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Abstract—Although a large research effort on web application
security has been going on for more than a decade, the security
of web applications continues to be a challenging problem. An
important part of that problem derives from vulnerable source
code, often written in unsafe languages like PHP. Source code
static analysis tools are a solution to find vulnerabilities, but they
tend to generate false positives, and require considerable effort
for programmers to manually fix the code. We explore the use
of a combination of methods to discover vulnerabilities in source
code with fewer false positives. We combine taint analysis, which
finds candidate vulnerabilities, with data mining, to predict the
existence of false positives. This approach brings together two
approaches that are apparently orthogonal: humans coding the
knowledge about vulnerabilities (for taint analysis), joined with
the seemingly orthogonal approach of automatically obtaining
that knowledge (with machine learning, for data mining). Given
this enhanced form of detection, we propose doing automatic code
correction by inserting fixes in the source code. Our approach was
implemented in the WAP tool, and an experimental evaluation
was performed with a large set of PHP applications.

Our tool found 388 vulnerabilities in 1.4 million lines of code.
Its accuracy and precision were approximately 5% better than
PhpMinerII’s and 45% better than Pixy’s.

Index Terms—Web applications, input validation vulnera-
bilities, false positives, source code static analysis, automatic
protection, software security, data mining.
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DT-PT Directory Traversal or Path Traversal
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NOTATIONS

acc accuracy of classifier

fn false negative outputted by a classifier

fp false positive outputted by a classifier

fpp false positive rate of prediction

kappa kappa statistic

pd probability of detection

pfd probability of false detection

pr precision of classifier

prd precision of detection

prfp precision of prediction

tn true negative outputted by a classifier

tp true positive outputted by a classifier

tpp true positive rate of prediction

wilcoxon Wilcoxon signed-rank test

I. INTRODUCTION

S
INCE its appearance in the early 1990s, the World Wide

Web evolved from a platform to access text and other

media to a framework for running complex web applications.

These applications appear in many forms, from small home-

made to large-scale commercial services (e.g., Google Docs,

Twitter, Facebook). However, web applications have been

plagued with security problems. For example, a recent report

indicates an increase of web attacks of around 33% in 2012

[1]. Arguably, a reason for the insecurity of web applications

is that many programmers lack appropriate knowledge about

secure coding, so they leave applications with flaws. However,

the mechanisms for web application security fall in two

extremes. On one hand, there are techniques that put the

programmer aside, e.g., web application firewalls and other

runtime protections [2], [3], [4]. On the other hand, there are

techniques that discover vulnerabilities but put the burden of

removing them on the programmer, e.g., black-box testing [5],

[6], [7], and static analysis [8], [9], [10].

This paper explores an approach for automatically protect-

ing web applications while keeping the programmer in the

loop. The approach consists in analyzing the web application

source code searching for input validation vulnerabilities, and

inserting fixes in the same code to correct these flaws. The

programmer is kept in the loop by being allowed to understand

where the vulnerabilities were found, and how they were

corrected. This approach contributes directly to the security of

web applications by removing vulnerabilities, and indirectly

by letting the programmers learn from their mistakes. This
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last aspect is enabled by inserting fixes that follow common

security coding practices, so programmers can learn these

practices by seeing the vulnerabilities, and how they were

removed.

We explore the use of a novel combination of methods to de-

tect this type of vulnerability: static analysis with data mining.

Static analysis is an effective mechanism to find vulnerabilities

in source code, but tends to report many false positives (non-

vulnerabilities) due to its undecidability [11]. This problem

is particularly difficult with languages such as PHP that are

weakly typed, and not formally specified [12]. Therefore, we

complement a form of static analysis, taint analysis, with the

use of data mining to predict the existence of false positives.

This solution combines two apparently disjoint approaches:

humans coding the knowledge about vulnerabilities (for taint

analysis), in combination with automatically obtaining that

knowledge (with supervised machine learning supporting data

mining).

To predict the existence of false positives, we introduce the

novel idea of assessing if the vulnerabilities detected are false

positives using data mining. To do this assessment, we measure

attributes of the code that we observed to be associated with

the presence of false positives, and use a combination of

the three top-ranking classifiers to flag every vulnerability as

false positive or not. We explore the use of several classifiers:

ID3, C4.5/J48, Random Forest, Random Tree, K-NN, Naive

Bayes, Bayes Net, MLP, SVM, and Logistic Regression.

Moreover, for every vulnerability classified as false positive,

we use an induction rule classifier to show which attributes

are associated with it. We explore the JRip, PART, Prism,

and Ridor induction rule classifiers for this goal. Classifiers

are automatically configured using machine learning based on

labeled vulnerability data.

Ensuring that the code correction is done correctly requires

assessing that the vulnerabilities are removed, and that the

correct behavior of the application is not modified by the

fixes. We propose using program mutation and regression

testing to confirm, respectively, that the fixes function as they

are programmed to (blocking malicious inputs), and that the

application remains working as expected (with benign inputs).

Notice that we do not claim that our approach is able to correct

any arbitrary vulnerability, or to detect it; it can only address

the input validation vulnerabilities it is programmed to deal

with.

The paper also describes the design of the Web Application

Protection (WAP) tool that implements our approach [13].

WAP analyzes and removes input validation vulnerabilities

from programs or scripts written in PHP 5, which according

to a recent report is used by more than 77% of existing

web applications [14]. WAP covers a considerable number

of classes of vulnerabilities: SQL injection (SQLI), cross-

site scripting (XSS), remote file inclusion, local file inclusion,

directory traversal and path traversal, source code disclosure,

PHP code injection, and OS command injection. The first two

continue to be among the highest positions of the OWASP

Top 10 in 2013 [15], whereas the rest are also known to be

high risk, especially in PHP. Currently, WAP assumes that

the background database is MySQL, DB2, or PostgreSQL.

The tool might be extended with more flaws and databases,

but this set is enough to demonstrate the concept. Designing

and implementing WAP was a challenging task. The tool does

taint analysis of PHP programs, a form of data flow analysis.

To do a first reduction of the number of false positives, the

tool performs global, interprocedural, and context-sensitive

analysis, which means that data flows are followed even when

they enter new functions and other modules (other files). This

result involves the management of several data structures,

but also deals with global variables (that in PHP can appear

anywhere in the code, simply by preceding the name with

global or through the $_GLOBALS array), and resolving

module names (which can even contain paths taken from

environment variables). Handling object orientation with the

associated inheritance and polymorphism was also a consid-

erable challenge.

We evaluated the tool experimentally by running it with both

simple synthetic code and with 45 open PHP web applications

available in the internet, adding up to more than 6,700 files

and 1,380,000 lines of code. Our results suggest that the tool

is capable of finding and correcting the vulnerabilities from

the classes it was programmed to handle.

The main contributions of the paper are: 1) an approach

for improving the security of web applications by combining

detection and automatic correction of vulnerabilities in web

applications; 2) a combination of taint analysis and data

mining techniques to identify vulnerabilities with low false

positives; 3) a tool that implements that approach for web

applications written in PHP with several database management

systems; and 4) a study of the configuration of the data mining

component, and an experimental evaluation of the tool with a

considerable number of open source PHP applications.

II. INPUT VALIDATION VULNERABILITIES

Our approach is about input validation vulnerabilities, so

this section presents briefly some of them (those handled

by the WAP tool). Inputs enter an application through entry

points (e.g., $_GET), and exploit a vulnerability by reaching a

sensitive sink (e.g., mysql_query). Most attacks involve mixing

normal input with metacharacters or metadata (e.g., ’, OR), so

applications can be protected by placing sanitization functions

in the paths between entry points and sensitive sinks.

SQL injection (SQLI) vulnerabilities are caused by the use

of string-building techniques to execute SQL queries. Fig. 1

shows PHP code vulnerable to SQLI. This script inserts in an

SQL query (line 4) as the username and password provided by

the user (lines 2, 3). If the user is malicious, he can provide

as username admin’ - - , causing the script to execute a query

that returns information about the user admin without the need

of providing a password: SELECT * FROM users WHERE

username=‘admin’ -- ’ AND password=‘foo’.

This vulnerability can be removed either by sanitizing the

inputs (e.g., preceding with backslash metacharacters such

as the prime), or by using prepared statements. We opted

for the former because it requires simpler modifications to

the code. Sanitization depends on the sensitive sink, i.e.,

on the way in which the input is used. For SQL, and the
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1: $conn = mysql_connect(“localhost”,“username”,“password”);
2: $user = $_POST[‘user’];
3: $pass = $_POST[‘password’];
4: $query = “SELECT * FROM users WHERE username=‘$user’ AND
password=‘$pass’ ”;
5: $result = mysql_query($query);

Fig. 1. Login PHP script vulnerable to SQLI.

MySQL database, PHP provides the mysql_real_escape_string

function. The username could be sanitized in line 2: $user =

mysql_real_escape_string($_POST[‘user’]); (simi-

lar for line 3).

Cross-site scripting (XSS) attacks execute malicious code

(e.g., JavaScript) in the victim’s browser. Different from the

other attacks we consider, an XSS attack is not against a

web application itself, but against its users. There are three

main classes of XSS attacks depending on how the malicious

code is sent to the victim (reflected or non-persistent, stored

or persistent, and DOM-based); but we explain only reflected

XSS for briefness. A script vulnerable to XSS can have a sin-

gle line: echo $_GET[’username’];. The attack involves

convincing the user to click on a link that accesses the web

application, sending it a script that is reflected by the echo

instruction and executed in the browser. This kind of attack

can be prevented by sanitizing the input, or by encoding the

output, or both. The latter consists in encoding metacharacters

such as < and > in a way that they are interpreted as normal

characters, instead of HTML metacharacters.

