seasonally adjusted civilian unemployment rate from FRED II.
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are from Staiger, Stock and Watson (1997). We use an actual time series in order to generate data

that exhibit realistic heterogeneous behavior. Throughout, we restrict attention to the one-step-

ahead forecast horizon and use a quadratic loss for both estimation and evaluation.

For each pair of in-sample and out-of-sample sizes (m,n) and for each of 5000 Monte Carlo

replications, we generate T = m+ n data as in (16). In MC2, we use the last T data points in the

ut time series, up to 2005:08. We obtain sequences of out-of-sample forecasts and forecast errors

by estimating the model Yt = β1+ β2ut−1+ et by OLS using either a fixed, a rolling or a recursive

forecasting scheme.

We consider the following tests: our forecast breakdown test for the three forecasting schemes,

where the test statistic (4) is computed using either the general asymptotic variance estimator of

Corollary 3 or the estimator of Corollary 4, valid under the assumption of covariance-stationary

losses (the truncation lag for the HAC estimators is pT = pn = 0 in MC1 and pT = pn = n1/3

in MC2).We denote the two tests by tm,n,τ and tstatm,n,τ , respectively. We further consider the test

proposed by Elliott and Muller (2003) (denoted EM) and a forecast unbiasedness test (denoted

UNB), obtained as a t-test of zero parameter in a regression of the out-of-sample forecast errors

(from the recursive scheme) on a constant.

Table 1 contains the rejection frequencies of the tests for various (m,n) pairs.

[TABLE 1 HERE]

The forecast breakdown test has good size properties for large in-sample and out-of-sample sizes

(m,n ≥ 100). The tstatm,n,τ test is generally well-sized, if conservative. Both tests (in particular tm,n,τ )

tend to over-reject when the in-sample size is small (m = 50), partly due to the effects of overfitting.

To verify this claim, we report in Table 2 the rejection frequencies of the overfitting-corrected test

of Section 4, using the simple correction (14) in both MC1 and MC2.

[TABLE 2 HERE]

As expected, the use of the overfitting correction substantially improves the size properties of the

test. The overfitting-corrected test appears well-sized in all cases except for the fixed scheme when

the in-sample size is small (m = 50). Regarding the different forecasting schemes, the recursive

scheme appears to be the most robust whereas the fixed and the rolling schemes can suffer size

distortions for small sample sizes (the size distortions for the rolling scheme disappear when using

the overfitting correction)..

Comparing the results from MC1 and MC2, we see that the forecast breakdown test is robust

to the presence of heterogeneous regressors and of ARCH disturbances. In MC2, our test correctly

concludes that the forecasting model is reliable. This is in stark contrast with the EM test, which
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has correct size when the regressor is i.i.d., but (similarly to the majority of existing structural

break tests, as documented by Hansen, 2000) erroneously detects instability in model’s parameters

when the regressor is the actual time series of U.S. unemployment (in this case, the EM rejects

100% of the time). Finally, the forecast unbiasedness test seems to have good size properties, with

a tendency to under-reject in the presence of heterogeneous regressors and ARCH disturbances.

7.2 Power properties

In this section we consider various sources of forecast breakdowns and analyze the power of the

tests considered in Section 7.1 in three Monte Carlo designs. In all designs, we estimate the model

Yt = α + et by OLS and consider a quadratic and a linex loss for evaluation. The total sample

size T and the in-sample size m used for the forecast breakdown and the unbiasedness tests are

specified in each design. The in-sample size m in each design is set at the time of the first break,

which represents the “worst-case scenario” from the perspective of a forecaster.

Design 1: Changes in mean. We consider either one-time or recurring changes in mean. The

first corresponds to a single structural break in mean

Yt = βA · 1 (t > T/2) + εt, εt ∼ i.i.d.N(0, 1). (17)

We let (T,m) = (300, 150). In the recurring change DGP, we let Yt = µt + εt, where µt switches

between −βA and βA every 50 periods and let (T,m) = (600, 50).

Design 2: Changes in variance. Again, we consider both one-time and recurring changes. The

one-time change DGP is

Yt = εt, εt ∼ i.i.d.N
¡
0, σ2t

¢
(18)

where σ2t = 1+βA ·1 (t > T/2) . and. We choose (T,m) = (300, 150). In the recurring changes case,

we let σ2t switch between 1 and (1 + βA) every 50 periods, and let (T,m) = (600, 50).

Design 3: Other DGP changes. Here we assume that the conditional mean undergoes a one-

time change but the two specifications are not nested, so that structural break tests are not optimal

in this context. We let

Yt = βA · 1 (t ≤ T/4)− 3βA · 1 (T/4 < t ≤ T/2) +Xt · 1 (t > T/2) + εt, (19)

Xt = .6Xt−1 + ηt, εt, ηt ∼ i.i.d.N (0, 1) independent.

We consider (T,m) = (400, 100).

[FIGURE 1 HERE]

For all designs, we obtain power curves by letting βA vary between 0 and 2 and considering

5000 Monte Carlo replications. Figure 1a shows that the forecast breakdown test has power against
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changes in mean. In the case of a permanent break in mean (upper left panel), the forecast

breakdown test has lower power than both the EM and the UNB tests, but its power improves when

the losses used for estimation and evaluation differ (upper right panel). In the case of recurring

changes in mean (lower panels), the forecast breakdown test with a rolling scheme has the highest

power. When the permanent change in DGP is as in Design 3 (Figure 1c, right panel), the power

loss of the forecast breakdown relative to the EM and UNB tests is substantially lower. Figure 1b

shows that the forecast breakdown test for all three forecasting schemes is also the only test to have

power against changes in variance. The one-sided nature of the test implies that only increases in

variance (Figure 1b, upper panels) or, to a lesser extent, recurring changes in variance (Figure 1b,

lower panels) can cause forecast breakdowns. Decreases in variance, obtained by substituting βA

with −βA in design 2, instead do not cause forecast breakdowns, as can be seen from the left panel

of Figure 1c.

