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Özgür Kafalı · Akın Günay · Pınar Yolum

The final publication is available at Springer via http://dx.doi.org/10.1007/s10619-013-7124-8

Abstract Online social networks have become an essential part of social and work life.
They enable users to share, discuss, and create content together with various others. Ob-
viously, not all content is meant to be seen by all. It is extremely important to ensure that
content is only shown to those that are approved by the content’s owner so that the owner’s
privacy is preserved. Generally, online social networks are promising to preserve privacy
through privacy agreements, but still everyday new privacy leakages are taking place. Ide-
ally, online social networks should be able to manage and maintain their agreements through
well-founded methods. However, the dynamic nature of the online social networks is making
it difficult to keep private information contained.

We have developed PROT OSS, a run time tool for detecting and predicting PRivacy
viOlaT ions in Online Social networkS. PROT OSS captures relations among users, their
privacy agreements with an online social network operator, as well as domain-based seman-
tic information and rules. It uses model checking to detect if relations among the users will
result in the violation of privacy agreements. It can further use the semantic information
to infer possible violations that have not been specified by the user explicitly. In addition
to detection, PROT OSS can predict possible future violations by feeding in a hypothet-
ical future world state. Through a running example, we show that PROT OSS can detect
and predict subtle leakages, similar to the ones reported in real life examples. We study the
performance of our system on the scenario as well as on an existing Facebook dataset.

1 Introduction

Preserving privacy has long been an important mission of Web systems. The general process
of preserving privacy is through privacy agreements. Web systems announce their policies
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through privacy agreements. Users are expected to use the system only if they are comfort-
able with the agreement. In settings, where the Web system is a single locus of computation,
carrying out privacy dealings through an agreement is reasonable. An example to such a
setting is that of an e-commerce system. The e-commerce system announces to the user
(through an agreement), whether it will share the account details or transaction details with
third parties and to what extent. Knowing this, the user can decide whether this is an appro-
priate e-commerce system for her needs.

In online social networks (OSN), though, the loci of computation is distributed. The
system that provides the social network service (such as Facebook) allows users to see each
others’ content, make comments, and even share the content with others. Hence, even if the
entire content reside in a central location, multiple entities interact to post and share content.
In such systems, it is difficult to maintain the privacy of users [4,9]. Even if the system itself
does not share the user information with other systems, other users on the social network
can propagate a private content to others, for whom the content was not initially meant for.
Or, other applications that benefit from the online social network can use private information
for marketing or presentability purposes.

One famous story is that of a man who bought a diamond ring to his girlfriend to pro-
pose and the news showed up on his girlfriend’s Facebook newsfeed before giving the ring,
obviously ruining the event, and causing Facebook a big lawsuit [1]. Another famous exam-
ple is how an individual’s location can be identified from geographic information attached
to the pictures they upload. While the online social network is not explicitly revealing the
location information itself, through inferences the location is being deciphered without the
users’ knowledge and consent [14]. In both cases, the leaked information is not a simple pri-
vacy agreement violation. That is, the OSN operator does not immediately violate a privacy
agreement. However, the relations among users and the inferences that are possible among
the content make it possible for third parties to become aware of information that is actually
private.

Hence, in systems that provide online social networks, even when a system operator
correctly follows the privacy agreement that it announces, the privacy of users can easily be
breached through interactions with other users. How can a user be sure that the content it
publishes does not reach individuals that she does not want? The above discussion clearly
shows that relying on static privacy agreements and hoping for the best does not solve the
problem. On the contrary, there is a great need for a dynamic approach that will (1) ac-
tively detect if a person’s privacy is being breached at run time and (2) reason on the user’s
expectations to see if any unspecified situations might jeopardize her privacy.

Actively detection privacy breaches will require tools that monitor how an OSN is evolv-
ing to signal any situations that will cause privacy violations and preferably even signal fu-
ture situations that might be possible and cause privacy violations later. Here, we understand
a privacy violation as a situation where a private content is being shared with certain indi-
viduals that should not be shown the content. An obvious reason for a privacy violation is
the non-compliance of the OSN operator with the privacy agreement. The OSN operator can
detect and correct such cases by aligning its behavior with its privacy agreements. A more
subtle reason for privacy violations is the conflict that can easily exist between various pri-
vacy agreements. In such cases, only one of the agreements can be satisfied and the second
privacy agreement is violated, causing a privacy violation. Following the above example, a
tool that could warn the future groom (and the OSN) that the OSN’s working could lead to
a privacy violation, before it even took place would have been tremendously useful. This
would imply that the tool would check the current state of the system, possible future states
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in which the system can evolve in, and decide if any of these states are potentially harmful
for the user.

Reasoning on the user’s expectations will require understanding the user’s constraints
and following up on possible constraints that have not been explicitly specified. Following
the above example, it is not sufficient to manually configure the system to hide the location
information from pictures. The system should understand the constraint enough to general-
ize that any media that gives away the location information need to be handled delicately.

Accordingly, we propose PROT OSS, a run time tool to detect and predict possible
privacy breaches in online social networks. The main technique underlying our approach
is model checking, which given a model of the system verifies whether certain properties
hold [8]. Our system model represents the privacy agreements of an OSN with its users and
the relations between the users formally. PROT OSS uses semantic information such as a
content ontology and inference rules to reason on users’ expectations. Using PROT OSS,
we can check interesting properties such as whether a user’s content may reach to some
individuals who are not intended to see that content in the first place or whether private
information of a user may be revealed to third parties due to various relations in the social
network. We show that PROT OSS can detect and predict subtle information leakages that
are not easy to detect in conventional OSNs and that it can even suggest certain leakages for
contents that are not declared private in the first place. We demonstrate these over scenarios.
We then experiment with a Facebook dataset to study the applicability of our approach.

The rest of this paper is organized as follows. Section 2 provides the necessary techni-
cal background on commitments, model checking, and ontologies. Section 3 describes our
privacy architecture with its main components. Section 4 illustrates a social network with
possible instantiations of components and provides intuitive scenarios that can take place.
Section 5 provides the details of PROT OSS, which is used to detect and predict privacy
violations. Section 5.1 evaluates our approach on the given scenarios and presents perfor-
mance results. Finally, Section 6 discusses our contributions and results with respect to the
literature.

2 Technical Background

There are three important techniques underlying our approach. The first one is the abstrac-
tion of commitment among individuals when carrying out agreements [21]. The second one
is checking models of systems to verify whether certain properties hold in the system [8].
The third one is the use of ontologies to define the semantics of concepts related to OSNs
and privacy and reason about their relationships [13,19].

2.1 Commitments

A commitment is an agreement from one party to another to bring about a certain prop-
erty, if a specified condition is achieved [21]. For instance, a social network operator may
commit to one of its users Charlie to share his location with another user Patty, only if Char-
lie and Patty are friends. More formally, a commitment is denoted as C(debtor, creditor,
antecedent, consequent), which states that the debtor is committed to the creditor to bring
about the consequent, if the antecedent is achieved [26]. We can represent the above case
the formal notation by generalizing it to every friend of Charlie as follows: C(operator,
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charlie, friend(charlie,X), shareLocation(charlie,X)), where the social network oper-
ator (operator) is the debtor, charlie is the creditor, the antecedent friend(charlie,X) rep-
resents charlie and some another user X are friends and the consequent shareLocation(charlie,X)
represents that the location information of charlie is shared with X.