We only present the other vulnerabilities briefly due to

lack of space (with more information in [13]). A remote

file inclusion (RFI) vulnerability allows attackers to embed

a remote file containing PHP code in the vulnerable program.

Local file inclusion (LFI) differs from RFI because it inserts

a file from the local file system of the web application (not

a remote file). A directory traversal or path traversal (DT-PT)

attack consists in an attacker accessing arbitrary local files,

possibly outside the web site directory. Source code disclosure

(SCD) attacks dump source code and configuration files. An

operating system command injection (OSCI) attack consists

in forcing the application to execute a command defined by

the attacker. A PHP code injection (PHPCI) vulnerability

allows an attacker to supply code that is executed by an eval

statement.

III. APPROACH AND ARCHITECTURE

A. The approach

The notion of detecting and correcting vulnerabilities in the

source code that we propose is tightly related to information

flows: detecting problematic information flows in the source

code, and modifying the source code to block these flows.

The notion of information flow is central to two of the three

main security properties: confidentiality, and integrity [16].

Confidentiality is related to private information flowing to

public objects, whereas integrity is related to untrusted data

flowing to trusted objects. Availability is an exception as it is

not directly related to information flow.

The approach proposed is, therefore, about information-

flow security in the context of web applications. We are

attackerattacker

attackerattacker

attackerattacker victim uservictim user

web applicationweb application

web applicationweb application

web applicationweb application

integrity violation
(SQLI, FRI, LFI, OSCI)

confidentiality violation
(SQLI, DT/PT, SCD)

confidentiality or integrity violation (XSS)

Fig. 2. Information flows that exploit web vulnerabilities.

mostly concerned with the server-side of these applications,

which is normally written in a language such as PHP, Java,

or Perl. Therefore, the problem is a case of language-based

information-flow security, a topic much investigated in recent

years [17], [8], [18]. Attacks against web vulnerabilities can be

expressed in terms of violations of information-flow security.

Fig. 2 shows the information flows that exploit each of the

vulnerabilities of Section II. The information flows are labeled

with the vulnerabilities that usually permit them (a few rarer

cases are not represented). XSS is different from other vulnera-

bilities because the victim is not the web application itself, but

a user. Our approach is a way of enforcing information-flow

security at the language-level. The tool detects the possibility

of the existence of the information flows represented in the

figure, and modifies the source code to prevent them.

The approach can be implemented as a sequence of steps.

1) Taint analysis: parsing the source code, generating an

abstract syntax tree (AST), doing taint analysis based on the

AST, and generating trees describing candidate vulnerable

control-flow paths (from an entry point to a sensitive sink).

2) Data mining: obtaining attributes from the candidate

vulnerable control-flow paths, and using the top 3 classifiers

to predict if each candidate vulnerability is a false positive or

not. In the presence of a false positive, use induction rules to

present the relation between the attributes that classified it.

3) Code correction: given the control-flow path trees of

vulnerabilities (predicted not to be false positives), identifying

the vulnerabilities, the fixes to insert, and the places where

they have to be inserted; assessing the probabilities of the

vulnerabilities being false positives; and modifying the source

code with the fixes.

4) Feedback: providing feedback to the programmer based

on the data collected in the previous steps (vulnerable paths,

vulnerabilities, fixes, false positive probability, and the at-

tributes that classified it as a false positive).

5) Testing: higher assurance can be obtained with two

forms of testing, specifically program mutation to verify if

the fixes do their function, and regression testing to verify if

the behavior of the application remains the same with benign

inputs.

B. Architecture

Fig. 3 shows the architecture that implements steps 1 to 4

of the approach (testing is not represented). It is composed

of three modules: code analyzer, false positives predictor, and

code corrector. The code analyzer first parses the PHP source
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code, and generates an AST. Then, it uses tree walkers to do

taint analysis, i.e., to track if data supplied by users through the

entry points reaches sensitive sinks without sanitization. While

doing this analysis, the code analyzer generates tainted symbol

tables and tainted execution path trees for those paths that link

entry points to sensitive sinks without proper sanitization. The

false positives predictor continues where the code analyzer

stops. For every sensitive sink that was found to be reached

by tainted input, it tracks the path from that sink to the entry

point using the tables and trees just mentioned. Along the

track paths (slice candidate vulnerabilities in the figure), the

vectors of attributes (instances) are collected and classified by

the data mining algorithm as true positive (a real vulnerability),

or false positive (not a real vulnerability). Note that we use the

terms true positive and false positive to express that an alarm

raised by the taint analyzer is correct (a real vulnerability) or

incorrect (not a real vulnerability). These terms do not mean

the true and false positive rates resulting from the data mining

algorithm, which measure its precision and accuracy.
The code corrector picks the paths classified as true pos-

itives to signal the tainted inputs to be sanitized using the

tables and trees mentioned above. The source code is corrected

by inserting fixes, e.g., calls to sanitization functions. The

architecture describes the approach, but represents also the

architecture of the WAP tool.

IV. TAINT ANALYSIS

Taint analysis for vulnerability detection has been inves-

tigated for more than a decade [19]. However, papers in the

area do not present the process in detail, and usually do not do

interprocedural, global, and context-sensitive analysis, so we

present how we do it. The taint analyzer is a static analysis tool

that operates over an AST created by a lexer and a parser, for

PHP 5 in our case (in WAP we implemented it using ANTLR

[20]). In the beginning of the analysis, all symbols (variables,

functions) are untainted unless they are an entry point (e.g., $a
in $a = $_GET[’u’]). The tree walkers (also implemented

using the ANTLR [20]) build a tainted symbol table (TST)

in which every cell is a program statement from which we

want to collect data (see Fig. 4). Each cell contains a subtree

of the AST plus some data. For instance, for statement $x

= $b + $c; the TST cell contains the subtree of the AST

that represents the dependency of $x on $b and $c. For each

symbol, several data items are stored, e.g., the symbol name,

the line number of the statement, and the taintedness.
Taint analysis involves traveling though the TST. If a

variable is tainted, this state is propagated to symbols that

depend on it, e.g., function parameters or variables that are

updated using it. Fig. 4 (iii) shows the propagation of the

taintedness of the symbol $_GET[’u’] to the symbol $a,

where the attribute tainted of $a receives the value of the

attribute tainted from $_GET[’u’]. On the contrary, the state

of a variable is not propagated if it is untainted, or if it is

an argument of a PHP sanitization function (a list of such

functions is in [13]). The process finishes when all symbols

are analyzed this way.
While the tree walkers are building the TST, they also build

a tainted execution path tree (TEPT; example in Fig. 5 b)).

$_GET['u']$a

=

$_GET['u']

$a

name: $_GET['u']
line: 15
tainted: 1

name: $a
line: 15
tainted: 1

(i) (ii) (iii)
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Fig. 4. Example (i) AST, (ii) TST, and (iii) taint analysis.

1: $a = $_GET[’user’];
2: $b = $_POST[’pass’];
3: $c = ”SELECT * FROM users WHERE u = ’mysql_real_escape_string($a)’ ”;
4: $b = ”wap”;
5: $d = ”SELECT * FROM users WHERE u = ’$b’ ”;
6: $r = mysql_query($c);
7: $r = mysql_query($d);
8: $b = $_POST[’pass’];
9: $query = ”SELECT * FROM users WHERE u = ’$a’ AND p = ’$b”’;
10: $r = mysql_query($query);

a) Sample script vulnerable to SQLI.

$a

1: $query

$query

9: mysql_query

mysql_query

10: $r

$r

10:

$b

2:

8: $query

$b

b) TEPT of a) c) untainted data of a)

Fig. 5. Script with SQLI vulnerability, its TEPT, and untaint data structures.

Each branch of the TEPT corresponds to a tainted variable, and

contains a sub-branch for each line of code where the variable

becomes tainted (a square in the figure). The entries in the

sub-branches (curly parentheses in the figure) are the variables

that the tainted variable propagated its state into (dependent

variables). Taint analysis involves updating the TEPT with the

variables that become tainted.

Fig. 5 shows a sample script vulnerable to SQLI, its TEPT,

and untainted data (UD) structures. The analysis understands

that $a and $b are tainted because they get non-sanitized values

from an entry point (lines 1-2). When analyzing line 3, it finds

out that $c is not tainted because $a is sanitized. Analyzing

line 5, $d is not tainted because $b becomes untainted in line

4. In line 8, $b is tainted again; and in line 9, $query becomes

tainted due to $a and $b. A vulnerability is flagged in line 10

because tainted data reaches a sensitive sink (mysql_query).