8 Application: the Phillips curve and inflation forecast break-

downs

The Phillips curve as a forecasting model of inflation has traditionally been a useful guide for

monetary policy in the United States, and its forecasting ability is thus of practical relevance. The

model relates changes in inflation to past values of the unemployment gap (the difference between

the unemployment rate and the NAIRU) and past values of inflation. The forecasting ability of

the Phillips curve as well as its stability have been investigated in a number of works, including

Staiger, Stock and Watson (1997), Stock and Watson (1999) and Fisher, Liu and Zhou (2002). The

latter, in particular, conclude that the forecasting ability of the Phillips curve depends upon the

period: the Phillips curve appears to forecast well one year ahead during the 1977-1984 period but

not during the 1993-2000 period. Thus, as an empirical application of the methods proposed in

this paper, we investigate the robustness of the Phillips curve to forecast breakdowns at various

horizons.

Following Stock and Watson (1999), let πht = (1200/h) ln (Pt/Pt−h) denote the τ -period inflation

in the price level Pt reported at an annual rate, πt denote monthly inflation at an annual rate at

time t (πt ≡ π1t = (1200) ln (Pt/Pt−1)), and ut denote the unemployment rate. Then the Phillips

curve can be expressed as:

πτt − πt = θ0 + θ1 (L)ut + θ2 (L) (πt − πt−1) + εt+τ (20)

where θ0 implicitly embodies a time-invariant NAIRU, and θ1 (L) and θ2 (L) are lag polynomials

with qu and qπ lags, respectively.

When analyzing whether unemployment was a useful predictor for inflation, it is important to
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assess its actual predictive ability at the historic point in time, that is by using only data that

were available to the policymakers at that time. For example, Orphanides (2001) and Ghysels,

Swanson and Callan (2002) analyze the performance of monetary policy rules in the presence of

real-time data, and note their relationship with changes in the Fed Chairmen. For this reason,

we use real-time data from the Federal Reserve Bank of Philadelphia database. The data are

discussed in Croushore and Stark (2001), and are available from January 1947 to April 2004 at

quarterly vintages starting from November 1965. The real-time series of consumer prices from the

same data set is available only from the 1994 vintage, and is thus not useful for our purposes. We

use instead the real-time database for consumer prices from the Swanson, van Dijk, and Callan

dataset (available at http://econweb.rutgers.edu/nswanson/realtime.htm). We focus on seasonally

adjusted inflation, as in Stock and Watson (1999).13 The data span from January 1961 (with a first

vintage in February 1978) until December 2001. Due to the data limitations, we restrict estimation

from January 1978 (with a first vintage equal to the first available vintage, February 1978) until

December 2001, using quarterly vintages.14

The first column of Table 3 reports the p-values of the forecast breakdown test of Section 2.3

for a quadratic loss and a rolling scheme with m = 60 (so that the one-step ahead forecasts begin

in 1993:1, corresponding to the change in monetary policy identified in Fisher et al., 2002). We

consider forecast horizons τ = 3 and τ = 12 months and several choices of qu and qπ. The row

labeled “BIC” reports results for the case in which the lag length is determined by the Bayesian

Information Criterion (BIC) (assuming that all regressors have the same number of lags).

[TABLE 3 HERE]

The table shows strong evidence of a forecast breakdown at the one year horizon when using

real-time data, whereas there is no evidence of forecast breakdowns at shorter horizons.

Because of small sample concerns associated with real-time data, we repeat the above exercise

using revised monthly data. We consider the most recent observations collected by the Philadelphia

Fed (August 2004) for both seasonally unadjusted CPI and unemployment. The largest available

sample for both variables is from January 1948 until June 2004. The second column in Table 3

shows that the forecast breakdown test finds some evidence of a forecast breakdown at the one

month horizon, but not at longer horizons.
13Note that Stock and Watson (1999) did not examine real-time data but, on the other hand, investigate many

other predictors that could help forecasting inflation beyond unemployment, not only unemployment, as we do.
14The sample used in Fisher et al. (2002) begins in January 1977 and that used in Stock and Watson (1999) begins

in January 1959. Note that while in the real-time database unemployment is revised at a quarterly frequency, data

are still available at a monthly frequency. However, there will be missing data if one tried to extend the quarterly

data to a monthly frequency. For this reason, we calculated the annualized inflation rate at a monthly frequency,

then used observations only for February, May, August and November, which correspond to the available vintage

quarters.
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Given the evidence in favor of forecast breakdowns in the Phillips curve, we next investigate

its possible economic causes. Fisher et al. (2002) argue that periods of low inflation volatility

and periods after regime shifts in monetary policy appear to be associated with changes in the

forecasting ability of the Phillips curve. Thus, we next construct a forecasting model that relates

the surprise losses to inflation volatility and to a measure of changes in the monetary policy behavior

of  the Fed.  We estimate inflation volatility ( bσ 2π,t) as the sample variance of inflation over a rolling
wi ndow  of  s ize  241. To  meas ure changes in the monetary p olicy b e havior of the Fed, we

consider rolling estimates of the coefficients of the Fed Fund Rate (FFR) reaction function to the

output gap and t o the deviation of in flation f rom its target prop osed by Cl arida, Gali and Gertler

(2000).   The co effic ie nt s are es t imate d usi n g a rol li n g wi ndow o f si z e 241 oservations.   T he

reaction function is described by the following moment conditions, which we estimate by GMM

using revised data:

E (rt − (1− ρ) [rr∗ − (β − 1)π∗ + βπt,k + γxt,q] + ρ (L) rt−1|=t) = 0, (21)

with rt the nominal FFR; πt,k the annualized percentage change in the price level between t and

t+k; xt,q the average output gap between t and t+ q, defined as minus the percentage deviation of

actual unemployment from its target (a fitted quadratic function of time); and =t the information

set at time t. As in Clarida et al. (2000), ρ (L) ≡ ρ1+ρ2L, rr
∗ is the average FFR over the period,

ρ ≡ ρ (1) , and the instruments are a constant and f our lags of the f ollowing variables: inflation,

output gap, FFR, commo dity price inflation, spread b e tween t he long-term b ond rate and the

three-month Treasury Bill rate, growth rate of M2.15 The targe t horizon for b oth i nflation and 

unemployment gap is 1 quarter.

Even though our database is different f rom that of Clarida et al. (2000), our parameter estimates

- which we do not report to conserve space - are similar to theirs, and are also in line with those in

Orphanides (2001).

