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ABSTRACT
Access-control policy misconfigurations that cause requests
to be erroneously denied can result in wasted time, user frus-
tration and, in the context of particular applications (e.g.,
health care), very severe consequences. In this paper we
apply association rule mining to the history of accesses to
predict changes to access-control policies that are likely to
be consistent with users’ intentions, so that these changes
can be instituted in advance of misconfigurations interfering
with legitimate accesses. Instituting these changes requires
consent of the appropriate administrator, of course, and so a
primary contribution of our work is to automatically deter-
mine from whom to seek consent and to minimize the costs
of doing so. We show using data from a deployed access-
control system that our methods can reduce the number of
accesses that would have incurred costly time-of-access de-
lays by 44%, and can correctly predict 58% of the intended
policy. These gains are achieved without increasing the total
amount of time users spend interacting with the system.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; H.2.0
[Information Systems]: Security, integrity, and protec-
tion; K.6.5 [Security and Protection]: Authentication

General Terms
Security, Human Factors, Performance

1. INTRODUCTION
At some point, each of us has had a request to access

a resource be denied that should have been granted. Such
events are typically the result of a misconfiguration of access-
control policy. Resolving these misconfigurations usually in-
volves a human user to confirm that policy should be mod-
ified to permit the requested access. As a consequence, the
misconfigurations are often disruptive and time-consuming,
and can be especially frustrating if the person who can
change the policy cannot be reached when access is needed.

As a result, identifying and correcting misconfigurations
before they result in the denial of a legitimate access request
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is essential to improving the usability of any access-control
system. Eliminating all such misconfigurations in advance of
accesses is arguably an unattainable goal (unless we invent
a technique for reading users’ minds). In this paper we set
out to show, however, that most such misconfigurations can
be eliminated in advance. Eliminating a misconfiguration is
a two-step process: first we must identify a potential mis-
configuration, then attempt to resolve it by contacting the
most appropriate human. The contributions of this paper
are threefold: (i) to develop techniques to identify poten-
tial misconfigurations (Section 2), (ii) to develop techniques
to resolve misconfigurations once they have been identified
(Section 3), and (iii) to evaluate these techniques on a data
set collected from a deployed system (Sections 2.3 and 3.3).

Identifying misconfigurations.
Intuitively, identifying misconfigurations is possible be-

cause in most practical settings there is significant similarity
in the policy that governs access to related resources. Conse-
quently, the history of permitted accesses may shed light on
which accesses that have not yet been attempted are likely
to be consistent with policy.

The method we explore for identifying access-control mis-
configurations is a data-mining technique called association
rule mining [1]. This technique enables the inference of if-
then rules from a collection of multi-attribute records. Intu-
itively, rule mining identifies subsets of attributes that ap-
pear in multiple records. These subsets are used to con-
struct rules that suggest that if all but one of the attributes
of a subset are present in a record, then the last attribute
should also be present. We employ association rule mining
to identify potential misconfigurations in access-control pol-
icy from a global view of access logs by representing each
resource that is accessed as an attribute, and the set of re-
sources accessed by an individual as a record. Records for
which the mined rules do not hold represent potential mis-
configurations. However, statistically significant rules can
often repeatedly produce incorrect predictions. We address
this through the use of a feedback mechanism described in
Section 2.2.

Resolving misconfigurations.
Once a potential misconfiguration has been identified, we

have to resolve the misconfiguration, which entails determin-
ing which human is best able to correct the access-control
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policy. In systems where policy is governed by a single ad-
ministrator, this process is straightforward. In a distributed
access-control system, however, it may not be clear which
of potentially many users would be willing or able to extend
the policy to grant the access. Since user interaction has
a cost (in time and user aggravation), our technique must
balance the desire to proactively resolve a misconfiguration
with the desire to avoid unnecessary user interaction.