A commitment is not just a static representation of an agreement. Instead, it is an active
entity that reflects the current state of the underlying agreement. In order to achieve this,
a commitment is associated with a state that evolves over time in coordination with the
status of the represented agreement [26]. A commitment is created in conditional state, in
which neither the antecedent nor the consequent of the commitment is achieved. When the
antecedent of the commitment is achieved, the state of the commitment changes to active. If
the consequent of the commitment is satisfied, then the state of the commitment changes to
fulfilled. On the other hand, if the consequent of the commitment fails while the commitment
is active, then the state of the commitment changes to violated. Let us discuss the meaning
of these states from the debtor and creditor’s point of view using the above example. In
the above example the commitment from the Operator to Charlie is initially in conditional
state. If Charlie creates a friend relation with somebody, say Patty, then the commitment
becomes active. From now on, it is the responsibility of the Operator to provide the location
of Charlie to Patty and fulfill its commitment. On the other, if the Operator fails to provide
the location of Charlie to Patty, then it violates its commitment.

Commitments provide a suitable mechanism to represent agreements between parties in
a dynamic manner. Our example represents a basic agreement with a single term between
two parties. However, commitments can be used to handle more complex situations, where
agreements can have multiple terms. Additionally, by combining multiple commitments,
interactions between more than two parties can also be captured [26].

2.2 Model Checking

Model checking is a computational method to automatically verify whether a certain prop-
erty holds in a given system [8,15]. The system under consideration is modeled as a state
transition graph in some formal language and the property that is aimed to be verified is
represented as a logic formula in a suitable language, such as linear temporal logic (LTL) or
computation tree logic (CTL) [11]. Given the system model and the logic formula of the in-
vestigated property, a model checking algorithm verifies whether the system model satisfies
the property.

In this work we use NuSMV, a state of the art model checker that is based on the use
of binary decision diagrams [7]. A NuSMV model defines a set of variables and how these
variables evolve according to the possible executions of the modeled system. For instance,
a variable may represent that two users are friends in a social network and evolution of
this variable can be modeled according to the operations provided on this relation by the
modeled social network. In other words, a NuSMV model defines the underlying operational
mechanism of the considered system. Once there is such a model, NuSMV can be used to
verify certain properties of the model. For instance, a property of the social network about
privacy could be that the location of a user is not revealed to other users that are not friends.

NuSMV uses CTL to represent properties that are aimed to be verified. CTL is a branch-
ing time logic, where the future is modeled as a tree structure in which each branch corre-
sponds to a possible different future. CTL formulas are built up from a set of propositional
variables, the usual logic connectives and a set of temporal modal operators. The first type
of temporal operators are A and E, which quantify over paths. A stands for all and means
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that the quantified formula has to hold on all paths. E stands for exists and means that the
quantified formula has to hold at least on one path. The other four temporal operators X, F ,
G and U are specific to a single path. X stands for next and means that its bounded formula
has to hold at the next state of the given path. F stands for eventually and means that the
bounded formula has to hold eventually at some future state(s) of the given path. G stands
for globally and means that the bounded formula has to hold at all future states of the given
path. Finally, U stands for until and it is the only binary operator which means that the first
formula bounded to U has to hold until the second formula starts to hold.

2.3 Ontologies

An ontology is a conceptualization of a particular domain [13,19]. An ontology enables
specification of domain concepts and their relations semantically. The concepts are defined
using their properties. The relations enable concepts to be tied together. A common relation
between concepts is the isA relation, which denotes that one concept is a type of another
concept (e.g., a cat isA animal). With only isA relation, one can define a hierarchy over
the concepts. Obviously, more relations can be added to the ontology to make the domain
representation rich. Once a domain is represented as an ontology, one can reason on it and
make inferences. For example, a rule that applies to animals should also apply to cats, since
cat is a type of an animal based on the ontology.

From a privacy perspective, content related to privacy can be thought of as a domain
and represented as an ontology. For example, if a user only wants its media contents to be
shown to other users, an ontological reasoning can discover that pictures are types of media
and would show that information, whereas someone’s e-mail address is not a type of media
and therefore would not be shown to others.

3 Privacy-Aware OSN Architecture

We are interested in online social networks (OSNs) that are administered by an OSN opera-
tor. Each user can post content as it sees fit. The content could vary. One can post personal
information such as her location, the people she is with, and so on as well as links to news,
jokes and so forth. Our primary aim in this work is the first set of information since we are
interested to see how private information can float in the system.

Since it is a social network, users are related to each other. As in newer social networks,
users can be related to each other through different relations. For example, Charlie could be
a friend of Sally but a colleague of Linus. These relations identify how much and of what
type of content would be shared with other users. For example, Charlie would share his
whereabouts with his friends, but may not want to share this with colleagues. Essentially,
the OSN operator is responsible for ensuring that these expectations are met. That is, the
OSN operator is supposed to ensure that only the users with the right privileges are shown
private content.

Fig. 1 demonstrates the architecture that we use to check privacy agreements. The cir-
cles represent the users, who provide content to the system. The users are connected to each
other through relations. Among each user and the OSN operator, there exists a privacy agree-
ment. This is an agreement that contains clauses about which relations are entitled to which
privileges. For example, an agreement between Charlie and the OSN operator can state that
all friends of Charlie are entitled to see his location. This is not a static agreement. That is,
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Fig. 1 Overview of a privacy-aware OSN architecture.

as Charlie creates more relations with other users or creates different types of content, this
privacy agreement is updated accordingly.

OSN operator is responsible for realizing the clauses in the privacy agreement. However,
it might be the case that based on the relations or newly added agreements, some privacy
agreements cannot be honored, thereby leading to a privacy violation. For this reason, OSN
operator needs a privacy checker to check as needed whether it can honor a certain clause in
a privacy agreement. The privacy checker we propose here is PROT OSS.
PROT OSS uses the network information as well as the privacy agreements to decide

whether the agreements can be honored in the system. For example, assume that Charlie, i)
wants his friends to see his location but, ii) does not want any of his colleagues to see his
location and OSN agrees to honor this through a privacy agreement. Assume that during the
execution of the system, Charlie identifies Linus both as a colleague and a friend. This puts
OSN in a conflicting situation since if he lets Linus see Charlie’s location it will honor part
of the agreement but violate the second part. If the OSN does not show the location, then
it will violate the first part but honor the second part. In this case, OSN should let Charlie
know of the situation and maybe let him decide what to do.
PROT OSS can be used in two modes. First, it can be used to detect privacy violations

by the OSN operator in the current state of the world based on the available information.
The detection of violations is expected to lead to corrections in the system. Second, it can
be used to predict privacy violations by considering possible futures of the world. That is, it
might be the case that even though there is no privacy violation right now, if certain relations
hold in the future (e.g., two users become friends), then a privacy violation might occur. It is
useful to know under which circumstances this violation would take place. Prediction can be
initiated either by the user or the OSN. The user might create a hypothetical future and query
PROT OSS to see if in this possible future state, a violation would take place. Alternatively,
OSN operator can use PROT OSS to generate a possible future state in which a violation
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would take place. In this case, the generated future state would contain a set of relations that
need to hold for a violation to take place. The prediction of violations would help users or
the OSN to avoid certain world states before they even take place.