We next proceed to use the estimates of the FFR reaction function coefficients as explanatory

variables and investigate whether they are useful predictors of inflation forecast breakdowns. Table

4 shows estimates of the coefficients in the following equation:

SLt+τ = δ0,τ + Ztδ1,τ + εt,h (22)

15Unlike in Clarida et al. (2000), the long-term bond rate used here is not FYGL because that series has been

discontinued. Our proxy for the long-term bond rate is instead the ten-year monthly rate of interest on government

securities provided by the Fed (we checked that in the overlapping portion with FYGL the data look similar). Similar

problems lead us to choose the 3-month U.S. Treasury Bills quoted on the secondary market as a proxy for the

3-month Treasury Bill rate. Finally, for commodity prices we used n.s.a. CPI for all items all urban consumers

(U.S. city average) and we collected data for M2 from the Federal Reserve Board database. The abuse of notation in

denoting the degree of inflation aversion by β is to make our notation consistent with that of Clarida et al. (2000).
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where Zt is either bβt, bγt, bρt (the rolling estimates of the parameters in (21)), or bσ2π,t, and τ = 1,

3, 12 months. The table reports estimates of δ1,τ and (in parentheses) the p-values associated

with testing whether δ1,τ equals zero.16 It is clear that the degree of inflation targeting smoothing

operated by the central bank (bρt) and the degree of inflation volatility (bσ2π,t) have a significant
impact in explaining the behavior of the surprise losses at the 12 month horizon, whereas inflation

volatility and the degree of the Fed’s risk aversion to the unemployment gap (bγt) are significant at
the one month horizon. To conclude, we also consider estimating eq. (22) with Zt = (bβt, bγt, bρt) and
jointly test the significance of the parameter estimates. The results are reported in the last column

of Table 4. It is clear that these variables were jointly significant at conventional significance levels

for all horizons.

[TABLE 4 HERE]

9 Conclusion

This paper proposed a method for detecting and predicting forecast breakdowns, defined as a

situation in which the out-of-sample performance of a forecast model is significantly worse than its

in-sample performance. Unlike the literature evaluating a forecasting model from the perspective

of whether it produces optimal forecasts, we focus on whether the model’s forecast performance -

measured by a general loss function - is consistent with expectations based on the model’s earlier

fit. The analysis of the possible causes of forecast breakdowns reveals the prime role played by

instabilities in the data-generating process in causing forecast breakdowns, thus establishing a link

between this paper and the structural break testing literature. Among the differences, we note

that our forecast breakdown test is valid under more general assumptions, for example permitting

the model to be misspecified and the regressors to be unstable, arguably a closer representation of

the environment faced by actual forecasters. Further, a natural extension of our testing framework

allows the forecaster to predict the likelihood that the forecast model will break down at a future

date, a question that is not typically addressed by the structural break testing literature.

While our method is a first step towards assessing how well a forecasting model adapts to

changes in the economy, an important question that we touched upon but that deserves further

investigation is what to do in case a forecast breakdown is detected or predicted. We leave this

avenue of research for future work.
16The test statistic is implemented with a Newey and West (1987) HAC estimator with a bandwidth equal to

(τ − 1) .
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Appendix. Proofs

Notation 8 Let L∗t ≡ Lt(β
∗), h∗t ≡ ht(β

∗), ∂L∗t ≡ ∂Lt(β
∗), t = 1, . . . , T , with Lt and ht as

defined in Algorithm 1; D∗t+τ ≡ ∂SLt+τ (β
∗)/∂β, t = m, . . . , T − τ ; eL∗t ≡ L∗t − E (L∗t ) ; D̃

∗
t+τ =

D∗t+τ − E(D∗t+τ ); f∂L∗t = ∂L∗t − E (∂L∗t ) . For a matrix A, |A| = maxi,j |aij |. supt = supm≤t≤T−τ .
Limits are for m,n→∞.

Lemma 9 (a) R1 ≡ n−1/2
PT−τ

t=m
eD∗t+τB∗tH∗

t = op(1);

(b) R2 ≡ .5n−1/2
PT−τ

t=m

³bβt − β∗
´0 ³

∂2SLt+τ (β
∗
t )/∂β∂β

0
´³bβt − β∗

´
= op(1), where β∗t is an inter-

mediate point between bβt and β∗.

Proof of Lemma 9. (a) We focus for simplicity on the recursive scheme. The proofs for the

fixed and rolling schemes are similar and are available upon request. Direct calculations show that

R1 = n−1/2
PT

t=1 w̃
h
t h
∗
t , where

w̃h = [cm,0, . . . , cm,0| {z }
m

, cm,1, . . . , cm,n−1| {z }
n−1

, 0, . . . , 0| {z }
τ

], cm,j =

n−jX
i=1

eD∗m+τ+j+i−1B∗m+j+i−1
m+ j + i− 1 .

We will show that (i)
¯̄̄
E
³
n−1/2

PT
t=1 w̃

h
t h
∗
t

´¯̄̄
p→ 0 and (ii) E

³
n−1/2

PT
t=1 w̃

h
t h
∗
t

´2 p→ 0 from

which the result follows by Chebyshev’s inequality.

(i) First note that w̃h
t can be written as a weighted average of the scores: w̃

h
t = T−1

PT
j=1

f∂L∗jPt,j .
For example, w̃h

1 = cm,0 = T−1
PT

j=1
f∂L∗jP1,j with (nonstochastic) weights

P1 = T [dm,0, . . . , dm,0| {z }
m

, dm,1, . . . , dm,τ−1| {z }
τ−1

,
B∗m
m
− dm,τ , . . . ,

B∗m+n−τ−1
m+ n− τ − 1 − dm,n−1| {z }
n−τ

,

B∗m+n−τ
m+ n− τ

, . . . ,
B∗T−τ
T − τ| {z }

τ

], where

dm,j =

n−jX
i=1

B∗m+j+i−1

(m+ j + i− 1)2
.