When $a becomes tainted, a new branch is created (Fig. 5

b). Also, a sub-branch is created to represent the line of code

where $a became tainted. The same procedure occurs to $b in

line 2. The state of $b in line 4 becomes untainted. An entry
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Fig. 3. Architecture including main modules, and data structures.

of it is added to UD (Fig. 5 c) to avoid its taintedeness prop-

agation from TEPT. So, in line 5, the statement is untainted

because $b belongs to UD, and its taintedness propagation is

blocked. When, in line 8, $b becomes tainted again, a new

sub-branch is created in $b to line 8, and its entry is removed

from UD. For $query, a branch with a sub-branch representing

line 9 is created. Here, $query is tainted because $a and $b
propagated their taintedness, so an entry of $query is added

in the last sub-branch created in $a and $b (1: to $a; 8: to

$b). Analyzing line 10, mysql_query and $r become tainted

because $query taintedness is propagated. The procedure is

repeated for the creation of the branch and insertion of the

dependency in the sub-branch. As we can see, the process of

taint analysis is a symbiosis of exploring the TST, TEPT, and

UD structures. A symbol from a statement of TST propagates

its taintedness to its root node iff it belongs to TEPT but not

to UD. At the end of the analysis of a statement, the TEPT

or UD or both are updated: TEPT with new tainted variables

and tainted dependent variables, and UD with the addition or

the removal of variables.

To summarize, the taint analysis model has the following

steps. 1) Create the TST by collecting data from the AST, and

flagging as tainted the entry points. 2) Propagate taintedness

by setting variables as tainted in the TST iff the variable that

propagates its taintdeness belongs to the TEPT and not to the

UD. 3) Block taintedness propagation by inserting in the UD

any tainted variable that belongs to the TEPT and is sanitized

in the TST; conversely, remove a variable from the UD if

it becomes tainted. 4) Create the TEPT: (i) a new branch is

created for each new tainted variable resulting from the TST;

(ii) a sub-branch is created for each line of code where the

variable becomes tainted; and (iii) an entry in a sub-branch is

made with a variable that becomes tainted by the taintedness

propagation from the branch variable. 5) Flag a vulnerability

whenever a TST cell representing a sensitive sink is reached

by a tainted variable in the same conditions as in step 2.

During the analysis, whenever a variable that is passed to

a sensitive sink becomes tainted, the false positives predictor

is activated to collect the vector of attributes, creating thus

an instance, and classify the instance as being a false positive

or a real vulnerability. In the last case, the code corrector is

triggered to prepare the correction of the code. The code is

updated and stored in a file only at the end of the process,

when the analysis finishes, and all the corrections that have to

be made are known.

V. PREDICTING FALSE POSITIVES

The static analysis problem is known to be related to

Turing’s halting problem, and therefore is undecidable for non-

trivial languages [11]. In practice, this difficulty is solved by

making only a partial analysis of some language constructs,

leading static analysis tools to be unsound. In our approach,

this problem can appear, for example, with string manipulation

operations. For instance, it is unclear what to do to the state

of a tainted string that is processed by operations that return a

substring or concatenate it with another string. Both operations

can untaint the string, but we cannot decide with complete

certainty. We opted to let the string be tainted, which may

lead to false positives but not false negatives.

The analysis might be further refined by considering, for

example, the semantics of string manipulation functions, as in

[21]. However, coding explicitly more knowledge in a static

analysis tool is hard, and typically has to be done for each class

of vulnerabilities ([21] follows this direction, but considers a

single class of vulnerabilities, SQLI). Moreover, the humans
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who code the knowledge have first to obtain it, which can be

complex.
Data mining allows a different approach. Humans label

samples of code as vulnerable or not, then machine learning

techniques are used to configure the tool with knowledge

acquired from the labelled samples. Data mining then uses

that data to analyze the code. The key idea is that there are

symptoms in the code, e.g., the presence of string manipulation

operations, that suggest that flagging a certain pattern as a

vulnerability may be a false positive (not a vulnerability). The

assessment has mainly two steps, as follows.
1) definition of the classifier: pick a representative set of

vulnerabilities identified by the taint analyzer, verify if they

are false positives or not, extract a set of attributes, analyze

their statistical correlation with the presence of a false positive,

evaluate candidate classifiers to pick the best for the case in

point, and define the parameters of the classifier.
2) classification of vulnerabilities: given the classifier, for

every vulnerability found by our approach, determine if it is

a false positive or not.

A. Classification of vulnerabilities

Any process of classification involves two aspects: the

attributes that allow classifying an instance, and the classes

in which these instances are classified. We identified the

attributes by analyzing manually a set of vulnerabilities found

by WAP’s taint analyzer. We studied these vulnerabilities to

understand if they were false positives. This study involved

both reading the source code, and executing attacks against

each vulnerability found to understand if it was attackable

(true positive) or not (false positive). This data set is further

discussed in Section V-C.
From this analysis, we found three main sets of attributes

that led to false positives, as outlined next.
String manipulation: attributes that represent PHP func-

tions or operators that manipulate strings. These attributes

are substring extraction, concatenation, addition of characters,

replacement of characters, and removal of white spaces. Recall

that a data flow starts at an entry point, where it is marked

tainted, and ends at a sensitive sink. The taint analyzer

flags a vulnerability if the data flow is not untainted by a

sanitization function before reaching the sensitive sink. These

string manipulation functions may result in the sanitization

of a data flow, but the taint analyzer does not have enough

knowledge to change the status from tainted to untainted, so

if a vulnerability is flagged it may be a false positive. The

combinations of functions and operators that untaint a data

flow are hard to establish, so this knowledge is not simple to

retrofit into the taint analyzer.
Validation: a set of attributes related to the validation of user

inputs, often involving an if-then-else construct. We define

several attributes: data type (calls to is_int(), is_string()), is

value set (isset()), control pattern (preg_match()), a test of

belonging to a white-list, a test of belonging to a black-list,

and error and exit functions that output an error if the user

inputs do not pass a test. Similarly to what happens with string

manipulations, any of these attributes can sanitize a data flow,

and lead to a false positive.

SQL query manipulation: attributes related to insertion of

data in SQL queries (SQL injection only). We define attributes:

string inserted in a SQL aggregate function (AVG, SUM,

MAX, MIN, etc.), string inserted in a FROM clause, a test

if the data are numeric, and data inserted in a complex SQL

query. Again, any of these constructs can sanitize data of an

otherwise considered tainted data flow.

For the string manipulation and validation sets, the possible

values for the attributes were two, corresponding to the pres-

ence (Y) or no presence (N) of at least one of these constructs

in the sequence of instructions that propagates the input from

an entry point to a sensitive sink. The SQL query manipulation

attributes can take a third value, not assigned (NA), when the

vulnerability observed is other than SQLI.

We use only two classes to classify the vulnerabilities flag-

ged by the taint analyzer: Yes (it is a false positive), and No (it

is not a false positive, but a real vulnerability). Table I shows

some examples of candidate vulnerabilities flagged by the taint

analyzer, one per line. For each candidate vulnerability, the

table shows the values of the attributes (Y or N), and the

class, which has to be assessed manually (supervized machine

learning). In each line, the set of attributes forms an instance

which is classified in the class. The data mining component

is configured using data like this.

B. Classifiers and metrics

As already mentioned, our data mining component uses

machine learning algorithms to extract knowledge from a set

of labeled data. This section presents the machine learning

algorithms that were studied to identify the best approach to

classify candidate vulnerabilities. We also discuss the metrics

used to evaluate the merit of the classifiers.

Machine learning classifiers.

We studied machine learning classifiers from three classes.

Graphical and symbolic algorithms. This class includes

algorithms that represent knowledge using a graphical model.

In the ID3, C4.5/J48, Random Tree, and Random Forest

classifiers, the graphical model is a decision tree. They use

the information gain rate metric to decide how relevant an

attribute is to classify an instance in a class (a leaf of the tree).

An attribute with a small information gain has big entropy

(degree of impurity of attribute or information quantity that

the attribute offers to the obtention of the class), so it is less

relevant for a class than another with a higher information

gain. C4.5/J48 is an evolution of ID3 that does pruning of the

tree, i.e., removes nodes with less relevant attributes (with a

bigger entropy). The Bayesian Network is an acyclic graphical

model, where the nodes are represented by random attributes

from the data set.

Probabilistic algorithms. This category includes Naive

Bayes (NB), K-Nearest Neighbor (K-NN), and Logistic Re-

gression (LR). They classify an instance in the class that

has the highest probability. NB is a simple probabilistic

classifier based on Bayes’ theorem, based on the assumption

of conditional independence of the probability distributions of

the attributes. K-NN classifies an instance in the class of its

neighbors. LR uses regression analysis to classify an instance.
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TABLE I
ATTRIBUTES AND CLASS FOR SOME VULNERABILITIES

Potential vulnerability String manipulation Validation SQL query manipulation

Type Webapp
Extract String Add Replace Remove Type IsSet Pattern While Black Error Aggreg. FROM Numeric Complex

Class
substring concat. char string whitesp. checking entry point control list list / exit function clause entry point query

SQLI currentcost Y Y Y N N N N N N N N Y N N N Yes
SQLI currentcost Y Y Y N N N N N N N N N N N N Yes
SQLI currentcost N N N N N N N N N N N N N N N No
XSS emoncms N Y N Y N N N N N N N NA NA NA NA Yes
XSS Mfm 0.13 N Y N Y Y N N N N N N NA NA NA NA Yes
XSS St. ZiPEC 0.32 N Y N N N N N N N N N NA NA NA NA No
RFI DVWA 1.0.7 N N N N N N N N Y N Y NA NA NA NA Yes
RFI SAMATE N N N Y N N Y N N N N NA NA NA NA No
RFI SAMATE N N N Y N N Y Y N N N NA NA NA NA No
OSCI DVWA 1.0.7 N Y N Y N N N N N Y N NA NA NA NA Yes
XSS St. OWASP Vicnum Y N N N N N N Y N N N NA NA NA NA Yes
XSS Mfm 0.13 N N N N N N N N N Y N NA NA NA NA Yes

TABLE II
CONFUSION MATRIX (GENERIC)

Observed
Yes (FP) No (not FP)

Predicted
Yes (FP) True positive (tp) False positive (fp)
No (not FP) False negative (fn) True negative (tn)

Neural network algorithms. This category has two algo-

rithms: Multi-Layer Perceptron (MLP), and Support Vector

Machine (SVM). These algorithms are inspired on the func-

tioning of the neurons of the human brain. MLP is an artificial

neural network classifier that maps sets of input data (values of

attributes) onto a set of appropriate outputs (our class attribute,

Yes or No). SVM is an evolution of MLP.