4 Running Example

In this section, we present an example OSN in Fig. 2 that we use as a running example in
the rest of the paper. In the following, variables X,Y, Z are over users and L, I, V are over
location, picture and video contents, respectively.

charlie

picture(charlie,pictureBeach)
video(charlie,videoBeach)

shares

C1, C2, C3, C4, C5, C6

privacy agreement

linus sally

patty

location(patty,istanbul)
with(patty,charlie)

shares

colleague

friend

friend

Fig. 2 Initial state of the example online social network including users, relations, shared content, and privacy
agreements.

i. Users: In the example OSN we have four users; charlie, patty, sally and linus. The
users are represented by double-lined circles in Fig. 2.

ii. Relations: The users of the example OSN can initiate or terminate relations among
themselves. This is a typical property of online social networks [6]. We assume that there
are two types of relations:

– friend(X, Y ): Users X and Y are friends.
– colleague(X, Y ): Users X and Y are colleagues.

In Fig. 2, the relations are represented by the bi-directional edges between the users,
which are labeled as friend and colleague depending on the type of relation between the
users. For instance, while users charlie and patty are in a friend relation, charlie and
linus are in a colleague relation. We assume that if a relation is not initiated, then it does
not hold (e.g., charlie and sally are not friends in the example OSN).

iii. Content: To complement the relations in the example OSN, we have the following
types of content that can be shared by the users:

– location(X, L): User X is at location L.
– with(X, Y ): User X is with user Y .
– picture(X, I): User X posts a picture I.
– video(X, V ): User X posts a video V .
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In Fig. 2, the content that is shared by a user is represented by a rectangle, which includes
the listings of the shared content instances. Each rectangle has an incoming dashed directed
edge from a user, which is labeled as shares, to indicate the user who shares the content. For
instance, patty shares the content that she is in Istanbul (i.e., location(patty, istanbul)).

iv. OSN operator: The example OSN in Fig. 2 is managed by a single OSN operator (not
represented in the Fig. 2 for brevity). In particular, we are interested in how the OSN operator
manages user access to the shared content. In this context, we assume that the operational
behavior of the OSN operator is defined by a set of conditional behavior rules as presented
below. In the following, we define a specific visible predicate for all types of contents (e.g.,
visibleLocation, visibleP icture, etc.), which states that the specified content is visible (i.e.,
accessible) to a defined user.

– B1: visibleWith(with(X, Y ), Z) ← friend(X, Z) ∨ friend(Y , Z): This rule states
that if the user Z is a friend of either user X or Y then the OSN operator reveals the
content that X and Y are together to Z.

– B2: visibleLocation(location(X, L), Y ) ← friend(X, Y ): This rule states that if the
user Y is a friend of user X, then the OSN operator will show X’s location L to Y .

– B3: visibleP icture(picture(X, I), Y )← friend(X, Y ): This rule states that if the user
Y is a friend of user X, then the OSN operator will show X’s picture I to Y .

– B4: visibleV ideo(video(X, V ), Y )← friend(X, Y ): This rule states that if the user Y
is a friend of user X, then the OSN operator will show X’s video V to Y .

For a particular example, consider B3 in the case of users charlie and patty. charlie
and patty are friends in the OSN (i.e., friend(charlie, patty)). Besides, charlie shares
the picture pictureBeach (i.e., picture(charlie, pictureBeach)). Hence, the OSN operator
reveals the content pictureBeach to patty.

We assume that a particular content is visible to a given user only if one of the rules
B1 − B4 is applicable considering that user and the content. Otherwise, the OSN does not
allow the user to access the content. For instance, in the case of charlie and linus, the
picture of charlie is not revealed to linus by the OSN operator, since none of the rules is
applicable.

v. Privacy agreements: A privacy agreement between a user and the OSN operator is a set
of commitments made from the OSN operator to the user about how the content shared by
the user is revealed to the other users. For brevity, in our running example we present only
the privacy agreement of charlie that includes the following commitments:

– C1: C(osn, charlie, friend(charlie, Y ), visibleP icture(picture(charlie, I), Y )): The
OSN operator commits to charlie that his friends will be able to see his pictures.

– C2: C(osn, charlie, friend(charlie, Y ), visibleWith(with(charlie, Z), Y )): The OSN
operator commits to charlie that his friends will be able to see who he is with.

– C3: C(osn, charlie, friend(charlie, Y ), visibleLocation(location(charlie, L), Y )):
The OSN operator commits to charlie that his friends will be able to see where he is.

– C4: C(osn, charlie, colleague(charlie, Y ), ¬ visibleP icture(picture(charlie, I), Y )):
This commitment is slightly different from the first tree. Here, the OSN operator com-
mits to charlie that his colleagues will not see his pictures.

– C5: C(osn, charlie, colleague(charlie, Y ),¬ visibleWith(with(charlie, Z), Y )): Again,
the OSN operator commits to charlie that his colleagues will not see who he is with.

– C6: C(osn, charlie, colleague(charlie, Y ), ¬ visibleLocation(location(charlie, L),
Y )): The OSN operator commits to charlie that his colleagues will not see where he is.
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In Fig. 2, the privacy agreement of charlie is represented by the rectangle that includes
the listings of the commitment instances and has an incoming dashed directed edge from
charlie, which is labeled as privacy agreement. For brevity, we write only the IDs of the
commitments as listed above.

At this point, note the difference between the behavior rules we define earlier and a
privacy agreement. The behavior rules state how the OSN operator is going to act (based on
its design and implementation) whereas the privacy agreement states what the OSN operator
promises to a user. The behavior rules are private to the OSN operator, whereas the privacy
agreement is shared between a user and the OSN operator. Ideally, the behavior rules and
the privacy agreement should be compatible, such that the OSN operator would act in a
way that honors its agreement with the user. However, in reality this might not be the case,
leading to privacy violations. In this context, next we describe several scenarios that might
occur in the example OSN. We first present five scenarios focusing on the detection of
privacy violations (Scenarios 1-5). In these scenarios, the OSN operator checks whether it is
fulfilling its commitments (i.e., privacy agreements) to the user charlie in the current state
of the OSN. Then we present two scenarios focusing on the prediction of privacy violations
before they actually occur (Scenarios 6-7). In these scenarios, the user charlie tries to predict
possible breaches of his privacy by making assumptions about future relations of the other
users.

Scenario 1 According to the commitment C4 in the privacy agreement of charlie, pictures
of charlie should not be revealed to his colleagues. Hence, linus should not be able to see
charlie’s picture pictureBeach. Given the network setting in Fig. 2, the aim of the OSN
operator is to detect whether it is possible for linus to see pictureBeach.

Scenario 2 According to the commitment C6 in the privacy agreement of charlie, location
of charlie should not be revealed to his colleagues. Hence, linus should not be able to see
charlie’s location. In the setting of Fig. 2, charlie does not share his location, but patty
does (indirectly), since she shares that she is with charlie and she is in Istanbul. From this
information it is easy to conclude that charlie is in Istanbul too. Hence, in this setting, the
aim of the OSN operator is to detect whether it is possible for linus to find out charlie’s
location.

Scenario 3 As charlie stated in his privacy agreement, he does not want his colleagues to
view his pictures (C4). However he has not made any statement about his videos (knowingly
or unknowingly). Is it possible to make further reasoning to infer that videos are by nature
similar to pictures and if any videos of charlie are being seen by colleagues, might it be
worthwhile to notify him?

Scenario 4 Assume that charlie meets sally in Istanbul and adds her as a friend in the
OSN. Hence, the OSN evolves into a state we represent in Fig. 3. The aim of the OSN
operator is to detect whether charlie’s picture is visible to linus in this new state of the
OSN.

Scenario 5 In the new state of the OSN, after the new friend relation between charlie and
sally was initiated, sally shares that she is in Istanbul and she is with charlie. Is it possi-
ble for linus to learn charlie’s location after sally shares this information, which causes
violation of charlie’s privacy agreement?