Similar expressions can be derived for cm,j , j = 1, . . . , n − 1. Each component of P1 is bounded
since |Tdm,0| ≤ supt |B∗t |

PT−τ
i=m(T/i

2) ≤ supt |B∗t |(Tn/m2) < ∞ by assumptions 3 and 7. We can

similarly show that Pt has bounded components for all t, which allows us to define P sup ≡ supt Pt.
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We thus have ¯̄̄̄
¯E
Ã
n−1/2

TX
t=1

w̃h
t h
∗
t

!¯̄̄̄
¯ =

¯̄̄̄
¯̄E
⎛⎝n−1/2

TX
t=1

⎡⎣T−1 TX
j=1

f∂L∗jPt,j
⎤⎦h∗t

⎞⎠¯̄̄̄¯̄
≤

¯̄̄̄
¯̄E
⎛⎝n−1/2

TX
t=1

⎡⎣T−1 TX
j=1

f∂L∗jP supj

⎤⎦h∗t
⎞⎠¯̄̄̄¯̄

=

¯̄̄̄
¯̄E
⎛⎝⎡⎣T−1 TX

j=1

f∂L∗j
⎤⎦n−1/2 TX

t=1

h∗t

⎞⎠¯̄̄̄¯̄ (23)

≤ T−1n−1/2
TX
j=1

TX
t=1

|E(f∂L∗jh∗t+j)|
where we redefined f∂L∗jP supj as f∂L∗j in (23) without loss of generality. By Corollary 6.17 of White
(2001), T−1n−1/2

PT
j=1

PT
t=1 |E(f∂L∗jh∗t+j)| ≤ T−1n−1/2C1

P∞
j=0 jα(j)

1−1/2r, where C1 is some

positive and finite constant and α(j) are the mixing coefficients. By Davidson (1994), p. 210,P∞
j=0 jα(j)

1−1/2r is positive and finite, which implies that
¯̄̄
E
³
n−1/2

PT
t=1 w̃

h
t h
∗
t

´¯̄̄
→ 0.

(ii) From (i), E
³
n−1/2

PT
t=1 w̃

h
t h
∗
t

´2
= E

³
n−1/2

PT
t=1

h
T−1

PT
j=1

f∂L∗jPt,jih∗t´2 . We have
E
³
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PT
t=1

h
T−1

PT
j=1

f∂L∗jPt,jih∗t´2 = A1T +A2T +A3T , where
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¡
nT 2
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TX
s=1

TX
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E
¡
h∗0t h
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E
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nT 2
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s=1
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E
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³
h∗0t P

0
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A3T ≡
¡
nT 2

¢−1 TX
t=1

TX
s=1

TX
i=1

TX
j=1

κ(t, t− s, t− i, t− j),

where κ(t, t− s, t− i, t− j) is the fourth cumulant

κ(t, t− s, t− i, t− j) = E
³
h∗0t h

∗
s
f∂L∗iPt,iP 0s,jf∂L∗0j ´−E

¡
h∗0t h
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E
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Note that |A1T | ≤
¡
nT 2

¢−1PT
t=1

PT
s=1

PT
i=1

PT
j=1 |E (h∗0t h∗s)|

¯̄̄
E
³f∂L∗iP supi P sup 0j

f∂L∗0j ´¯̄̄ . Redefin-
ing f∂L∗iP supi as f∂L∗i , we thus have |A1T | ≤ ¡nT 2¢−1PT
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PT
s=1 |E (h∗0t h∗s)|

PT
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PT
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E
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≤
¡
nT 2

¢−1
C2

³P∞
j=0 jα(j)

1−1/2r
´2
, where C2 is some positive and finite constant and α(j) are the

mixing coefficients. As shown in point (i),
P∞

j=0 jα(j)
1−1/2r <∞, which implies that A1T → 0. A

similar argument can be used to show that A2T → 0. For A3T , we have

|A3T | ≤
¡
nT 2

¢−1 ∞X
s=1

∞X
i=1

∞X
j=1

sup
t≥1

|κ(t, t− s, t− i, t− j)|→ 0,
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since
P∞

s=1

P∞
i=1

P∞
j=1 supt≥1 |κ(t, t− s, t− i, t− j)| < ∞, by assumptions 1 and 4, as shown by

Andrews (1991).

(b) For some a, 0 < a < .5, C a positive constant, mt defined in Assumption 2(b) and denoting

by mt the mean of the m0
ts over the relevant in-sample window at time t, we have

R2 =

¯̄̄̄
¯.5n−1/2

T−τX
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´0Ã
t1−a
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¯∂2Lt(β

∗
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∂β∂β0

¯̄̄̄
¯
!

≤ C sup
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|t.5−.5a
³bβt − β∗

´
|2n−1/2

T−τX
t=m

ta−1 (mt+τ +mt) = op(1)

by Lemma A1(a) and Lemma A3(b) of West (1996), Assumption 2(b) and Markov’s inequality.

Lemma 10 T
nV

LL∗
T = var

³
n−1/2

PT
t=1w

L
t
eL∗t´ > 0 for all T sufficiently large.

Proof of Lemma 10. We prove Lemma 10 for the recursive scheme. The proofs for the fixed

and rolling schemes are similar and are available upon request. Write T
nV

LL∗
T = var(A1+A2+A3+

A4), where A1 = −n−1/2am,0(eL∗1 + . . . + eL∗m); A2 = −n−1/2 ³am,1
eL∗m+1 + . . .+ am,τ−1eL∗m+τ−1´ ;

A3 = n−1/2
h
(1− am,τ ) eL∗m+τ + . . .+ (1− am,n−1) eL∗T−τi ; A4 = n−1/2

³eLT−τ+1 + . . .+ eLT

´
. We

first show that |cov(Ai, Aj)|→ 0 for i 6= j. Since am,j ≤ am,0, |cov(A1, A2)| ≤ n−1a2m,0

|cov(
Pm

t=1
eL∗t ,Pm+τ−1

t=m+1
eL∗t )| | ≤ n−1a2m,0

Pm
t=1

Pτ−1
j=1 |E(L̃∗t L̃∗t+j)| ≤ n−1a2m,0C

P∞
j=0 jα(j)

1−1/2r by

Corollary 6.17 of White (2001), where C is some positive and finite constant and α(j) are the

mixing coefficients. By Davidson (1994), p. 210,
P∞

j=0 jα(j)
1−1/2r is positive and finite. Fur-

ther, a2m,0 → ln2(1 + π), which is finite (cf. West, 1996, pg. 1082). As a result, cov(A1, A2) →
0. Using analogous reasonings and the fact that 1 − am,t−m ≤ 1 for all t, one can show that

|cov(Ai, Aj)| → 0 for the remaining (i, j) pairs. We thus have that var
³
n−1/2

PT
t=1w

L
t
eL∗t´

can be approximated by
P4

i=1 var(Ai) and the desired result follows from the fact that, e.g.,

var(A1) = (m/n)a2m,0var(m
−1/2Pm

t=1
eL∗t ) > 0 since m/n → π−1 > 0, a2m,0 → ln2(1 + π) > 0, and

var(m−1/2
Pm

t=1
eL∗t ) > 0 by assumption 6.