Classifier evaluation metrics.

To evaluate the classifiers, we use ten metrics that are com-

puted based mainly on four parameters of each classifier.

These parameters are better understood in terms of the quad-

rants of a confusion matrix (Table II). This matrix is a cross

reference table where its columns are the observed instances,

and its rows are the predicted results (instances classified by

a classifier). Note that through all the paper we use the terms

false positive (FP) and true positive (not FP) to express that

an alarm raised by the taint analyzer is incorrect (not a real

vulnerability) or correct (a real vulnerability). In this section,

we use the same terms, false positive (fp), and true positive

(tp), as well as false negative (fn), and true negative (tn), for

the output of the next stage, the FP classifier. To reduce the

possibility of confusion, we use uppercase FP and lowercase

fp, tp, fn, tn consistently as indicated.

True positive rate of prediction (tpp) measures how good the

classifier is: tpp = tp/(tp+ fn).
False positive rate of prediction (fpp) measures how the

classifier deviates from the correct classification of a candidate

vulnerability as FP: fpp = fp/(fp+ tn).
Precision of prediction (prfp) measures the actual FPs that are

correctly predicted in terms of the percentage of total number

of FPs: prfp = tp/(tp+ fp).
Probability of detection (pd) measures how the classifier is

good at detecting real vulnerabilities: pd = tn/(tn+ fp).
Probability of false detection (pfd) measures how the classifier

deviates from the correct classification of a candidate vulner-

ability that was a real vulnerability: pfd = fn/(fn+ tp).
Precision of detection (prd) measures the actual vulnerabilities

(not FPs) that are correctly predicted in terms of a percentage

of the total number of vulnerabilities: prd = tn/(tn+ fn).
Accuracy (acc) measures the total number of instances well

classified: acc = (tp+ tn)/(tp+ tn+ fp+ fn).
Precision (pr) measures the actual FPs and vulnerabilities (not

FPs) that are correctly predicted in terms of a percentage of

the total number of cases: pr = average(prfp, prd).
Kappa statistic (kappa) measures the concordance between

the classes predicted and observed. It can be stratified into six

categories: worst, bad, reasonable, good, very good, excellent.

kappa = (po − pe)/(1 − pe), where po = acc, and pe =
(P ∗P ′+N ∗N ′)/(P+N)2 to P = (tp+fn), P ′ = (tp+fp),
N = (fp+ tn), and N ′ = (fn+ tn).
Wilcoxon signed-rank test (wilcoxon) compares classifier re-

sults with pairwise comparisons of the metrics tpp and fpp, or

pd and pfd, with a benchmark result of tpp, pd > 70%, and

fpp, pfd < 25% [22].

Some of these metrics are statistical, such as rates and

kappa, while acc and pr are probabilistic, and the last is a

test.

C. Evaluation of classifiers

Here we use the metrics to select the best classifiers for our

case. Our current data set has 76 vulnerabilities labeled with

16 attributes: 15 to characterize the candidate’s vulnerabilities,

and 1 to classify it as being false positive (Yes) or a real

vulnerability (No). For each candidate vulnerability, we used

a version of WAP to collect the values of the 15 attributes, and

we manually classified them as false positives or not. Needless

to say, understanding if a vulnerability was real or a false

positive was a tedious process. The 76 potential vulnerabilities

were distributed by the classes Yes, and No, with 32, and 44

instances, respectively. Fig. 6 shows the number of occurrences

of each attribute.

The 10 classifiers are available in WEKA, an open source

data mining tool [23]. We used it for training and testing

the ten candidate classifiers with a standard 10-fold cross

validation estimator. This estimator divides the data into 10

buckets, trains the classifier with 9 of them, and tests it with
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Fig. 6. Number of attribute occurrences in the original data set.

the 10th. This process is repeated 10 times to test every bucket,

with the classifier trained with the rest. This method accounts

for heterogeneities in the data set.

Table III shows the evaluation of the classifiers. The first

observation is the rejection of the K-NN and Naive Bayes

algorithms by the Wilcoxon signed-rank test. The rejection of

the K-NN algorithm is explained by the classes Yes and No not

being balanced, where the first class has fewer instances, 32,

than the second class, 44, which leads to unbalanced numbers

of neighbors, and consequently to wrong classifications. The

Naive Bayes rejection seems to be due to its naive assumption

that attributes are conditionally independent, and the small

number of observations of certain attributes.

In the first four columns of the table are the decision tree

models. These models select for the tree nodes the attributes

that have higher information gain. The C4.5/J48 model prunes

the tree to achieve better results. The branches that have nodes

with weak information gain (higher entropy), i.e., the attributes

with less occurrences, are removed (see Fig. 6). However,

an excessive tree pruning can result in a tree with too few

nodes to do a good classification. This was what happened in

our study, where J48 was the worst decision tree model. The

results of ID3 validate our conclusion because this model is the

J48 model without tree pruning. We can observe that ID3 has

better accuracy and precision results when compared with J48:

89.5% against 82.2%, and 91% against 84.2%, respectively.

The best of the tree decision models is the Random Tree.

The table shows that this model has the highest accuracy

(90.8% which represents 69 of 76 instances well classified)

and precision (92%), and the kappa value is in accordance

(81%, excellent). This result is asserted by the 100% of prpf

that tells us that all false positive instances were well classified

in class Yes; also the 100% of pd tells us that all instances

classified in class No were well classified. The Bayes Net

classifier is the third worst model in terms of kappa, which is

justified by the random selection of attributes to be used as the

nodes of its acyclic graphical model. Some selected attributes

have high entropy, so they insert noise in the model that results

in bad performance.

The last three columns of Table III correspond to three

models with good results. MLP is the neural network with

TABLE IV
CONFUSION MATRIX OF THE TOP 3 CLASSIFIERS (FIRST TWO

WITH ORIGINAL DATA, THIRD WITH A BALANCED DATA SET)

Observed
Logistic Regression Random Tree SVM

Predicted Yes (FP) No (not FP) Yes (FP) No (not FP) Yes (FP) No (not FP)
Yes (FP) 27 1 25 0 56 0
No (not FP) 5 43 7 44 8 44

the best results, and curiously with the same results as ID3.

Logistic Regression (LR) was the best classifier. Table IV

shows the confusion matrix of LR (second and third columns),

with values equivalent to those in Table III. This model

presents the highest accuracy (92.1%, which corresponds to

70 of 76 instances well classified) and precision (92.5%),

and has an excellent kappa value (84%). The prediction of

false positives (first 3 rows of Table III) is very good, with

a great true positive rate of prediction (tpp = 84.6%, 27

of 32 instances), very low false alarms (fpp = 2.3%, 1 of

44 instances), and an excellent precision of the prediction

of false positives (prfp = 96.4%, 27 of 28 instances). The

detection of vulnerabilities (next 3 rows of the Table III) is

also very good, with a great true positive rate of detection (pd

= 97.7%, 43 of 44 instances), low false alarms (pfd = 15.6%,

5 of 32 instances), and a very good precision of detection of

vulnerabilities (prd = 89.6%, 43 of 48 instances).

Balanced data set.

To try to improve the evaluation, we applied the SMOTE filter

to balance the classes [23]. This filter doubles instances of

smaller classes, creating a better balance. Fig. 7 shows the

number of occurrences in this new data set. Table V shows the

results of the re-evaluation with balanced classes. All models

increased their performance, and passed the Wilcoxon signed-

rank test. The K-NN model has much better performance

because the classes are now balanced. However, the kappa,

accuracy, and precision metrics show that the Bayes models

continue to be the worst. The decision tree models present

good results, with the Random Tree model again the best of

them, and the C4.5/J48 model still the worst. Observing Fig. 7,

there are attributes with very low occurrences that are pruned

in the C4.5/J48 model. To increase the performance of this

model, we remove the lowest information gain attribute (the

biggest entropy attribute) and re-evaluate the model. There is

an increase in its performance to 92.6% of pr, 93,7% of acc,

and 85.0% (excellent) of kappa, in such a way that it is equal

to the performance of the Random Tree model. Again, the

neural networks and LR models have very good performance,

but SVM is the best of the three (accuracy of 92.6%, precision

of 92.3%, prfp and pd of 100%).

Main attributes.