In the following two scenarios we go back to the initial state of the OSN (i.e., charlie
and sally are not friends yet) and charlie tries to predict possible future breaches of his
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charlie

picture(charlie,pictureBeach)
video(charlie,videoBeach)

shares

C1, C2, C3, C4, C5, C6

privacy agreement

linus sally

location(sally,istanbul)
with(sally,charlie)

shares

friend

patty

location(patty,istanbul)
with(patty,charlie)

shares

colleague

friend

friend

Fig. 3 Evolved state of the example online social network after charlie adds sally as a friend.

privacy depending on the evolution of relations between the users. In this context charlie
uses his own knowledge about the OSN (i.e., his existing relations), which we represent
in Fig. 4. Besides his own knowledge, he can make also assumptions about the possible
relations of the other users, if such information exists via any source. For instance, charlie
may assume patty and linus are not friends. charlie may make this assumption since he is
a friend of patty and knows she is not friend with linus.

charlie

picture(charlie,pictureBeach)
video(charlie,videoBeach)

shares

C1, C2, C3, C4, C5, C6

privacy agreement

linus sally

patty

location(patty,istanbul)
with(patty,charlie)

shares

colleague

friend

Fig. 4 charlie’s knowledge about the OSN in the initial state (i.e., before adding sally as a friend).

Scenario 6 charlie is a cautious user and desires to find out what would it take for linus to
see his pictures. That is, what relations in the OSN need to be initiated between the users of
the OSN in the future for this information to leak? In this scenario, charlie chooses not to
make any assumptions about the relations of the other users.

Scenario 7 charlie wants to add sally as a friend. But he is concerned that this may cause
linus to see his pictures. Therefore, before adding sally as a friend, he wants to find out
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MODULE commitment ( an t , cons )

CONSTANTS CONDITIONAL , ACTIVE ,
FULFILLED , VIOLATED ;

DEFINE
s t a t u s :=

c a s e
! a n t : CONDITIONAL ;
a n t & cons = Undete rmined : ACTIVE ;
a n t & cons = True : FULFILLED ;
a n t & cons = F a l s e : VIOLATED ;

e s a c ;

MODULE neg commitment ( an t , cons )
CONSTANTS CONDITIONAL , ACTIVE ,

FULFILLED , VIOLATED ;
DEFINE

s t a t u s :=
c a s e

! a n t : CONDITIONAL ;
a n t & cons = Undete rmined : ACTIVE ;
a n t & cons = F a l s e : FULFILLED ;
a n t & cons = True : VIOLATED ;

e s a c ;� �
Listing 1 Definition of the commitments module in NuSMV.

whether his pictures would be visible to linus if he adds sally as a friend. In this scenario,
charlie also assumes patty and linus are not friends.

5 PROT OSS for Detecting and Predicting Violations

The reasoning necessary for the scenarios above is done by PROT OSS. PROT OSS has
two important components: commitment component, which is responsible from checking
the state of the commitments (i.e., privacy agreements) and the semantic component, which
is responsible for performing semantic reasoning.

Commitment Component: The PROT OSS engine uses NuSMV model checker as a
core component. However, NuSMV is by itself not capable of checking models with com-
mitments in them. Hence, we have first introduced a commitment module into the NuSMV
model checker, based on Telang and Singh’s work [22].

Listing 1 provides the commitments module that we use to describe commitments. This
module reflects the evolution of commitment states according to the values of the antecedent
and the consequent as described in Section 2.1. We have modeled two types of commitments
in terms of the fulfillment of the consequent. The consequent can have three values: (i)
Undetermined means that the value of the consequent is not known at that point in time,
(ii) True means that it is satisfied, and (iii) False means that it is unsatisfied. Accordingly,
the first commitment type corresponds to a promise such that the commitment is violated
if the consequent is unsatisfied. These commitments are labeled as commitment in the
commitment module of PROT OSS.� �
c3 : commitment ( f r i e n d c h a r l i e p a t t y ,



12 Özgür Kafalı et al.

v i s i b l e l o c a t i o n c h a r l i e p a t t y ) ;� �
The listing above shows a commitment instance of C3 in our running example in Sec-

tion 3, in which the OSN operator commits to charlie to show his location to patty (visi-
ble location charlie patty), if charlie and patty are friends (friend charlie patty). Initially
when charlie and patty are not friends the commitment is conditional (i.e., antecedent
friend charlie patty does not hold) and the OSN operator should not show charlie’s lo-
cation to patty. When the friend relation is initiated, the commitment is in active state.
Note that the value of the consequent visible location charlie patty is unknown yet. Once
the OSN operator reveals the location of charlie to patty, the value of the consequent vis-
ible location charlie patty is true and the commitment is fulfilled. On the other hand, the
commitment is violated if the OSN fails to show charlie’s location to patty (i.e., conse-
quent visible location charlie patty is false).

On the other hand, the second commitment type corresponds to a prohibition where the
commitment is violated when the consequent is satisfied. These commitments are labeled as
neg commitment in the commitment module of PROT OSS.� �
c6 : neg commitment (

c o l l e a g u e c h a r l i e l i n u s ,
v i s i b l e l o c a t i o n c h a r l i e l i n u s ) ;� �

The listing above shows such a commitment instance of C6 in our running example in
Section 3, in which the OSN operator commits to charlie to not to show his location to linus

(visible location charlie linus), if charlie and linus are colleagues (colleague charlie linus).
This commitment is fulfilled when the location of charlie is not visible to linus (i.e., visi-
ble location charlie linus is false) and violated if the location of charlie is visible to linus

(i.e., visible location charlie linus is true).

Semantic Component: An important component of PROT OSS is its semantic reasoning
to derive new information from existing knowledge. In order to do this, it makes use of
an ontology that captures the definitions and semantic relations of contents. The domain
represented in the ontology corresponds to the domain that a user may share with others,
such as her location, pictures, and so on. The ontology would capture facts such as a person’s
location is a type of personal information, or a person’s picture is a type of her media content.

The ontology is used in two ways in PROT OSS. The first one is to refine commit-
ments. For example, if OSN commits to a user not to share any of her information, then a
quick reasoning on the ontology would yield that neither a person’s location nor her pictures
can be shared. Second, undefined privacy concerns can be discovered through the ontology.
This is an extremely important aspect of reasoning. Generally, most approaches to privacy
assume that if an OSN is not instructed properly on how to treat a particular type of content,
then the fault lies with the user. However, in many cases, OSN can, and should, make real-
istic assumptions based on what the user has already told it. For example, if a user did not
want her e-mail address to be shown but has not made any specific demands about her phone
number, one can assume that this information should also be treated private since both an
e-mail address and a phone number are similar types of information; i.e., enable users to
be accessed through different means. However, if no claims have been made about the age
information, not much can be inferred since an e-mail address and age are categorically dif-
ferent. To realize this reasoning, we compute the similarity of concepts in the ontology. To
keep this simple, we assume that siblings of a concept are similar and non-siblings are not.
While this simplification is enough to illustrate our purposes, in a real system one can easily
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Fig. 5 Overview of the privacy violation detection process of PROT OSS. PROT OSS (rectangle in the
middle) takes a privacy concern (incoming straight line) along with various types of information from the
social network (incoming dashed lines) as input and outputs whether the privacy concern holds (outgoing
dashed lines).

apply more sophisticated semantic similarity metrics from the literature [20,24] to compute
more accurate similarities.