Proof of Theorem 2. (b) A second order mean value expansion of SLt+τ (bβt) = Lt+τ

³bβt´−
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L̄t

³bβt´ around β∗ gives

n1/2

"
n−1

T−τX
t=m

SLt+τ (bβt)−E

Ã
n−1

T−τX
t=m

SLt+τ (β
∗)

!#
(24)

= n−1/2
T−τX
t=m

[SLt+τ (β
∗)−E (SLt+τ (β

∗))] + n−1/2
T−τX
t=m

∂SLt+τ (β
∗)

∂β

³bβt − β∗
´

+
1

2
n−1/2

T−τX
t=m

³bβt − β∗
´0 ∂2SLt+τ (β

∗
t )

∂β∂β0

³bβt − β∗
´

. = n−1/2
T−τX
t=m

[SLt+τ (β
∗)−E (SLt+τ (β

∗))] + n−1/2
T−τX
t=m

E
¡
D∗t+τ

¢
B∗tH

∗
t +

n−1/2
T−τX
t=m

eD∗t+τB∗tH∗
t +

1

2
n−1/2

T−τX
t=m

³bβt − β∗
´0 ∂2SLt+τ (β

∗
t )

∂β∂β0

³bβt − β∗
´

= n−1/2
T−τX
t=m

[SLt+τ (β
∗)−E (SLt+τ (β

∗))] + n−1/2
T−τX
t=m

E
¡
D∗t+τ

¢
B∗tH

∗
t + op(1)

where β∗t is some intermediate point between bβt and β∗ and where we have used assumption 3 and
Lemma 9. We show that, under H0,µ

T

n
VT

¶−1/2
n−1/2

"
T−τX
t=m

SLt+τ (β
∗) ,

T−τX
t=m

E
¡
D∗t+τ

¢
B∗tH

∗
t

#0
d→ N(0, I2),

with VT defined in (7), from which the theorem follows. Direct calculations show that¡
T
nVT

¢−1/2
n−1/2

hPT−τ
t=m SLt+τ (β

∗) ,
PT−τ

t=m E
¡
D∗t+τ

¢
B∗tH

∗
t

i0
= V

−1/2
T T−1/2

hPT
t=1w

L
t L

∗
t ,
PT

t=1w
h∗
t h∗t

i0
,

where wh∗
t equals wh defined in Algorithm 1 with bβt, Bt, Dt+τ replaced respectively by β∗, B∗t and

E(D∗t+τ ). Under H0, we have T−1/2
PT

t=1w
L
t L

∗
t = T−1/2

PT
t=1w

L
t
eL∗t , since T−1/2PT

t=1w
L
t E (L

∗
t ) =

nT−1/2E
³
n−1

PT−τ
t=m SLt+τ (β

∗)
´
= 0. We show that

V
∗−1/2
T T−1/2

"
TX
t=1

wL
t
eL∗t , TX

t=1

wh∗
t h∗t

#0
d→ N(0, I2),

where V ∗T = var

µ
T−1/2

hPT
t=1w

L
t
eL∗t ,PT

t=1w
h∗
t h∗t

i0¶
. The result follows from the fact that VT −

V ∗T
p→ 0, due to consistency of bβt for β∗ under H0. We verify that the zero-mean vector sequence

{
h
V
∗−1/2
T wL

t
eL∗t , V ∗−1/2T wh∗

t h∗t

i0
} satisfies the conditions of Wooldridge and White’s (1988) CLT for

mixing processes. Since Zt ≡
h
V
∗−1/2
T wL

t
eL∗t , V ∗−1/2T wh∗

t h∗t

i
is a function of only a finite number of

leads and lags of Wt, it follows from Lemma 2.1 of White and Domowitz (1984) that it is mixing of

the same size as Wt. For the first component of Zt, we have E|V ∗−1/2T wL
t
eL∗t |2r <∞ by assumption

4 and by the fact that VT is p.d. and |wL
t | < ∞ for all t (for the fixed and rolling schemes, this
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follows from assumption 7; for the recursive scheme, it follows from the fact that am,j ≤ am,0

→ ln(1 + π) < ∞, as shown in the proof of Lemma 10. For the second component of Zt, writing

wh∗
t = T−1

PT
j=1E

³
∂L∗j

´
Pt,j - using similar reasonings as those in the proof of Lemma 9-(a) - we

have E|V ∗−1/2T wh∗
t h∗t |2r = E|V ∗−1/2T T−1

PT
j=1E

³
∂L∗j

´
Pt,jh

∗
t |2r ≡ E|λth∗t |2r. Note that |λt,i| <∞

for all t, i, by assumption 5, by Pt,j having bounded components (as shown in the proof of Lemma

9-(a)) and by V ∗T p.d. Further, by Minkowski’s inequality,

E|V ∗−1/2T wh∗
t h∗t |2r = E|λ0th∗t |2r = E|

qX
i=1

λt,ih
∗
t,i|2r ≤ [

qX
i=1

|λt,i|(E|h∗t,i|2r)1/2r]2r <∞

by assumption 4. This implies that V ∗−1/2T T−1/2
hPT

t=1w
L
t
eL∗t ,PT

t=1w
h∗
t h∗t

i0 d→ N(0, I2). The de-

sired result then follows from consistency of VT for V ∗T due to bβt − β∗
p→ 0 under H0.

(a) E
¡
D∗t+τ

¢
= E (∂SLt+τ (β

∗)/∂β) = E (∂Lt+τ (β
∗)/∂β) − E

¡
∂Lt(β

∗)/∂β
¢
= 0, and thus ex-

pression (24) reduces to n−1/2
PT−τ

t=m [SLt+τ (β
∗)−E (SLt+τ (β

∗))]+op (1) . The result then follows

from reasonings analogous to those in part (b) above and from Lemma 10.

Proof of Corollary 3. Follows from the fact that, under H0, E
¡
∂Lt(β

∗)/∂β
¢
= 0 for all t,

which implies that the condition of Theorem 2-(a) is satisfied.