To conclude the study of the best classifier, we need to

understand which attributes contribute most to a candidate vul-

nerability being a false positive. For that purpose, we extracted

from our data set 32 false positive instances, and classified

them in three sub-classes, one for each of the sets of attributes

of Section V-A: string manipulation, SQL query manipulation,

and validation. Then, we used WEKA to evaluate this new
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TABLE III
EVALUATION OF THE MACHINE LEARNING MODELS APPLIED TO THE ORIGINAL DATA SET

Measures
ID3 C4.5/J48

Random Random
K-NN

Naive Bayes
MLP SVM

Logistic
(%) Forest Tree Bayes Net Regression

tpp 75.0 81.3 78.1 78.1 71.9 68.8 78.1 75.0 81.3 84.4
fpp 0.0 13.6 4.5 0.0 0.0 13.6 13.6 0.0 4.5 2.3
prfp 100.0 81.3 92.6 100.0 100.0 78.6 80.6 100.0 92.9 96.4
pd 100.0 86.4 95.5 100.0 100.0 86.4 86.4 100.0 95.5 97.7
pfd 25.0 18.8 21.9 21.9 28.1 31.3 21.9 25.0 18.8 15.6
prd 84.6 86.4 85.7 86.3 83.0 79.2 84.4 84.6 87.5 89.6
acc 89.5 82.2 88.2 90.8 82.9 78.9 82.9 89.5 89.5 92.1
(% #) 68 64 67 69 63 60 63 68 68 70
pr 91.0 84.2 88.6 92.0 86.8 78.9 82.8 91.0 89.8 92.5

kappa
77.0 67.0 75.0 81.0 63.0 56.0 64.0 77.0 78.0 84.0

very good very good very good excellent very good good very good very good very good excellent

wilcoxon accepted accepted accepted accepted rejected rejected accepted accepted accepted accepted

TABLE V
EVALUATION OF THE MACHINE LEARNING MODELS APPLIED TO THE BALANCED DATA SET

Measures
ID3 C4.5/J48

Random Random
K-NN

Naive Bayes
MLP SVM

Logistic
(%) Forest Tree Bayes Net Regression

tpp 87.3 87.5 85.9 87.5 84.4 83.6 83.6 85.9 87.5 85.9
fpp 0.0 9.1 0.0 0.0 0.0 19.5 18.2 0.0 0.0 2.3
prfp 100.0 93.3 100.0 100.0 100.0 87.5 87.5 100.0 100.0 98.2
pd 100.0 90.9 100.0 100.0 100.0 80.5 81.8 100.0 100.0 97.7
pfd 12.7 12.5 14.1 12.5 15.6 16.4 16.4 14.1 12.5 14.1
prd 84.6 83.3 83.0 84.6 81.5 75.0 76.6 83.0 84.6 82.7
acc 92.5 88.9 91.7 92.6 90.7 82.4 82.9 91.7 92.6 90.7
(% #) 99 96 99 100 98 89 89 99 100 98
pr 92.3 88.3 91.5 92.3 90.7 81.3 82.0 91.5 92.3 90.5

kappa
85.0 77.0 83.0 85.0 81.0 64.0 64.0 83.0 85.0 81.0

Excellent Very Good Excellent Excellent Excellent Very Good Very Good Excellent Excellent Excellent

wilcoxon Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted
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Fig. 7. Number of attribute occurrences in the balanced data set.

data set with the classifiers that performed best (LR, Random

Tree, and SVM), with and without balanced classes. Table

VI shows the confusion matrix obtained using LR without

balanced classes. The 32 instances are distributed by the three

classes with 17, 3, and 12 instances. The LR performance

was acc = 87.5%, pr = 80.5%, and kappa = 76% (very

good). All 17 instances of the string manipulation class were

correctly classified. All 3 instances from the SQL class were

classified in the string manipulation class, which is justified

by the presence of the concatenation attribute in all instances.

The 11 instances of the validation class were well classified,

TABLE VI
CONFUSION MATRIX OF LOGISTIC REGRESSION CLASSIFIER

APPLIED TO A FALSE POSITIVES DATA SET

Observed
String manip. SQL Validation

Predicted
String manip. 17 3 1
SQL 0 0 0
Validation 0 0 11

except one that was classified as string manipulation. This

mistake is explained by the presence of the add char attribute

in this instance. This analysis lead us to the conclusion that

the string manipulation class is the one that most contributes

to a candidate vulnerability being a false positive.

D. Selection of classifiers

After the evaluation of classifiers, we need to select the

classifier that is best at classifying candidate vulnerabilities

as false positives or real vulnerabilities. For that purpose, we

need a classifier with great accuracy and precision, but with a

rate of fpp as low as possible, because this rate measures the

false negatives of the classifier, which is when a candidate

vulnerability is misclassified as being a false positive. We

want also a classifier with a low rate of pfd, which is when

a candidate vulnerability is misclassified as being a real

vulnerability. This pfd rate being different from zero means

that source code with a false positive may be corrected, but it

will not break the behavior of the application because the fixes
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are designed to avoid affecting the behavior of the application.

Finally, we want to justify why a candidate vulnerability is

classified as a false positive, i.e., which attributes lead to this

classification.

Meta-models.

To optimize the classification performed by classifiers, our first

attempt was to combine machine learning algorithms. WEKA

allows us to do this using meta-models. In the evaluation

made in the previous section, the Random Tree (RT) and

LR were two of the best classifiers. We used the Bagging,

Stacking, and Boosting algorithms with RT; and Boosting

with LR (LogitBoost). The Stacking model had the worst

performance with an acc = 58%, and thus we removed it

from the evaluation. The others meta-models had in average

acc = 86.2%, pr = 87.7%, fpp = 3.8%, and 66 instances well

classified. Given these results, we concluded that the meta-

models had no benefit, as they showed worst performance than

RT and LR separately (see Tables III, and V for these two

classifiers).

Top 3 classifiers.

LR was the best classifier with our original data set, but had

fpp = 2.3% so it can misclassify candidate vulnerabilities

as false positives. With the balanced data set, it was one of

the best classifiers, despite fpp remaining unchanged. On the

other hand, RT was the best decision tree classifier in both

evaluations with fpp = 0%, i.e., no false negatives. Also, the

SVM classifier was one of the best with the original data set,

and the best with the balanced data set, with fpp = 0% unlike

the fpp = 4.5% in the first evaluation. It was visible that SVM

with the balanced data set classified correctly the two false

negative instances that it classified wrongly with the original

data set. Table IV shows the confusion matrix for RT (4th

and 5th columns), and SVM (last two columns) with no false

negatives; and for LR (2nd and 3rd columns) with the number

of false positives (a false positive classified as a vulnerability)

lower than the other two classifiers.

Rules of induction.

Data mining is typically about correlation, but the classifiers

presented so far do not show this correlation. For that purpose,

our machine learning approach allows us to identify combi-

nations of attributes that are correlated with the presence of

false positives, i.e., what attributes justify the classification of

false positives. To show this correlation, we use induction or

coverage rules for classifying the instances, and for presenting

the attributes combination to that classification. For this effect,

we evaluated the JRip, PART, Prism, and Ridor induction

classifiers. The results are presented in Table VII. Clearly, JRip

was the best induction classifier, with higher pr and acc, and

the only one without false negatives (fpp = 0%). It correctly

classified 67 out of 76 instances. The instances wrongly

classified are expressed by pfd = 28.1%. As explained, this

statistic reports the number of instances that are false positives

but were classified as real vulnerabilities. In our approach,

these instances will be corrected with unnecessary fixes, but

a fix does not interfere with the functionality of the code. So,

TABLE VII
EVALUATION OF THE INDUCTION RULE CLASSIFIERS APPLIED TO

OUR ORIGINAL DATA SET

Measures (%) JRip PART Prism Ridor

acc 88.2 88.2 86.8 86.8
(% #) 67 67 66 66
pr 90.0 88.5 88.4 87.5
fpp 0.0 6.8 13.6 4.5
pfd 28.1 18.6 9.7 25.0

TABLE VIII
SET OF INDUCTION RULES FROM THE JRIP CLASSIFIER

String Replace Error Extract IsSet While
Class Cover

concatenation string / exit substring entry point list

Y Y Yes 9, 0
Y Y Yes 7, 0

Y Yes 7, 0
Y Yes 2, 0

N Y Yes 2, 0
No 49, 5

although JRip has a higher pfd than the other classifiers, this

is preferable to a fpp different from zero.

Table VIII shows the set of rules defined by JRip to classify

our data set. The first six columns are the attributes involved

in the rules, the seventh is the classification, and the last is

the total number of instances covered by the rule, and the

number of instances wrongly covered by the rule (the two

numbers are separated by a comma). For example, the first

rule (second line) classifies an instance as being false positive

(Class Yes) when the String concatenation and Replace string

attributes are present. The rule covers 9 instances in these

conditions, from the 32 false positives instances from our

data set, none were wrongly classified (9 , 0). The last

rule classifies as real vulnerability (Class No) all instances

that are not covered by the previous five rules. The 44 real

vulnerabilities from our data set were correctly classified by

this rule. The rule classified five instances in class No that

are false positives. These instances are related with Black list

and SQL attributes, which are not cover by the other rules.

This classification justifies the pfd value in Table VII. Notice

that the attributes involved in this set of rules confirms the

study of main attributes presented in Section V-C, where the

SQL attributes are not relevant, and the string manipulation

and validation attributes (string manipulation first) are those

that most contribute to the presence of false positives.

E. Final selection and implementation

The main conclusion of our study is that there is no single

classifier that is the best for classifying false positives with

our data set. Therefore, we opted to use the top 3 classifiers

to increase the confidence in the false positive classification.