The ontology is used to make reasoning on the concepts, mainly to identify similar
concepts. However, information on how concepts affect each other is kept separately as
inference rules. An example inference rule is the following:� �
v i s i b l e ( l o c a t i o n (Y, L ) , Z ) ←

v i s i b l e ( w i th (X, Y) , Z ) ∧
v i s i b l e ( l o c a t i o n (X, L ) , Z )� �

This rule states that if X and Y are together and this fact is visible to Z, then when
Z knows the location of X, he will also know the location of Y . Another example is the
following:� �
v i s i b l e ( p i c t u r e (Y, I ) , Z ) ←

v i s i b l e ( p i c t u r e (Y, I ) , X) ∧
f r i e n d (X, Z )� �

This rule states that if picture I of Y is visible to X and X is a friend of Z, then Z can
see I. The reasoning is that X may repost I and if so, due to friendship between X and Z,
Z can see I. These rules define semantic relations among concepts in the real world so that
PROT OSS can make further inferences beyond its privacy agreement.

Usage (Detection): The first use of PROT OSS is detecting privacy violations. Detecting
a violation means that at the current state of the system, OSN violates at least one of its
commitments to its users and therefore a user’s privacy is at risk. OSN can check whether
it is in such a situation by presenting privacy concerns that can be checked against the
current system state. We present the overview of the privacy violation detection process
in Fig. 5. The OSN operator feeds the privacy agreement, user relations, shared content
and the ontology to PROT OSS in addition to a privacy concern and PROT OSS checks
whether the concerned privacy breach exists in the current state of the OSN.� �
−−P1
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SPEC
AG ( c o l l e a g u e c h a r l i e l i n u s −>

AF c4 . s t a t u s = VIOLATED ) ;

−−P2
SPEC

AG ( c o l l e a g u e c h a r l i e l i n u s −>
AF c6 . s t a t u s = VIOLATED ) ;� �

Above we give two example privacy concerns represented as CTL formulas. The first
concern (P1) is about a possible breach of charlie’s privacy with respect to the visibility of
his picture to his colleague linus (i.e., C4 is violated). Let us explain the privacy concern
in detail. The privacy concern states that in all possible future states of the OSN (AG), if
charlie and linus are colleagues (colleague charlie linus), then eventually C4 is violated
(AF c4.status = VIOLATED). PROT OSS uses the NuSMV model checker to check this
privacy concern. Then, if the model checker returns true, which means the privacy concern
holds, PROT OSS reports this privacy violation. On the other hand, if the model checker
returns false, which means the privacy concern does not hold,PROT OSS reports charlie’s
privacy is preserved. The second privacy concern (P2) is identical to first one except it is
about the violation of commitment C6.

Usage (Prediction): While checking privacy violations that have happened is important,
predicting violations before they take place is maybe even more important. That is, if charlie
can predict that if he travels with patty then his location will leak to his colleagues, then he
might prefer not to travel or make an effort to hide his travels with patty. Hence, charlie
can actually avoid his personal information to reach third parties.

By its very nature, prediction is uncertain. In order to predict violations that might hap-
pen in a future state, one needs to make assumptions as to how the world will evolve. The
prediction results simply state that if the world evolves in conformance with the assump-
tions, then a privacy violation will take place. In many cases, one can assess the likelihood
of these assumptions. For example, assume charlie predicts that, if linus and patty become
friends, then his personal information will leak. Many time, charlie will also have a fair
idea as to linus and patty would become friends or not.

In order to realize the above reasoning, given a current state of the system, the user
first makes some assumptions about a future state of the network. These assumptions are
about the relations of other users and they are either true or false. Every other relation that
is unknown to the system are set as free variables that can be instantiated to either true
or false in different runs during the model checking process. With this state information,
OSN checks for violations. Note that since some relations are set to unknown, not only this
particular state is checked, but several variations of it are also checked. Fig. 6 shows the
usage of PROT OSS for this purpose. Notice that, compared to Fig. 5, we additionally
have a set of assumptions fed and the result is not only a decision on the violation but in the
case of violation, a hypothetical scenario in which the violation would take place.

The privacy concern below (P3) checks whether there is a chance that the OSN op-
erator’s commitment to charlie (c4) is violated at some point after it has become active.
Remember that this commitment states that charlie’s pictures will not be visible to linus if
they are not friends. A violation of this commitment means that charlie’s privacy may be
jeopardized.� �
−−P3
SPEC
AG ( ! f r i e n d c h a r l i e l i n u s −> AF c4 . s t a t u s != VIOLATED)� �
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Fig. 6 Overview of the privacy violation prediction process of PROT OSS. PROT OSS (rectangle in
the middle) takes a privacy concern (incoming straight line) along with various types of information from the
social network (incoming dashed lines) and a set of assumptions (incoming dotted line) as input and outputs
a possible evaluation of the OSN where the privacy concern holds(outgoing dashed lines).

PROT OSS has been implemented in Java and uses NuSMV as a model checker1.
It has two interfaces. The first interface is meant for detection and prediction. A system
description file is loaded to the system and a privacy concern in the form of a CTL formula
is given to be checked. For detection, the system file specifies all necessary relations as
TRUE or FALSE and the checking of the privacy concern states whether there is a privacy
violation or not. For prediction, the user can alter the relations, creating a prediction setting.
The relations that are set as either TRUE or FALSE are known facts about the system. The
relations that are left as TRUE, FALSE are those that can take any value in the future. By
setting these relations as desired, a user can create a hypothetical future state and then ask
OSN to check for violations according to the commitment given in the formula. The output
shows the combination of relations that will lead to a violation, if any violation is to occur.
Fig. 7 shows a screen-shot of this interface for prediction.

Usage (Analysis): If desired, PROT OSS can also be used to generate and analyze OSNs
in terms of performance. When this is the case, one would want to generate an example
OSN from scratch. In order to do this, we would need to feed information for generation of
the OSN, such as the number of users, the relations, and so on. With this information, an
example OSN can be generated and then studied. Fig. 8 shows a screen-shot of the second
interface of PROT OSS2. From the interface, we can create a social network (together
with its relations) according to the number of users set or we can simply upload an existing
social network specification, similar to the one in Section 4. If the creation option is set,
then the relations and commitments are instantiated exhaustively. Once the model of the
social network is created (on the left pane), we can again check whether the properties of
interest are satisfied by the model. After the execution is completed, the output of the check
(whether the privacy concern of interest holds) is shown with relevant performance statistics
(on the right pane). These statistics contain information on the speed of checking as well as

1 This implementation can be downloaded from http://mas.cmpe.boun.edu.tr/ozgur/
code.html, under Section “5. Experiments for Predicting Privacy Violations with PROTOSS”.

2 This implementation can be downloaded from http://mas.cmpe.boun.edu.tr/ozgur/
code.html, under Section “4. Experiments for Model Checking Privacy Agreements”
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Fig. 7 PROT OSS interface for detecting and predicting privacy violations. In the case of prediction, the
“Relations” panel is used to define assumptions. The lower panel shows the hypothesis that leads to a privacy
violation (if any violation exists).

the number of states generated to perform the check. These can be useful in understanding
the memory and speed requirements for various privacy concern checks for various OSN
sizes.

We mainly evaluate our approach on the scenarios given in Sections 4. The aim of this
evaluation is to depict how PROT OSS works on various cases. In addition to this, we
provide a performance analysis to illustrate the resource requirements for the system.