Lemma 11 For am,j as defined in (6), we have: (i) am,j ' ln(m+n−1/ (m+ j)); (ii) n−1
Pn−1

j=τ am,j

' 1− π−1 ln(1 + π); (iii) n−1
Pn−1

j=τ a
2
m,j ' 2

£
1− π−1 ln(1 + π)

¤
− π−1 ln(1 + π).

Proof of Lemma 11. (i) am,j =
Pn−1

i=j (m+ i)−1 '
R n−1
j (m + x)−1dx = ln(m + n −

1/ (m+ j)); (ii) n−1
Pn−1

j=τ am,j ' n−1
R n−1
τ ln (m+ n− 1/ (m+ x)) dx =

n−1 [n− 1− τ − (m− τ) ln(m+ n− 1/ (m+ τ))]→ 1− π−1 ln(1 + π);

(iii) n−1
Pn−1

j=τ a
2
m,j ' n−1

R n−1
τ ln2 (m+ n− 1/ (m+ x)) dx =

n−1
£
2(n− τ)− 2(m+ τ) ln(m+ n− 1/ (m+ τ))− (m+ τ) ln2(m+ n− 1/ (m+ τ))

¤
→ 2

£
1− π−1 ln(1 + π)

¤
− π−1 ln(1 + π).

Proof of Proposition 4. We show that lim var(n−1/2
PT

t=1w
L
t
eL∗t ) = λ∗

P∞
j=−∞ Γj , where

λ∗ = 1 + π for the fixed scheme; λ∗ = 1− (1/3)π2 for the rolling (n < m) scheme; λ∗ = (2/3)π−1

for the rolling (n ≥ m) scheme; λ∗ = 1 for the recursive scheme. The desired result then follows

from λSLL
n being a consistent estimator of λ∗

P∞
j=−∞ Γj under H0. For conciseness, we focus on the

recursive scheme. As shown in the proof of Lemma 10, var(n−1/2
PT

t=1w
L
t
eL∗t ) =P4

i=1 var(Ai).We

have var(A1) = (m/n) a2m,0var(m
−1/2Pm

t=1
eL∗t ) and thus lim var(A1) = π−1 ln(1 + π)

P∞
j=−∞ Γj

by Lemma 11-(i). Further, var (A2) = n−1var
³
am,1

eL∗m+1 + . . .+ am,τ−1eL∗m+τ−1´ → 0 since

τ is fixed. For A3, it follows from West (1996), pg. 1082-1083, (with (1 − am,j) substitut-

ing am,j) that var(A3) = n−1d0
Pn−2

j=−n+2 Γj + o(1), where d0 =
Pn−1

j=τ (1 − am,j)
2. By Lemma

11, n−1d0 = (n− τ) /n − 2n−1
Pn−1

j=τ am,j + n−1
Pn−1

j=τ a
2
m,j → 1 − π−1 ln(1 + π), and thus lim

var(A3) =
£
1− π−1 ln(1 + π)

¤P∞
j=−∞ Γj . Finally, var(A4) = n−1var(eLT−τ+1 + . . . + eLT ) → 0
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since τ is fixed. In sum, we have var(n−1/2
PT

t=1w
L
t
eL∗t ) =P∞

j=−∞ Γj and thus λ
∗ = 1. The proofs

for the fixed and rolling schemes follow from similar reasonings.

Proof of Proposition 5. A mean value expansion of

n−1/2
T−τX
t=m

SLt+τ (bβt) ≡ n−1/2
T−τX
t=m

h
Lt+τ

³bβt´− Lt

³bβt´i
around β∗t gives:

n−1/2
T−τX
t=m

SLt+τ (bβt) = n−1/2
T−τX
t=m

SLt+τ (β
∗
t ) + n−1/2

T−τX
t=m

µ
∂Lt+τ (β

∗
t )

∂β
− ∂Lt (β

∗
t )

∂β

¶³bβt − β∗t

´
+

+
1

2
n−1/2

T−τX
t=m

³bβt − β∗t

´0Ã∂2Lt+τ (bβt)
∂β∂β0

− ∂2Lt(bβt)
∂β∂β0

!³bβt − β∗t

´
(25)

where bβt is an intermediate point between β∗t and bβt. Note also that:
Lt+τ (β

∗
t ) = Lt+τ

¡
β∗t+τ

¢
+

∂Lt+τ

¡
β∗t+τ

¢
∂β

¡
β∗t − β∗t+τ

¢
+ (26)

+
1

2

¡
β∗t − β∗t+τ

¢0 ∂2Lt+τ

³
β∗t+τ

´
∂β∂β0

¡
β∗t − β∗t+τ

¢

Lj (β
∗
t ) = Lj

¡
β∗j
¢
+

∂Lj

¡
β∗j
¢

∂β

¡
β∗t − β∗j

¢
+ (27)

+
1

2

¡
β∗t − β∗j

¢0 ∂2Lj

³
β∗j

´
∂β∂β0

¡
β∗t − β∗j

¢
where β∗t+τ is an intermediate point between β

∗
t and β

∗
t+τ , and β

∗
j is an intermediate point between

β∗t and β∗j . From (26) and (27) above, it follows that

SLt+τ (β
∗
t ) = Lt+τ

¡
β∗t+τ

¢
−
X

j
Lj

¡
β∗j
¢
+

+
∂Lt+τ

¡
β∗t+τ

¢
∂β

¡
β∗t − β∗t+τ

¢
−
X

j

∂Lj

¡
β∗j
¢

∂β

¡
β∗t − β∗j

¢
+
1

2

⎡⎣¡β∗t − β∗t+τ
¢0 ∂2Lt+τ

³
β∗t+τ

´
∂β∂β0

¡
β∗t − β∗t+τ

¢⎤⎦ (28)

−1
2

X
j

¡
β∗t − β∗j

¢0 ∂2Lj

³
β∗j

´
∂β∂β0

¡
β∗t − β∗j

¢
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Substituting (28) into (25) gives:

n−1/2
T−τX
t=m

SLt+τ (bβt) = n−1/2
T−τX
t=m

SLt+τ (β
∗
t ) + n−1/2

T−τX
t=m

"
∂Lt+τ

¡
β∗t+τ

¢
∂β

¡
β∗t − β∗t+τ

¢
−
X

j

∂Lj

¡
β∗j
¢

∂β

¡
β∗t − β∗j

¢#
(29)