Our proposed resolution technique again relies on past
user behavior; specifically, we determine which users have in
the past created policy with respect to the particular user
or resource in question, and suggest to those users that they
correct the identified misconfiguration. In this way the mis-
configurations can be resolved before they inconvenience the
users that they affect. Compared to more reactive methods
that attempt to resolve a misconfiguration only after an ac-
cess that should be allowed fails, our technique can drasti-
cally reduce time-of-access latency and even the total time
users spend interacting with the system without increasing
the number of interruptions.

Evaluation.
We evaluate the effectiveness of our techniques on data

collected from Grey, an experimental access-control system
that has been deployed and actively used at our institution
to control access to offices for approximately two years [6].
This deployment is one in which misconfigurations that pro-
long access to an office substantially diminish the perceived
usability of the system [5]. Grey controls access to 25 phys-
ical doors, and has a community of 29 users. Each user ac-
cesses a door using a Grey application on her smartphone,
which communicates using Bluetooth to an embedded com-
puter that unlocks the door if the user is authorized to do
so. Data drawn from logs allows us to reconstruct a de-
tailed scenario of how policy was exercised over the course
of 10,911 attempted accesses. This data shows that there
is a high degree of resource sharing (22 of the 25 resources
were accessed by more than one user). Additionally, Grey
supports dynamic policy creation, in that a user can del-
egate her authority to open a door using her smartphone,
either at her own initiative or in response to a request to do
so—e.g., because another user has requested she do so from
his Grey-enabled phone. This capability of Grey allows us
to determine how users were able to resolve misconfigura-
tions in real life. We augment this data with information
collected from a user survey that asked what policy users
were willing to implement should the need arise. Results
from the survey allow us to determine precisely how users
would resolve misconfigurations in scenarios that did not
occur over the course of our deployment. This data is es-
sential for evaluating the effectiveness of our technique for
proactively resolving misconfigurations.

As expected, the performance of the methods we explore
can be tuned to achieve a desired tradeoff between success in
detecting and guiding the repair of misconfigurations, and
the inconvenience to users of suggesting incorrect modifi-
cations to policy. For a particular, reasonable set of pa-
rameters, we correctly identify 58% of intended, but not yet
implemented policy, i.e., 58% of the misconfigurations in the
implemented policy. Using these predictions, our technique
for resolving misconfigurations is able to proactively imple-
ment the needed policy for 44% of accesses that would other-

wise have incurred a costly time-of-access delay. Each such
correction results in significant savings in time-of-access la-
tency. These gains are achieved without increasing the total
time users spend interacting with the system.

2. TECHNIQUES FOR IDENTIFYING
MISCONFIGURATIONS

To identify potential policy misconfigurations, we first
use association rule mining to detect statistical patterns,
or rules, from a central database of previously observed ac-
cesses (Section 2.1). We then analyze our data using these
rules to predict potential misconfigurations, or instances of
the data for which the rules do not hold (Section 2.2). Once
we determine whether or not the prediction was correct, we
incorporate the result into a feedback mechanism to promote
the continued use of rules that accurately reflect policy and
prune rules that do not.

To illustrate the usefulness of this technique, consider the
following scenario. Bob is a new student who is advised by
Alice, a professor. Bob and Alice both work in a building
where the same system controls access to Alice’s office, Bob’s
office (which is shared with some of Alice’s other students),
a shared lab, and a machine room. When the department
assigns Bob an office, it configures access-control policy to
allow Bob to gain access to his office (e.g., by giving Bob
the appropriate key). Though Alice is willing in principle
to allow Bob access to the lab and machine room, both she
and the department neglect to enact this policy.

The first time Bob attempts to access the shared lab space,
he is denied access as a result of the misconfiguration, at
which point he must contact Alice or the department to
correct it. This process is intrusive and could potentially
take minutes or even hours. However, the past actions of
Bob’s office-mates suggest that people who access Bob’s of-
fice are very likely to also access the shared lab space and
machine room. The techniques we describe here allow us
to infer from Bob’s access to his office that Bob is likely
to need access to the lab space and machine room. Identi-
fying this in advance allows for the misconfiguration to be
corrected before it results a denied access and wasted time.
Detecting the misconfiguration is accomplished using only
the history of accesses in the system; the technique is inde-
pendent of the underlying access-control mechanism, policy,
and policy-specification language.