5.1 Evaluations of Scenarios

Here, we simulate the scenarios described in Section 4. Then, based on the outcome pro-
duced by PROT OSS, we comment on how these settings have an effect on the privacy
of charlie. Table 1 shows the results of our execution for detecting privacy violations that
correspond to Scenarios 1–5. False means that the privacy concern does not hold for that
scenario, while true means the privacy concern holds. Since we are checking whether a
commitment is violated, true corresponds to a violation and thus breach of privacy and false
corresponds to no violation.
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Fig. 8 PROT OSS interface for generating and analyzing social networks. Given the model parameters,
the left panel shows the NuSMV model of the generated network. The right panel shows the result of the
model checking process.

Scenario Privacy Concern Result
Scenario 1 AG(colleague charlie linus→ AF c4.status = VIOLATED) False

Scenario 2 AG(colleague charlie linus→ AF c6.status = VIOLATED) False

Scenario 3 AG(colleague charlie linus→ AF c4.status = VIOLATED) False

Scenario 4 AG(colleague charlie linus→ AF c4.status = VIOLATED) True

Scenario 5 AG(colleague charlie linus→ AF c6.status = VIOLATED) True

Table 1 Privacy violation detection results for the scenarios. The first column identifies the scenario, the
second column shows the privacy concern and the third column presents the outcomes of the privacy violation
detection.

Scenario 1: In this scenario, the OSN operator aims to detect whether charlie’s picture
could be seen by his colleague linus by violating his privacy agreement (i.e, C4 is vio-
lated). Remember that the OSN is in its initial state as presented in Fig. 2. When we run
PROT OSS for detection on this privacy concern we see that it returns false (Table 1).
That is, C4 is not violated and hence it is not the case that charlie’s picture is revealed to
linus. Therefore, privacy of charlie is preserved.

Scenario 2: In this scenario, the OSN operator aims to detect whether charlie’s location
could be found by his colleague linus by violating his privacy agreement (i.e, C6 is vi-
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olated). As in the previous scenario, the OSN is in its initial state as presented in Fig. 2.
When we run PROT OSS for detection on this privacy concern we see that it returns false
(Table 1). That is, C6 is not violated and hence it is not the case that charlie’s location is
revealed to linus. Therefore, privacy of charlie is preserved.

Scenario 3: If we look at the privacy agreement of charlie we see that there is no statement
about charlie’s videos. However, as shown in Fig. 2, charlie shares his video beachV ideo.
Since nothing is stated about videos in charlie’s privacy agreement, the OSN operator can
show his videos to any other user without breaching charlie’s privacy. On the other hand,
C4 in the privacy agreement of charlie states that charlie does not want his pictures to
be shown to his colleagues. Since both pictures and videos are semantically similar visual
content the OSN operator may realize that charlie might prefer to keep his videos not visible
to his colleagues as his pictures. PROT OSS achieves this kind of reasoning using its
semantic component. In this context, while checking the privacy concern about charlie’s
pictures, PROT OSS also performs a similarity check among contents shared by charlie

that are similar to picture and discovers that charlie shares a video (which is similar as
a media type to a picture). From Scenario 1 we know that the pictures of charlie are not
shown to his colleagues, hence his privacy is preserved. Accordingly, we can conclude that
charlie’s videos are also not visible to his colleagues. Without semantic reasoning, it would
be difficult to make this conclusion. Instead a regular OSN operator would assume that since
no commitment has been done about the videos, it would be free to distribute them. We can
conclude that with semantic reasoning, OSN operator can detect this subtle similarity and
can inform charlie about the situation of his videos. In this case, charlie would be free to
update his privacy agreements to disable showing videos or to keep them the way they are
now.

Scenario 4: In this scenario the OSN is evolved into the state in Fig. 3 due to the new
relation between charlie and sally. In this scenario, the privacy concern is whether charlie’s
picture could be seen by his colleague linus (i.e, C4 is violated). When we run PROT OSS
for detection on this privacy concern we see that it returns true (Table 1). That is, C4 is
violated and hence it is the case that charlie’s picture is seen by linus. The reason is the new
friend relation between charlie and sally. Due to this relation and the behavior rule B3 of
the OSN operator, sally can see pictures of charlie. Besides, sally can share these pictures
too, which are visible to linus. Hence, linus can see pictures of charlie which violates
c3 and causes violation of the privacy agreement of charlie. Note that, in this scenario, the
OSN operator does not reveal the picture of charlie directly to linus, however, the picture is
propagated to linus to the chain of relationships between the users. Hence, such a violation
cannot be captured, if the OSN operator only considers whether it reveals the picture of
charlie directly to linus.

Scenario 5: As in the previous case, in this scenario we consider the OSN is evolved into
the state in Fig. 3 due to the new relation between charlie and sally. In this scenario, the
privacy concern is whether charlie’s location could be found by his colleague linus (i.e, C5

is violated). When we run PROT OSS for detection on this privacy concern we see that it
returns true (Table 1). That is, C5 is violated and hence it is the case that charlie’s location is
found by linus. However, note that charlie actually does not share his location to anybody.
Hence, it is not expected linus to find out his location. But this is a faulty expectation.
Although, the location of charlie is not shared by himself, his new friend sally does this
indirectly by telling that she is with charlie and she is in Istanbul. Since linus is a friend
of sally, he can access to this information and easily conclude that charlie is in Istanbul
too. Note that, similar to the previous case, the OSN operator actually does not reveal the
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location of charlie directly to linus. Moreover, charlie’s location is actually not known
by the OSN operator, since charlie does not share this content. However, this information
is deduced by linus using the content shared by sally, which causes a privacy breach for
charlie.

Next we study how PROT OSS responds to prediction cases. Table 2 summarizes our
results for Scenarios 6–7. For each scenario, we show the privacy concern we check, its
prediction result, and in case of violation an example evolution of the OSN in which the
violation would take place. Remember that in all these scenarios the OSN is in its initial
state (i.e., charlie and sally are not friends yet) and charlie uses his own knowledge as we
present in Fig. 4 and some assumptions about the relations of other users.

Experiment Privacy Concern Result Hypothesis
Scenario 6 AG(!friend charlie linus →

AF c4.status != VIOLATED)
FALSE friend(sally,linus);

friend(charlie,sally)

Scenario 7 AG(!friend charlie linus →
AF c4.status != VIOLATED)

FALSE friend(charlie,sally)

Table 2 Privacy violation prediction results for Scenarios 6–7. The first and second columns identify the
considered scenario and privacy concern, respectively. The third column presents the outcome of the privacy
violation prediction. The last column presents the hypothesis of the predicted violation (if one exists).

Scenario 6: In this scenario charlie wants to predict what would it take for linus to see
his pictures (i.e., C4 is violated)? In this case, charlie does not make any assumption about
the relations between the other users, since this information is usually not available. So,
the only relations that charlie is certain about are his friend relation with patty and col-
league relation with linus. Therefore, the other relations that are unknown in the OSN are
set as free variables and PROT OSS considers them either existing or not-existing in dif-
ferent possible evolutions of the OSN relations. When we run PROT OSS for prediction
in this setting, it returns false. That means if some new relations are initiated in the OSN,
then C4 will be violated and linus can see charlie’s pictures. Besides capturing this sit-
uation, PROT OSS also generates a possible evolution of relations in the OSN that will
lead to the breach of charlie’s privacy. According to the result of PROT OSS, if sally and
linus are friends, and charlie initiates a friend relation with sally, then charlie’s pictures
will be visible to linus. This corresponds to the setting given in scenario 3. However, note
that herePROT OSS rather predicts these hypothetical relations (i.e., friend(linus, sally)
and friend(charlie, sally)) as a set of possible relations that might hold in a future state
and thereby cause a violation. Also note that, this is not the only way for linus to see
charlie’s picture. For instance, if linus and patty also get friends, linus can see charlie’s
picture, even if charlie and sally are not friends. Hence, the possible evolution generated
by PROT OSS is not necessarily be the only way of the OSN’s evolution that causes a pri-
vacy violation. However, PROT OSS is sound and complete thanks to its model checking
based approach. Hence, if there is such an evolution of relations for the OSN then it finds
this evolution and if an evolution is found then it leads to a violation for certain.