The top 3 classifiers include Logistic Regression and Random

Tree trained with the original data set, and SVM trained

with the balanced data set. Also, the JRip induction rule

is used to present the correlation between the attributes to

justify the false positives classification. The combination of 3

classifiers is applied in sequence: first LR; if LR classifies the

vulnerability as false positive, RT is applied; if false positive,
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SVM is applied. Only if SVM considers it a false positive

is the final result determined to be a false positive. These

classifiers were implemented in WAP, and trained with the

original and balanced data sets as indicated.

VI. FIXING AND TESTING THE VULNERABLE CODE

A. Code correction

Our approach involves doing code correction automatically

after the detection of the vulnerabilities is performed by the

taint analyzer and the data mining component. The taint

analyzer returns data about the vulnerability, including its

class (e.g., SQLI), and the vulnerable slice of code. The code

corrector uses these data to define the fix to insert, and the

place to insert it. Inserting a fix involves modifying a PHP

file.

A fix is a call to a function that sanitizes or validates

the data that reaches the sensitive sink. Sanitization involves

modifying the data to neutralize dangerous metacharacters or

metadata, if they are present. Validation involves checking the

data, and executing the sensitive sink or not depending on this

verification. Most fixes are inserted in the line of the sensitive

sink instead of, for example, the line of the entry point, to

avoid interference with other code that sanitizes the variable.

Table IX shows the fixes, how they are inserted, and other

related information.

For SQLI, the fix is inserted into the last line where the

query is composed, and before it reaches the sensitive sink.

However, the fix can be inserted in the line of the sensitive

sink, if the query is composed there. The san_sqli fix applies

PHP sanitization functions (e.g., mysql_real_escape_string),

and lets the sensitive sink be executed with its arguments

sanitized. The SQLI sanitization function precedes any ma-

licious metacharacter with a backslash, and replaces others by

their literal, e.g., \n by ’\n’. The sanitization function applied

by the san_sqli fix depends on the DBMS, and the sensitive

sink. For example, for MySQL, the mysql_real_escape_string

is selected if the sensitive sink mysql_query is reached; but for

PostgreSQL, the pg_escape_string is used if the sensitive sink

is pg_query. For XSS, the fixes use functions from the OWASP

PHP Anti-XSS library that replace dangerous metacharacters

by their HTML entity (e.g., < becomes &lt;). For stored XSS,

the sanitization function addslashes is used, and the validation

process verifies in runtime if an attempt of exploitation occurs,

raising an alarm if that is the case. For these two classes of

vulnerabilities, a fix is inserted for each malicious input that

reaches a sensitive sink. For example, if three malicious inputs

appear in an echo sensitive sink (for reflected XSS), then the

san_out fix will be inserted three times (one per each malicious

input).

The fixes for the other classes of vulnerabilities were

developed by us from scratch, and perform validation of the

arguments that reach the sensitive sink, using black lists, and

emitting an alarm in the presence of an attack. The san_eval fix

also performs sanitization, replacing malicious metacharacters

by their HTML representation, for example backtick by &#96.

The last two columns of the table indicate if the fixes

output an alarm message when an attack is detected, and what

happens to the execution of the web application when that

action is made. For SQLI, reflected XSS, and PHPCI, nothing

is outputted, and the execution of the application proceeds. For

stored XSS, an alarm message is emitted, but the application

proceeds with its execution. For the others, where the fixes

perform validation, when an attack is detected, an alarm is

raised, and the execution of the web application stops.

B. Testing fixed code

Our fixes were designed to avoid modifying the (correct)

behavior of the applications. So far, we witnessed no cases

in which an application fixed by WAP started to function

incorrectly, or that the fixes themselves worked incorrectly.

However, to increase the confidence in this observation, we

propose using software testing techniques. Testing is probably

the most widely adopted approach for ensuring software

correctness. The idea is to apply a set of test cases (i.e.,

inputs) to a program to determine for instance if the program

in general contains errors, or if modifications to the program

introduced errors. This verification is done by checking if

these test cases produce incorrect or unexpected behavior or

outputs. We use two software testing techniques for doing

these two verifications, respectively: 1) program mutation, and

2) regression testing.

1) Program mutation: We use a technique based on pro-

gram mutation to confirm that the inserted program fixes

prevent the attacks as expected. Program mutation is a form

of code-based testing, as it involves using the source code

of the program [24]. This technique consists in generating

variations of the program (mutants), which are afterwards used

to verify if the outputs they produce differ from those produced

by the unmodified program. The main idea is that, although

understanding if the behavior of a program is incorrect or not

is not trivial, on the contrary comparing the results of two tests

of similar programs is quite feasible.

A mutant of a program P is defined as a program P ′ derived

from P by making a single change to P [25], [26]. Given

programs P and P ′, and a test-case T , (A1) T differentiates

P from P ′ if executions of P and P ′ with T produce different

results; and (A2) if T fails to differentiate P from P ′, either P
is functionally equivalent to P ′, or T is ineffective in revealing

the changes introduced into P ′. For each vulnerability it

detects, WAP returns the vulnerable slice of code, and the

same slice with the fix inserted, both starting in an entry point,

and ending in a sensitive sink. Consider that P is the original

program (that contains the vulnerable slice), and P ′ is the fixed

program (with the fix inserted). Consider that both P and P ′

are executed with a test case T .

T differentiates P from P ′ (A1): If T is a malicious input

that exploits the vulnerability in P , then P executed with T
produces an incorrect behavior. P ′ is the fixed version of P .

Therefore, if the fix works correctly, the result of the execution

of P ′ with T differs from the result of the execution of P with

T . As explained above, comparing the results of the two tests

is quite feasible.

T does not differentiate P from P ′ (A2): If T is a benign

input, and P and P ′ are executed with T , a correct behavior
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TABLE IX
ACTION AND OUTPUT OF THE FIXES

Vulnerability
Fix Output

Sanitization Validation
Applied to Function

Alarm Stop
Addition Substitution Black-list White-list message execution

SQLI X X query san_sqli – No
Reflected XSS X sensitive sink san_out – No
Stored XSS X X X sensitive sink san_wdata X No
Stored XSS X X sensitive sink san_rdata X No
RFI X sensitive sink san_mix X Yes
LFI X sensitive sink san_mix X Yes
DT /PT X sensitive sink san_mix X Yes
SCD X sensitive sink san_mix X Yes
OSCI X sensitive sink san_osci X Yes
PHPCI X X X sensitive sink san_eval X, – Yes, No

is obtained in both cases, and the result produced by both

programs is equal. Input sanitization and validation do not

interfere with benign inputs, so the fixes only act on malicious

inputs, leaving the benign inputs untouched, and remaining the

correct behavior.

Applying this approach with a large set of test cases, we

can gain confidence that a fix indeed corrects a vulnerability.

2) Regression testing: A concern that may be raised about

the use of WAP for correcting web applications is that the

applications may start to function incorrectly due to the

modifications made by the tool. As mentioned, we have some

experience with the tool, and we never observed this problem.

Nevertheless, we propose using regression testing to verify if

the (correct) behavior of an application was modified by WAP.

Regression testing consists in running the same tests before

and after the program modifications [24]. The objective is to

check if the functionality that was working correctly before

the changes still continues to work correctly.

We consider that the result of running an application test can

be either pass or fail, respectively if the application worked

as expected with that test case or not. We are not concerned

about how the test cases are obtained. If WAP is used by

the application developers, then they can simply do their own

regression testing process. If WAP is employed by others, they

can write their own suite of tests, or use the tests that come

with the application (something that happens with many open

source applications). Regression testing is successful if all the

test cases that resulted in pass before the WAP modification

also result in pass after inserting the fixes.

VII. EXPERIMENTAL EVALUATION

WAP was implemented in Java, using the ANTLR parser

generator. It has around 95,000 lines of code, with 78,500

of which generated by ANTLR. The implementation followed

the architecture of Fig. 3, and the approach of the previous

sections.

The objective of the experimental evaluation was to answer

the following questions.

1) Is WAP able to process a large set of PHP applications?

(Section VII-A.)

2) Is it more accurate and precise than other tools that do

not combine taint analysis and data mining? (Sections VII-B

through VII-C.)

3) Does it correct the vulnerabilities it detects? (Section

VII-D.)

4) Does the tool detect the vulnerabilities that it was

programmed to detect? (Section VII-D.)

5) Do its corrections interfere with the normal behavior of

applications? (Section VII-E.)

A. Large scale evaluation

To show the ability of using WAP with a large set of PHP

applications, we run it with 45 open source packages. Table

X shows the packages that were analyzed, and summarizes

the results. The table shows that more than 6,700 files and

1,380,000 lines of code were analyzed, with 431 vulnerabilities

found (at least 43 of which were false positives (FP)). The

largest packages analyzed were Tikiwiki version 1.6 with

499,315 lines of code, and phpMyAdmin version 2.6.3-pl1

with 143,171 lines of code. We used a range of packages from

well-known applications (e.g., Tikiwiki) to small applications

in their initial versions (like PHP-Diary). The functionality

was equally diverse, including for instance a small content

management application like phpCMS, an event console for

the iPhone (ZiPEC), and a weather application (PHP Weather).

The vulnerabilities found in ZiPEC were in the last version, so

we informed the programmers, who then acknowledged their

existence and fixed them.