2.1 Association rule mining
The objective of association rule mining is to take a se-

ries of records that are characterized by a fixed number
of attributes, e.g., boolean attributes A through D, and
discover rules that model relationships between those at-
tributes. Suppose that for 75% of the records where both A

and B are true, D is also true. This property would give rise
to the rule A ∧ B → D. One measure of the quality of this
rule is confidence, which is defined as the percentage of time
that the conclusion is true given that the premises of the
rule are true (75% for this example). Confidence represents
the overall quality of a rule.

We employ the Apriori algorithm [1] to mine associa-
tion rules, although other methods also exist. Apriori first
builds all possible itemsets, or groups of attributes, that
have occurred together in more than a certain fraction of
the records. This fraction is known as the support of an

186



itemset. For each of these itemsets (e.g., A ∧ B ∧ D), Apri-
ori enumerates all subsets of the itemset (D, B ∧ D, etc.).
Using each subset as the premise for a rule and the remain-
der of the itemset as the conclusion, Apriori calculates the
confidence of the rule, and keeps only rules whose confidence
exceeds a specified minimum.

In our context, each resource is represented by a boolean
attribute. Each user in the system is represented by a record
in which the attributes corresponding to the resources that
the user has accessed are set to true. For example, if at-
tributes A through D each represent a resource, the record
〈false, true, true, false〉 would represent a user who has ac-
cessed resources B and C.

In our scenario, a small number of high quality rules may
identify statistically significant patterns, but on too small
of a subset of the overall policy to be of much use. Thus,
in tuning the output produced by Apriori, our objective is
to balance the quality of the rules produced with the quan-
tity of those rules. We achieve this by varying the minimum
allowable confidence and support that a rule may have. Re-
quiring a higher confidence biases the output towards rules
that are true with high likelihood, while requiring higher
support biases the output towards rules that describe pat-
terns that occur with higher frequency. Section 2.3 describes
the extent to which these parameters affect our ability to de-
tect misconfigurations.

2.2 Using mined rules to make predictions
The rules output by Apriori must, in turn, be used to iden-

tify potential policy misconfigurations. A potential miscon-
figuration is a record for which the premises of the rule hold,
but the conclusion does not. If a rule has a confidence of one,
it implies that for all records which the premises of the rule
hold, the conclusion of the rule holds as well. This means
that every user who has accessed the resources represented
by the premises of the rule has already accessed the resource
mentioned in the conclusion. These rules do not allow us to
identify any possible misconfigurations, so we ignore them.
For each remaining rule, we identify the records for which
the premise holds, but the conclusion does not. Each such
record represents a potential misconfiguration; we predict
that the user represented by that record should have access
to the resource identified by the conclusion of the rule.

Feedback.
One limitation of using mined rules to predict policy is

that a dataset may contain several patterns that are statis-
tically significant (i.e., they produce rules whose confidence
exceeds the minimum) that are nonetheless poor indicators
of policy. For example, the rule (perimeter door A → office
D) may have medium confidence because door A is physi-
cally close to office D, and is therefore used primarily by the
professor who owns office D and by his students. However,
should this rule be used for prediction, the professor will be
asked to delegate authority to enter his office to everyone
who accesses door A.

To prevent the system from making repeated predictions
on the basis of poor rules, we introduce a feedback mecha-
nism that scores rules on the correctness of the predictions
they produce. A correct prediction is one that identifies a
misconfiguration that a human is willing to repair. The idea
is to penalize a rule when it results in an incorrect predic-
tion, and to reward it when it results in a correct prediction.

Rules whose score drops below a threshold are no longer con-
sidered when making predictions.