Scenario 7: In Scenarios 5 charlie uses only its own known relations without making
any assumptions about the relations of the other users. However, in some situations, such
information may be available from external sources. For instance, since patty is a friend
of charlie, he may know that she is not a friend of linus. In such a situation charlie can
feed this information to PROT OSS as an assumption and PROT OSS can use it to refine
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its prediction process by reducing the number of free-variables due to unknown relations
between other users. Generally speaking, when there are fewer free-variables, we expect
PROT OSS to generate more accurate predictions. That is, if one knew all the relations,
the result generated by PROT OSS would correspond to detection; i.e., the actual state of
the system. When we run PROT OSS for prediction in this setting, it returns false. That
means if some new relations are initiated in the OSN, then C4 will be violated and linus

can see charlie’s pictures. However, this time PROT OSS does not generate the possible
evolution of relation that state a friend relation between patty and linus leads to violation
of C4, since charlie explicitly states patty and linus are not friends. Hence, linus sees
charlie’s picture only if charlie and sally become friends.

The above prediction examples focus on the pictures as content, however similar predic-
tions can be made when the content being shared is a video or a location.

5.2 Performance Results

Now, we briefly study the performance results related to the workings of PROT OSS on
our privacy models. Table 3 shows the performance of PROT OSS for variations of Sce-
nario 1 on an Intel Core i7 2.9 GHz computer with 6 GB of memory running Ubuntu 12.04
64-bit OS. While the main setting is the same, we generate OSNs with varying sizes of
users. In our generations, all the users are related to each other through relations so during
checking privacy concerns we take the entire OSN into account. The results demonstrate
the number of states, the memory used, and the time consumed based on 3 to 20 user mod-
els. Note that the time and memory consumption increases exponentially since the model
grows based on the number of users, i.e., the number of possible relations among the users
increase exponentially with the number of users. For small networks, the computation times
lie within reasonable amounts. However, with large networks, the checking time can become
intolerable for quick decisions.

We have also collected the performance statistics for the prediction Scenarios (6–7). Ta-
ble 4 shows the performance of PROT OSS for those scenarios in terms of the number
of states, the memory size, and the speed. Remember that for Scenario 6, we had stated
that the user would not make assumptions about how the relations would evolve. Hence,
we had left most of the relations as free variables to take any possible value. This means
that PROT OSS would need to try different variations to see if anyone of those would
violate the privacy agreement. On the other hand, for Scenario 7, the user would make
some assumptions about how the relations would evolve and set them accordingly. Hence,
there were fewer cases to test for PROT OSS. This difference is also reflected in the per-
formances as seen in Table 4. The first case requires longer time to generate an answer
compared to the last cases. The memory requirements are harder to analyze. We speculate
that different state representations require different memory sizes, resulting in variations on
the total memory size. Analysis of memory as well as improvements on the speed are both
important directions for our future work.

5.3 Experimenting with Real Data

In order to understand how our tool can be applied to real-life social networks, we exper-
iment with an existing Facebook dataset [23]. This dataset consists of rows, where each
row lists two individuals that are related to each other and optionally a date that implies
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#Users #States Time
3 793 0.04 s

4 3.5 K 0.06 s

5 11.6 K 0.08 s

6 31.9 K 0.09 s

7 67.7 K 0.11 s

8 117.1 K 0.13 s

9 137.4 K 0.16 s

10 217.4 K 0.18 s

11 299.8 K 0.25 s

12 435.4 K 0.31 s

13 672.8 K 0.45 s

14 1.1 M 0.71 s

15 1.5 M 2.2 s

16 3.1 M 3.1 s

17 6.3 M 5.9 s

18 13.4 M 12.5 s

19 27.6 M 29.2 s

20 57.3 M 68.5 s

Table 3 Performance results for variations of Scenario 1. The columns #Users, #States and Time show the
number of users used for evaluation, the number of states generated, and the time spent for generating an
answer, respectively.

Scenario #States Time
Scenario 6 13.9 K 0.812 s

Scenario 7 14.1 K 0.734 s

Table 4 Performance results of prediction scenarios. The columns Scenario, #States and Time denote the
scenario number, the number of states generated, and the time spent for model checking, respectively.

when the relationship between the two individuals were formed. This dataset is much sim-
pler compared to our setup above. Specifically, it does not contain different type of relations
or contents, explicit privacy policies (with or without commitments), or any system behav-
ior rules. With this dataset, we create a fictitious but realistic setting. We assume that the
relations between the two individuals are friend relations. If the date is available, we take
that as the date the relationship was formed. If the date is not available, we assume that the
relationship was there all along. As is the usual privacy agreement in many social networks,
we assume that OSN will show the content posted by a user (e.g., pictures) to her friends,
but not anyone else. We reflect this in the privacy agreement of the user by a commitment
C(osn, user, ¬ friend(user, X), ¬ visible(picture(user), X)). Again, as is usual in many
online social network systems, we assume that a user can repost a content that was initially
posted by a friend.

In this setting, we focus on one particular type of privacy violation. Is it possible for a
user Y to actually view a content posted by X, even though X and Y are not friends? If
so, can we predict it before it happens? In order to answer these questions, we take a subset
of the dataset such that we begin with one user and add all of her friends and her friends’
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Fig. 9 PROT OSS interface for the Facebook dataset.

friends3. Then we partition the dataset into two based on a given date information. The idea
is to have one set of relations that already exist and a second set that will be formed in the
future according to this partition. We envision ourselves as answering questions at a time
after the first set is formed but before the second set of relations is formed. This way, we
can make predictions and then check whether those predictions hold or can hold using the
second partition.

Going back to the question, we can actually find a scenario where Y ends up viewing
a content of X, because there exists a Z that is both friends with X and Y , and shares the
content of X with Y . Hence, OSN’s commitment to X is violated. Note that this setting is
similar to Scenarios 1 and 3. Here, we can predict the violation of the commitment using
PROT OSS if we check at the right time, meaning before Y and Z become friends. Fig.
9 shows the interface of PROT OSS that realizes this setting. The input is the user to be
checked for privacy (X), the privacy concern of the user (Y will not view her content), and
the timestamp to partition the dataset. Once PROT OSS is run with this input, it will create
a NuSMV model for each friend Z of X, and check the privacy agreement of X with friends
of Z.

The output for a sample user 1645 from the dataset is shown in the figure. She does not
want user 821 to view her content given that they are not friends. PROT OSS successfully
predicts that her privacy would be violated if 821 and one of 1645’ friends were also friends.

3 In order to have a performance gain, we stop expanding the network at the friends of friends level. Recent
work on link prediction in social networks [3] have shown that it is very likely for a new friend to be already
contained in this friends of friends network.
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It can be seen from the figure that this is the case for users 16 and 53. With this information,
OSN can either warn 1645 if 821 and 16 attempt to become friends or may not allow this
relation to be formed in the first place.

We have also tested the performance of PROT OSS on the Facebook dataset using the
same computer specifications as in Section 5.2. We have made five sets of experiments by
selecting random users from the dataset. In each set, the user checks five different privacy
concerns. The details are summarized in Table 5, where for each user we list the number of
immediate friends, the total number of friend relations in the network, average number of
friends per user, and the prediction time. The results are reasonable with prediction times of
1.19 seconds for a network of 45 friend relations for each user on average. There is a linear
correlation between the number of friend relations and prediction times.