B. Taint analysis comparative evaluation

To answer the second question, we compare WAP with

Pixy and PhpMinerII. To the best of our knowledge, Pixy is

the most cited PHP static analysis tool in the literature, and

PhpMinerII is the only tool that does data mining. Other open

PHP verification tools are available, but they are mostly simple

prototypes. The full comparison of WAP with the two tools

can be found in the next section. This one has the simpler goal

of comparing WAP’s taint analyzer with Pixy, which does this

same kind of analysis. We consider only SQLI and reflected

XSS vulnerabilities, as Pixy only detects these two (recall that

WAP detects vulnerabilities of eight classes).

Table XI shows the results of the execution of the two tools

with a randomly selected subset of the applications of Table

X: 9 open source applications, and all PHP samples of NIST’s

SAMATE [41]. Pixy did not manage to process mutilidae and

WackoPicko because they use the object-oriented features of
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TABLE X
SUMMARY OF THE RESULTS OF RUNNING WAP WITH OPEN SOURCE PACKAGES

Web application Files
Lines of Analysis Vul Vul

FP
Real

code time (s) files found vul

adminer-1.11.0 45 5,434 27 3 3 0 3
Butterfly insecure 16 2,364 3 5 10 0 10
Butterfly secure 15 2,678 3 3 4 0 4
currentcost 3 270 1 2 4 2 2
dmoz2mysql 6 1,000 2 0 0 0 0
DVWA 1.0.7 310 31,407 15 12 15 8 7
emoncms 76 6,876 6 6 15 3 12
gallery2 644 124,414 27 0 0 0 0
getboo 199 42,123 17 30 64 9 55
Ghost 16 398 2 2 3 0 3
gilbitron-PIP 14 328 1 0 0 0 0
GTD-PHP 62 4,853 10 33 111 0 111
Hexjector 1.0.6 11 1,640 3 0 0 0 0
Hotelmis 0.7 447 76,754 9 2 7 5 2
Lithuanian-7.02.05-v1.6 132 3,790 24 0 0 0 0
Measureit 1.14 2 967 2 1 12 7 5
Mfm 0.13 7 5,859 6 1 8 3 5
Mutillidae 1.3 18 1,623 6 10 19 0 19
Mutillidae 2.3.5 578 102,567 63 7 10 0 10
NeoBill0.9-alpha 620 100,139 6 5 19 0 19
ocsvg-0.2 4 243 1 0 0 0 0
OWASP Vicnum 22 814 2 7 4 3 1
paCRUD 0.7 100 11,079 11 0 0 0 0
Peruggia 10 988 2 6 22 0 22
PHP X Template 0.4 10 3,009 5 0 0 0 0
PhpBB 1.4.4 62 20,743 25 0 0 0 0
Phpcms 1.2.2 6 227 2 3 5 0 5
PhpCrud 6 612 3 0 0 0 0
PhpDiary-0.1 9 618 2 0 0 0 0
PHPFusion 633 27,000 40 0 0 0 0
phpldapadmin-1.2.3 97 28,601 9 0 0 0 0
PHPLib 7.4 73 13,383 35 3 14 0 14
PHPMyAdmin 2.0.5 40 4,730 18 0 0 0 0
PHPMyAdmin 2.2.0 34 9,430 12 0 0 0 0
PHPMyAdmin 2.6.3-pl1 287 143,171 105 0 0 0 0
Phpweather 1.52 13 2,465 9 0 0 0 0
SAMATE 22 353 1 10 20 1 19
Tikiwiki 1.6 1,563 499,315 1 4 4 0 4
volkszaehler 43 5,883 1 0 0 0 0
WackoPicko 57 4,156 3 4 11 0 11
WebCalendar 129 36,525 20 0 0 0 0
Webchess 1.0 37 7,704 1 5 13 0 13
WebScripts 5 391 4 2 14 0 14
Wordpress 2.0 215 44,254 10 7 13 1 12
ZiPEC 0.32 10 765 2 1 7 1 6

Total 6,708 1,381,943 557 174 431 43 388

PHP 5.0, whereas Pixy supports only those in PHP 4.0. WAP’s

taint analyzer (WAP-TA) detected 68 vulnerabilities (22 SQLI,

and 46 XSS), with 21 false positives (FP). Pixy detected 73

vulnerabilities (20 SQLI, and 53 XSS), with 41 false positives,

and 5 false negatives (FN, i.e., it did not detect 5 vulnerabilities

that WAP-TA did).

Pixy reported 30 false positives that were not raised by

WAP-TA. This difference is explained in part by the interpro-

cedural, global, and context-sensitive analyses performed by

WAP-TA, but not by Pixy. Another part of the justification

is the bottom-up taint analysis carried out by Pixy (AST

navigated from the leafs to the root of the tree), whereas the

WAP-TA analysis is top-down (starts from the entry points,

and verifies if they reach a sensitive sink).

Overall, WAP-TA was more accurate than Pixy: it had an

accuracy of 69%, whereas Pixy had only 44%.

TABLE XI
RESULTS OF RUNNING WAP’S TAINT ANALYZER (WAP-TA),

PIXY, AND WAP COMPLETE (WITH DATA MINING)

Webapp
WAP-TA Pixy WAP (complete)

SQLI XSS FP FN SQLI XSS FP FN SQLI XSS Fixed

currentcost 3 4 2 0 3 5 3 0 1 4 5
DVWA 1.0.7 4 2 2 0 4 0 2 2 2 2 4
emoncms 2 6 3 0 2 3 0 0 2 3 5
Measureit 1.14 1 7 7 0 1 16 16 0 1 0 1
Mfm 0.13 0 8 3 0 0 10 8 3 0 5 5
Multilidae 2.3.5 0 2 0 0 - - - - 0 2 2
OWASP Vicnum 3 1 3 0 3 1 3 0 0 1 1
SAMATE 3 11 0 0 4 11 1 0 3 11 14
WackoPicko 3 5 0 0 - - - - 3 5 8
ZiPEC 0.32 3 0 1 0 3 7 8 0 2 0 2
Total 22 46 21 0 20 53 41 5 14 33 47

C. Full comparative evaluation

This section compares the complete WAP with Pixy and

PhpMinerII.
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PhpMinerII does data mining of program slices that end at

a sensitive sink, regardless of data being propagated through

them starting at an entry point or not. PhpMinerII does this

analysis to predict vulnerabilities, whereas WAP uses data

mining to predict false positives in vulnerabilities detected by

the taint analyzer.
We evaluated PhpMinerII with our data set using the same

classifiers as PhpMinerII’s authors [27][28] (a subset of the

classifiers of Section V-B). The results of this evaluation are

in Table XII. It is possible to observe that the best classifier is

LR, which is the only one that passed the Wilcoxon signed-

rank test. It had also the highest precision (pr) and accuracy

(acc), and the lowest false alarm rate (fpp = 20%).

TABLE XII
EVALUATION OF THE MACHINE LEARNING MODELS APPLIED TO

THE DATA SET RESULTING FROM PHPMINERII

Measures
C4.5/J48

Naive
MLP

Logistic
(%) Bayes Regression

tpp 94.3 88.7 94.3 90.6
fpp 32.0 60.0 32.0 20.0
prfp 86.2 75.8 86.2 90.6
pd 68.0 40.0 68.0 80.0
pfd 5.7 11.3 5.7 9.4
prd 85.0 62.5 85.0 80.0
acc 85.9 73.1 85.9 87.2
(% #) 67 57 67 68
pr 85.6 69.2 85.6 85.3

kappa
65.8 31.7 65.8 70.6

Very Good Reasonable Very Good Very Good

wilcoxon Rejected Rejected Rejected Accepted

The confusion matrix of the LR model for PhpMinerII

(Table XIII) shows that it correctly classified 68 instances,

with 48 as vulnerabilities, and 20 as non-vulnerabilities. We

can conclude that LR is a good classifier for PhpMinerII, with

an accuracy of 87.2%, and a precision of 85.3%.
We now compare the three tools. The comparison with Pixy

can be extracted from Table XI; however, we cannot show the

results of PhpMinerII in the table because it does not really

identify vulnerabilities. The accuracy of WAP was 92.1%,

whereas the accuracy of WAP-TA was 69%, and of Pixy was

only 44%. The PHPminerII results (Tables XII and XIII) are

much better than Pixy’s, but not as good as WAP’s, which has

an accuracy of 92.1%, and a precision of 92.5% (see Table

III) with the same classifier.
Table XIV summarizes the comparison between WAP, Pixy,

and PhpMinerII. We refined these values for a more detailed

comparison. We obtained the intersection between the 53

slices classified as vulnerable by PHPminerII and the 68

vulnerabilities found by WAP. Removing from the 68 those

found in applications that PHPminerII could not process,

37 remain, 11 of which are false positives. All the 22 real

vulnerabilities detected by PHPminerII were also detected by

WAP, and PHPminerII did not detect 4 vulnerabilities that

WAP identified. The 11 false positives from WAP are among

the 31 false positives of PHPminerII.

D. Fixing vulnerabilities

WAP uses data mining to discover false positives among the

vulnerabilities detected by its taint analyzer. Table XI shows

TABLE XIII
CONFUSION MATRIX OF PHPMINERII WITH LR

Observed
Yes (Vul) No (not Vul)

Predicted
Yes (Vul) 48 5

No (not Vul) 5 20

TABLE XIV
SUMMARY FOR WAP, PIXY AND PHPMINERII

Metric WAP Pixy PhpMinerII

accuracy 92.1% 44.0% 87.2%
precision 92.5% 50.0% 85.2%

that in the set of 10 packages WAP detected 47 SQLI, and

reflected XSS vulnerabilities. The taint analyzer raised 21 false

positives that were detected by the data mining component. All

the vulnerabilities detected were corrected (right-hand column

of the table).