+
1

2
n−1/2

T−τX
t=m

⎡⎣¡β∗t − β∗t+τ
¢0 ∂2Lt+τ

³
β∗t+τ

´
∂β∂β0

¡
β∗t − β∗t+τ

¢

−
X

j

¡
β∗t − β∗j

¢0 ∂2Lj

³
β∗j

´
∂β∂β0

¡
β∗t − β∗j

¢⎤⎦ (30)

+n−1/2
T−τX
t=m

µ
∂Lt+τ (β

∗
t )

∂β
− ∂Lt (β

∗
t )

∂β

¶³bβt − β∗t

´
(31)

+
1

2
n−1/2

T−τX
t=m

³bβt − β∗t

´0Ã∂2Lt+τ (bβt)
∂β∂β0

− ∂2Lt(bβt)
∂β∂β0

!³bβt − β∗t

´
Note that, since 0 = ∂Lt

³bβt´ /∂β = ∂Lt (β∗t ) /∂β +
³
∂2Lt(bβt)/∂β∂β0´³bβt − β∗t

´
, then

∂Lt+τ (β
∗
t ) /∂β − ∂Lt (β

∗
t ) /∂β = ∂Lt+τ (β

∗
t ) /∂β −∂

¡
Lt (β

∗
t )− Lt (β∗t )

¢
/∂β+³bβt − β∗t

´0 ³
∂2Lt(bβt)/∂β∂β0´. Therefore, by taking expectations of (30), we have (12).

Proof of Proposition 6. Since E (∂Lt (βt) /∂β − ∂Lt (βt) /∂β) = 0 ∀t, the “parameter in-
stabilities I” component is zero. The “parameter instabilities II” component is

(1/2)n−1/2
PT−τ

t=m E
h¡
β −

¡
β + n−1/4g1

¢¢0
J
¡
β −

¡
β + n−1/4g1

¢¢i
= (1/2)g01Jg1 and the “other in-

stabilities” component is g2. Since ∂Lt+τ (βt) /∂β = −2Xt+τ

¡
Yt+τ −X 0

t+τβt
¢
is uncorrelated with³bβt − βt

´
, the “estimation uncertainty I” component is zero. Since E

¡
∂2Lj (β) /∂β∂β

0¢ =
E
¡
∂2Lj (β) /∂β∂β0

¢
= 2J ∀j, the “estimation uncertainty III” component in (12) is also zero. Fi-

nally, the “estimation uncertainty II” component equals
√
nE

³bβm − β
´0 ¡
2m−1

Pm
s=1XsX

0
s

¢ ³bβm − β
´
=

2(
√
n/m)E

¡
m−1/2

Pm
s=1Xsεs

¢0 ¡
m−1

Pm
s=1XsX

0
s

¢−1 ¡
m−1/2

Pm
s=1Xsεs

¢
→
p
2 (
√
n/m)σ2E

¡
χ2k
¢
=

2 (
√
n/m)σ2k.

Proof of Proposition 7. Since bδn = ¡n−1Z 0Z¢−1 (n−1PT−τ
t=m ZtSLt+τ (bβt)), with Zt nonsto-

chastic, we can use reasonings analogous to those in the proof of Theorem 2 to show that under

H0 : E
³
n−1

PT−τ
t=m ZtSLt+τ (β

∗)
´
= 0, (Ωm,n)

−1/2 bδn ∼ N(0, Ir), where Ωm,n = n−1(n−1Z 0Z)−1

var(n−1/2
PT−τ

t=m ZtSLt+τ (β
∗))(n−1Z 0Z)−1 = T (Z 0Z)−1var(T−1/2

PT−τ
t=m ZtSLt+τ (β

∗))(Z 0Z)−1.Di-

rect calculation shows that T−1/2
PT−τ

t=m ZtSLt+τ (β
∗) = T−1/2

PT
t=1wtL

∗
t , and thus bΩm,n is a con-

sistent estimator of Ωm,n due to consistency of bβt for β∗ under H0.
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Figure 2a. Power functions
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Figure 2b. Power functions
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Figure 2c. Power functions
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Notes to Figure 3. The figure shows rolling estimates of the structural parameters in the monetary policy

reaction function of the Fed, eq. (21).
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Table 1. Size. Nominal size .05

MC1

tm,n,τ tstatm,n,τ

m n Fixed Rol. Rec. Fixed Rol. Rec. EM UNB

50 50 .113 .144 .097 .064 .096 .058 .057 .055

50 100 .152 .297 .121 .077 .244 .071 .057 .051

50 150 .168 .492 .128 .080 .440 .075 .055 .049

100 50 .072 .071 .065 .049 .052 .047 .053 .053

100 100 .096 .109 .081 .057 .075 .055 .055 .053

100 150 .101 .143 .086 .060 .117 .059 .059 .053

150 50 .044 .046 .040 .036 .038 .035 .054 .052

150 100 .064 .072 .058 .046 .052 .043 .052 .053

150 150 .069 .087 .065 .047 .066 .046 .049 .050

MC2

tm,n,τ tstatm,n,τ

m n Fixed Rol. Rec. Fixed Rol. Rec. EM UNB

50 50 .272 .165 .120 .187 .090 .054 1 .040

50 100 .178 .293 .130 .050 .179 .042 1 .024

50 150 .183 .415 .122 .036 .268 .042 1 .014

100 50 .047 .056 .046 .031 .036 .030 1 .028

100 100 .087 .098 .079 .036 .054 .034 1 .062

100 150 .115 .105 .092 .040 .066 .034 1 .016

150 50 .030 .032 .028 .024 .024 .022 1 .059

150 100 .062 .069 .058 .033 .036 .031 1 .042

150 150 .077 .079 .069 .033 .041 .032 1 .029

Notes. The table reports rejection frequencies over 5000 Monte Carlo replications of the following tests:

the forecast breakdown test of Section 2.3, using either the asymptotic variance estimator of Corollary 3

(tm,n,τ ) or the estimator of Corollary 4
¡
tstatm,n,τ

¢
, both tests implemented with either a fixed, rolling or

recursive scheme; Elliott and Muller’s (2003) test (EM) and a forecast unbiasedness test (UNB). The

experiment designs MC1 and MC2 are described in Section 7.1 and m and n denote in-sample and out-of-

sample sizes, respectively.