User #Users #Friends #States Prediction time
1 27 2129 894.4 K 1.75 s

163 26 1222 396.2 K 0.94 s

1645 29 679 127.1 K 0.89 s

31720 50 2294 557.6 K 1.87 s

48696 16 495 144.1 K 0.50 s

Table 5 Number of friends vs. prediction time in the Facebook dataset. #Users shows the number of users
in the network for which we have included the friend links (i.e., the number of friends the user has plus the
user herself). Note that the actual number of users in the network is much larger. #Friends shows the total
number of links between the users. #States shows the total state space used by the model checker. The average
prediction times are recorded in seconds.

To improve prediction times, we’ve pruned the model for each verification run appro-
priately so that the state space does not increase exponentially as in Section 5.2. We’ve built
a NuSMV model for each friend of the user and run it separately. This way, we could avoid
a big model that would lead to a state explosion. In addition, we do not take into account
all the relations among other users of the network which will not contribute to the privacy
check (thanks to single friend relation in the Facebook dataset). You can see from Table 5
that even though we have more users than the number of users in the experiments for Section
5.2, our model stays within reasonable state spaces.

6 Discussion

Preserving privacy of users is an essential part of any Web system, including OSNs where
information can travel fast and far. We next review relevant literature and then point out
directions for future work.

Related Work: Krishnamurthy and Wills study the leakage of personal identifiable infor-
mation in social networks [16]. They consider personal identifiable information as any piece
of information that can by itself or when combined with other information help decipher
a person’s identity. They depict different ways that such information can leak to external
applications. The types of leakages they are concerned with are generally based on HTTP
side effects that allow information to appear in URLs or cookies that can be used by other
applications. While those identified leakages by the authors are important, the types of leak-
ages we are concerned here are more high-level and may still exist even if the leakages due
to HTTP side effects are handled



24 Özgür Kafalı et al.

Fang and LeFevre point out that following a privacy agreement for a novice user is
difficult and there is a need for easy-to-use privacy specification tools for such users [12].
To address this, they develop a learning-based privacy wizard that asks for some example
cases from a user and learns with whom a user wants to share information and what kind
of. Based on this learning, the wizard decides on the privacy settings of the user. This is
certainly an important aspect of privacy. In our work, we assume that privacy agreements
can be represented and processed formally so that we can focus on the interplay between
privacy agreements and user relations.

Akcora, Carminati, and Ferrari measure how risky an individual in a social network is in
terms of privacy [2]. They develop a method in which a user’s friends’ friends are analyzed
in terms of their potential for learning and misusing personal information. The approach is
based on active learning and hence the risk is decided by the community itself. They have
adapted their approach to Facebook to detect people that can potentially violate privacy of a
user. While their aim is to identify risky individuals, our aim in this work is to help a system
decide on potential privacy violations that would stem from the relations in the system and
inform the user appropriately.

Xue, Carminati, and Ferrari develop a protocol for identifying privacy-preserving paths
in social networks [25]. They view the social network as a graph, where nodes are the users
and the edges are labeled with the relations among users. On this graph, they find paths
from one user to another that respects the relation type, strength, and trust level among
users. While this problem is different from the one we address in this paper, it would be
interesting to analyze the paths found in this approach and compare their relations to the
cases in which we detect privacy violations.

There is a large body of research on anonymization of data, including data extracted
from online social networks. Li, Zhang, and Das thoughtfully organize different techniques
that preserve privacy of social relations [18]. The general problem there is the deciphering
of social relations by attackers even after the data has been anonymized at different extents.
The identification of such relations lead to privacy violations not only for the users from
whom the information was extracted in the first place but for those who reside on the other
side of the relation.

Carminati et al. study access controls in online social networks through semantic Web
technologies, such as OWL and SWRL [6]. They model the semantic relations among users,
the resources, and actions through these technologies. They then execute security policies
using these semantic information. Our use of ontologies in this work carries a similar flavor
in representing and reasoning on the actions of users. While their focus is on access control,
our focus is on commitments and their violations. Hence, they use their system to decide on
accesses, while we use it to detect undesirable conflicts among policies and relations. We
also use semantic similarities between contents to infer privacy expectations of users.

Model checking has been used to identify a variety of failures in commitment-based
systems. Bentahar et al. consider social commitments and its operations in a Kripke-like
world model [5]. The commitment semantics and related operations are formalized with
CTL using that world model, and some properties are justified regarding desired execution
of commitment protocols. Using model checking, they verify the compliance of agents to
their commitments. In [10], two properties of commitments are considered for verification;
fulfillment and violation. In addition, safety and liveness properties of commitment proto-
cols are verified. In [22], Telang and Singh model several business patterns as commitment
interactions and map them onto CTL specifications. Then, using model checking they verify
whether the underlying operational model (built with commitment semantics and its opera-
tions) supports the business specifications. There are major differences between these works
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and our work. First of all, we are not only interested in checking whether commitments have
been violated or fulfilled through agents’ actions but also through the relations that bind the
agents. This means that even if an agent does not violate a commitment through explicit
actions, its relations with other agents can make the commitment impossible to discharge.
Second, both in the works of Bentahar et al. and Telang and Singh, the aim is to analyze the
system at design time. This is helpful to see if any commitments are going to be violated.
However, in our work relations are created at run time. Hence, we apply the model checking
at run time.

Parallel to the increasing popularity of OSNs various models have been developed to
capture evolutionary dynamics of OSNs [17,23]. These studies explain how the relations
between users in various OSNs evolve. A major finding of these studies is that most new
relations are formed between individuals, who are connected to each other through acquain-
tances. In this context, a very frequent behavior of users is closing triangles. For instance,
if the user charlie is a friend of users patty and sally, then it is frequently observed that
patty and sally also become friends at a future point. Integration of these kind of models
into our approach is a promising direction to improve both our detection and prediction per-
formances. For instance, while predicting possible privacy violations of charlie, instead of
considering all the users and their possible future relations, our approach may consider only
users that are close to charlie in the OSN, since in the light of these observations it is rea-
sonable to assume new relations that may cause to privacy violations are going to be formed
only between these close users.

Conclusion: We demonstrate here that privacy violations take place not only because OSN
operators are not meticulous enough, but also from the way an OSN system accommodates
various relations. PROT OSS uses commitments and model checking to detect privacy vi-
olations in OSNs. In various situations, it can perform semantic reasoning on its existing
knowledge to signal potentially risky situations, which were not initially identified as viola-
tions by the user. An important aspect of PROT OSS is that it can also predict violations
before they take place. Hence, it can tell its users that if certain relations or facts take place
in the world, then their privacy will be jeopardized. Users can then take necessary actions to
avoid violations.

In our future work, we plan to integrate PROT OSS into an existing OSN. The Face-
book data that we experimented with was a useful first step. However, for a large scale
experiment we would need to integrate our agreement structure and behavior rules with an
existing OSN. Such an integration will enable users to take the results ofPROT OSS evalu-
ation into account when deciding to upload content. One major challenge for this integration
is the performance. We plan to apply reduction techniques (e.g., use of relations instead of
individuals) to diminish the state space for model checking so that we can compute with a
large number of relations and inference rules. The second challenge is to develop a realistic
ontology on which one can specify realistic relations between concepts and compute accu-
rate similarities so that unspecified privacy expectations of the user can be computed more
accurately.
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