WAP detects several other classes of vulnerabilities besides

SQLI and reflected XSS. Table XV expands the data of

Table XI for all the vulnerabilities discovered by WAP. The

69 XSS vulnerabilities detected include reflected and stored

XSS vulnerabilities, which explains the difference to the 46

reflected XSS of Table XI. Again, all vulnerabilities were

corrected by the tool (last column).

TABLE XV
RESULTS OF THE EXECUTION OF WAP WITH ALL

VULNERABILITIES IT DETECTS AND CORRECTS

Webapp
Detected taint analysis Detected

Fixed
SQLI

RFI, LFI
SCD OSCI XSS Total FP

data
DT/PT mining

currentcost 3 0 0 0 4 7 2 5 5
DVWA 1.0.7 4 3 0 6 4 17 8 9 9
emoncms 2 0 0 0 13 15 3 12 12
Measureit 1.14 1 0 0 0 11 12 7 5 5
Mfm 0.13 0 0 0 0 8 8 3 5 5
Mutillidae 2.3.5 0 0 0 2 8 10 0 10 10
OWASP Vicnum 3 0 0 0 1 4 3 1 1
SAMATE 3 6 0 0 11 20 1 19 19
WackoPicko 3 2 0 1 5 11 0 11 11
ZiPEC 0.32 3 0 0 0 4 7 1 6 6

Total 22 11 0 9 69 111 28 83 83

E. Testing fixed applications

WAP returns new application files with the vulnerabilities

removed by the insertion of fixes in the source code. As

explained in Section VI-B, regression testing can be used to

check if the code corrections made by WAP compromise the

previously correct behavior of the application.

For this purpose, we did regression testing using Selenium

[42], a framework for testing web applications. Selenium

automates browsing, and verifies the results of the requests

sent to web applications. The DVWA 1.0.7 application and

the samples in SAMATE were tested because they contain a

variety of vulnerabilities detected and corrected by the WAP

tool (see Table XV). Specifically, WAP corrected 6 files of

DVWA 1.0.7, and 10 of SAMATE.
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The regression testing was carried out in the following way.

First, we created in Selenium a set of test cases with benign

inputs. Then, we ran these test cases with the original DVWA

and SAMATE files, and observed that they passed all tests.

Next, we replaced the 16 vulnerable files by the 16 files

returned by WAP, and reran the tests to verify the changes

introduced by the tool. The applications passed again all the

tests.

VIII. DISCUSSION

The WAP tool, like any other static analysis approach, can

only detect vulnerabilities it is programmed to. WAP can, how-

ever, be extended to handle more classes of input validation

vulnerabilities. We discuss it considering WAP’s three main

components: taint analyzer, data mining component, and code

corrector. The taint analyzer has three pieces of data about

each class of vulnerabilities: entry points, sensitive sinks, and

sanitization functions. The entry points are always a variant

of the same set (functions that read input parameters, e.g.,

$_GET), whereas the rest tend to be simple to identify once

the vulnerability class is known. The data mining component

has to be trained with new knowledge about false positives

for the new class. This training may be skipped at first, and

improved incrementally when more data become available. For

the training, we need data about candidate vulnerabilities of

that kind found by the taint analyzer, which have to be labeled

as true or false positives. Then, the attributes associated to the

false positives have to be used to configure the classifier. The

code corrector needs data about what sanitization function has

to be used to handle that class of vulnerability, and where it

shall be inserted. Again, getting this information is doable once

the new class is known and understood.

A limitation of WAP derives from the lack of formal

specification of PHP. During the experimentation of the tool

with many open source applications (Section VII-A), several

times WAP was unable to parse the source code for lack of

a grammar rule to deal with strange constructions. With time,

these rules were added, and these problems stopped appearing.

IX. RELATED WORK

There is a large corpus of related work, so we just summa-

rize the main areas by discussing representative papers, while

leaving many others unreferenced to conserve space.

Detecting vulnerabilities with static analysis.

Static analysis tools automate the auditing of code, either

source, binary, or intermediate. In this paper, we use the term

static analysis in a narrow sense to designate static analysis

of source code to detect vulnerabilities [8], [9], [10], [29].

The most interesting static analysis tools do semantic analysis

based on the abstract syntax tree (AST) of a program. Data

flow analysis tools follow the data paths inside a program to

detect security problems. The most commonly used data flow

analysis technique for security analysis is taint analysis, which

marks data that enters the program as tainted, and detects if

it reaches sensitive functions.

Taint analysis tools like CQUAL [10] and Splint [19] (both

for C code) use two qualifiers to annotate source code: the

untainted qualifier indicates either that a function or parameter

returns trustworthy data (e.g., a sanitization function), or

a parameter of a function requires trustworthy data (e.g.,

mysql_query). The tainted qualifier means that a function or

a parameter returns non-trustworthy data (e.g., functions that

read user input).

Pixy [9] uses taint analysis for verifying PHP code, but

extends it with alias analysis that takes into account the

existence of aliases, i.e., of two or more variable names that

are used to denominate the same variable. SaferPHP uses

taint analysis to detect certain semantic vulnerabilities in PHP

code: denial of service due to infinite loops, and unauthorized

operations in databases [29]. WAP also does taint analysis and

alias analysis for detecting vulnerabilities, although it goes

further by also correcting the code. Furthermore, Pixy does

only module-level analysis, whereas WAP does global analysis

(i.e., the analysis is not limited to a module or file, but can

involve several).

Vulnerabilities and data mining.

Data mining has been used to predict the presence of software

defects [30], [31], [32]. These works were based on code

attributes such as numbers of lines of code, code complexity

metrics, and object-oriented features. Some papers went one

step further in the direction of our work by using similar

metrics to predict the existence of vulnerabilities in source

code [33], [34], [35]. They used attributes such as past

vulnerabilities and function calls [33], or code complexity and

developer activities [34]. Contrary to our work, these other

works did not aim to detect bugs and identify their location, but

to assess the quality of the software in terms of the prevalence

of defects and vulnerabilities.

Shar and Tan presented PhpMinerI, and PhpMinerII, which

are two tools that use data mining to assess the presence of

vulnerabilities in PHP programs [27], [28]. These tools extract

a set of attributes from program slices, then apply data mining

algorithms to those attributes. The data mining process is not

really done by the tools, but by the WEKA tool [23]. More

recently, the authors evolved this idea to use also traces or

program execution [36]. Their approach is an evolution of the

previous works that aimed to assess the prevalence of vulnera-

bilities, but obtaining a higher accuracy. WAP is quite different

because it has to identify the location of vulnerabilities in the

source code, so that it can correct them with fixes. Moreover,

WAP does not use data mining to identify vulnerabilities, but

to predict whether the vulnerabilities found by taint analysis

are really vulnerabilities or false positives.

Correcting vulnerabilities.

We propose to use the output of static analysis to remove

vulnerabilities automatically. We are aware of a few works that

use approximately the same idea of first doing static analysis

then doing some kind of protection, but mostly for the specific

case of SQL injection and without attempting to insert fixes

in a way that can be replicated by a programmer. AMNESIA

does static analysis to discover all SQL queries, vulnerable or

not; and in runtime it checks if the call being made satisfies

the format defined by the programmer [37]. Buehrer et al. do
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something similar by comparing in runtime the parse tree of

the SQL statement before and after the inclusion of user input

[38]. WebSSARI also does static analysis, and inserts runtime

guards, but no details are available about what the guards

are, or how they are inserted [8]. Merlo et al. present a tool

that does static analysis of source code, performs dynamic

analysis to build syntactic models of legitimate SQL queries,

and generates code to protect queries from input that aims to

do SQLI [39]. saferXSS does static analysis for finding XSS

vulnerabilities, then removes them using functions provided

by OWASP’s ESAPI [43] to wrap user inputs [40]. None of

these works use data mining or machine learning.

X. CONCLUSION

This paper presents an approach for finding and correcting

vulnerabilities in web applications, and a tool that implements

the approach for PHP programs and input validation vulner-

abilities. The approach and the tool search for vulnerabilities

using a combination of two techniques: static source code

analysis, and data mining. Data mining is used to identify

false positives using the top 3 machine learning classifiers, and

to justify their presence using an induction rule classifier. All

classifiers were selected after a thorough comparison of several

alternatives. It is important to note that this combination of

detection techniques cannot provide entirely correct results.

The static analysis problem is undecidable, and resorting

to data mining cannot circumvent this undecidability, but

only provide probabilistic results. The tool corrects the code

by inserting fixes, i.e., sanitization and validation functions.

Testing is used to verify if the fixes actually remove the

vulnerabilities and do not compromise the (correct) behavior

of the applications. The tool was experimented with using

synthetic code with vulnerabilities inserted on purpose, and

with a considerable number of open source PHP applications.

It was also compared with two source code analysis tools:

Pixy, and PhpMinerII. This evaluation suggests that the tool

can detect and correct the vulnerabilities of the classes it is

programmed to handle. It was able to find 388 vulnerabilities

in 1.4 million lines of code. Its accuracy and precision were

approximately 5% better than PhpMinerII’s, and 45% better

than Pixy’s.
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