35



Table 2. Size of overfitting-corrected tests. Nominal size .05

MC1

tcm,n,τ tstat,cm,n,τ

m n Fixed Rol. Rec. Fixed Rol. Rec.

50 50 .064 .053 .053 .031 .031 .028

50 100 .085 .056 .066 .031 .042 .032

50 150 .095 .068 .065 .034 .053 .029

100 50 .043 .040 .038 .029 .030 .027

100 100 .057 .057 .052 .030 .036 .031

100 150 .068 .055 .056 .032 .041 .033

150 50 .031 .030 .027 .024 .024 .022

150 100 .050 .047 .046 .032 .031 .030

150 150 .058 .053 .053 .038 .035 .034

MC2

tcm,n,τ tstat,cm,n,τ

m n Fixed Rol. Rec. Fixed Rol. Rec.

50 50 .256 .080 .079 .189 .039 .037

50 100 .122 .083 .069 .042 .050 .027

50 150 .096 .073 .067 .023 .053 .023

100 50 .044 .045 .043 .031 .031 .030

100 100 .071 .059 .057 .035 .033 .029

100 150 .088 .045 .066 .033 .030 .028

150 50 .031 .029 .028 .028 .029 .028

150 100 .057 .049 .047 .035 .027 .028

150 150 .062 .043 .050 .029 .026 .026

Notes. The table reports rejection frequencies over 5000 Monte Carlo replications of the overfitting-

corrected forecast breakdown test of Section 4, using either the asymptotic variance estimator of Corollary

3 (tcm,n,τ ) or the estimator of Corollary 4
³
tstat,cm,n,τ

´
, both tests implemented with either a fixed, rolling or

recursive scheme. The experiment designs MC1 and MC2 are described in Section 7.1 and m and n denote

in-sample and out-of-sample sizes, respectively.

36



Table 3. P-values of Forecast Breakdown test

Real-time data Revised data

qu qπ tm,n,τ tm,n,τ

τ = 1

1 1 - - 0.037

1 3 - - 0.093

3 1 - - 0.061

3 3 - - 0.134

BIC - - 0.102

τ = 3

1 1 0.000 0.408

1 3 0.585 0.474

3 1 0.477 0.568

3 3 0.595 0.643

BIC 0.882 0.621

τ = 12

1 1 0.001 0.238

1 3 0.000 0.454

3 1 0.002 0.818

3 3 0.001 0.962

BIC 0.001 0.644

Notes. The table reports p-values for the forecast breakdown test (tm,n,τ ) of Theorem 2(a). We used a

rolling scheme with m = 60, n = 95 in the real-time data case, and m = 241 and n = 546 in the revised

data case. The forecast horizons are τ = 1, 3 and 12 months (since real-time data are only available at a

quarterly frequency, in this case we only report results for τ = 3 months and τ = 12 months). qu and qπ

are the number of lags used for unemployment and for inflation, respectively; the row labeled “BIC” reports

results for the case in which the lag length is determined at every t by the BIC with a maximum of three

lags.
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Table 4. Explaining forecast breakdowns by monetary policy

changes and inflation variance

Zt

τ qu qπ (1, bβt)0 (1, bγt)0 (1,bρt)0 ¡
1, bσ2π,t¢0 ³

1, bβt, bγt,bρt, bσ2π,t´0
1 1 1 2.285 -1.828 -19.770 0.991 16.88

(0.17) (0.01) (0.60) (0.00) (0.00)

1 3 2.348 -1.612 -6.484 0.860 14.09

(0.16) (0.02) (0.86) (0.02) (0.00)

3 1 2.306 -1.712 -13.957 0.947 14.97

(0.17) (0.01) (0.71) (0.01) (0.00)

3 3 2.354 -1.513 -1.977 0.830 12.68

(0.16) (0.03) (0.96) (0.02) (0.00)

BIC 2.186 -1.654 -6.272 0.830 14.15

(0.19) (0.02) (0.87) (0.02) (0.00)

3 1 1 1.806 0.404 114.281 1.478 4.64

(0.57) (0.76) (0.11) (0.01) (0.03)

1 3 1.837 0.267 122.4 1.482 5.68

(0.55) (0.84) (0.08) (0.01) (0.02)

3 1 1.651 0.568 128.8 1.464 4.81

(0.61) (0.67) (0.08) (0.02) (0.03)

3 3 1.657 0.415 136.1 1.467 5.93

(0.60) (0.75) (0.06) (0.01) (0.01)

BIC 1.608 0.642 141.4 1.363 5.72

(0.62) (0.63) (0.05) (0.02) (0.02)

12 1 1 1.304 0.105 199.5 1.389 10.84

(0.76) (0.95) (0.03) (0.01) (0.00)

1 3 1.639 0.417 192.0 1.143 9.03

(0.69) (0.81) (0.03) (0.04) (0.00)

3 1 0.679 0.863 256.5 1.328 12.03

(0.88) (0.66) (0.01) (0.04) (0.00)

3 3 0.960 1.108 250.9 1.117 11.78

(0.83) (0.55) (0.01) (0.07) (0.00)

BIC 0.903 0.789 246.5 1.261 11.61

(0.84) (0.68) (0.01) (0.04) (0.00)
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Notes to Table 4. The table reports the empirical results for the estimation of equation (22). The first

regression dates have been selected according to the findings in Fisher et al. (2002). The regressions for

the Forecast Breakdown test Wm,n,τ contain a constant and each of the following regressors: bβt, bγt, bρt
(the rollingly estimated structural parameters in the monetary policy reaction function of the Fed), and bσ2π,t
(the inflation volatility). The column labeled “Joint” reports instead the joint test on a constant and all

the parameters bβt, bγt, bρt. P-values of the Wm,n,τ test statistic (with a HAC bandwidth equal to (τ − 1))
for testing whether the explanatory variable is insignificant are reported in parentheses. For comparison

purposes, we also report results for the unconditional tm,n,τ test. qu and qπ are, respectively, the number

of lags used for unemployment and for inflation; rows labeled “BIC” report results for the case in which the

lag length is determined at every t by the BIC with a maximum of three lags. The horizons are one month

(τ = 1), one quarter (τ = 3), and one year (τ = 12).
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