To illustrate how scores are computed, consider the fol-
lowing example. Suppose that four resources A through D

are commonly accessed together. This implies that Apriori
will construct the itemset A ∧ B ∧ C ∧ D. Suppose that
Apriori constructs the rules A ∧ B → D and A ∧ C → D

from that itemset. Our feedback mechanism keeps a pair-
wise score for each premise attribute and conclusion, that is,
(A, D), (B, D), and (C, D). If the rule A∧B → D is used to
make a correct prediction, the scores for (A, D) and (B, D)
will be incremented. If the prediction was incorrect, those
scores will be decremented. If A ∧ B → D produces four
incorrect predictions and A∧C → D produces three correct
predictions, the scores for (A,D), (B,D), and (C, D) will be
−1, −4, and 3.

The score for a rule is the sum of the scores of the premise
attribute, conclusion pairs. In the scenario described above,
A ∧ B → D would have a score of −5, while A ∧ C → D

would have a score of 2. If the threshold for pruning rules
is 0, A∧B → D would be pruned from the set of rules used
to make predictions.

The reason for employing this technique instead of a more
straightforward system where each rule is scored indepen-
dently is that an itemset will often result in many more rules
than the example presented above (in fact, Apriori may pro-
duce a rule with every combination of A, B, and C as the
premise). Our technique allows us to more quickly prune
groups of similar rules that are poor indicators of policy.

This feedback strategy performs well in our evaluation.
However, in a hypothetical scenario, a rule could acquire a
high positive score, which would require that many failures
occur before the rule is pruned. In situations where this is
unacceptable, the system could employ alternative feedback
strategies that only consider recent accesses or compute the
feedback score as a percentage of successful predictions. In
the unlikely event that a rule’s feedback score is high but its
continued use is problematic, an administrator can manually
prune the rule.

2.3 Evaluation
In evaluating our prediction techniques we distinguish be-

tween several different types of policy. Implemented policy is
the policy explicitly enacted via credentials that grant au-
thority to users. Data from logs is sufficient to learn the
entire implemented policy for our deployment environment.
Intended policy includes implemented policy and policy that
is consistent with users intentions but has not yet been en-
acted through credentials. Exercised policy is the subset of
implemented policy that allowed the accesses that were ob-
served in the logs. This is the only kind of policy that is used
for making predictions; the other policy sets are used purely
to evaluate the effectiveness of our methods. Finally, unex-
ercised policy is the intended policy without the component
that has been exercised.

Since intended policy can only be partially gathered from
system logs, we distributed a questionnaire to the users of
our system. The questionnaire listed all of the resources that
the user had authority to delegate. For each such resource,
the user was asked to select (from a list) the users to whom
she would be willing to delegate authority. This allowed us
to determine, for situations that did not occur in actual use
of the system, whether the users would be willing to grant
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Figure 1: Prediction accuracy (exercised policy)
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Figure 2: Prediction accuracy (intended policy)

authority. These responses are used solely to analyze the
accuracy of our predictions.

Our evaluations take place in a simulated environment
defined by the usage data that we collected from our de-
ployment. The logs describe 10,911 access attempts of 29
users to 25 doors. For each access attempt we logged who
attempted to access which resource, when the attempt was
made, and whether it succeeded; we refer to each such record
as an access event. Several subsets of the implemented pol-
icy were completely or partially preconfigured, e.g., seven
perimeter doors were preconfigured to be accessible to all
users through a policy that used groups, and gaining access
to these doors required no policy reconfiguration.

We replay the sequence of access events logged by our
system and, after every event, attempt to predict which new
policies are consistent with the accesses observed so far. The
performance numbers we report are aggregated over the en-
tire run of the simulation. A prediction is considered accu-
rate with respect to exercised policy if the predicted policy is
exercised in the data set for the first time after the the pre-
diction was made. We also evaluate accuracy with respect to
intended policy; here we count a prediction as accurate if it
is consistent with intended policy that has not yet been ex-
ercised (regardless of whether it is ever exercised). Although
accuracy of prediction is an important metric, in practice it
is important to achieve both good accuracy and good cover-
age. Coverage describes the percentage of the target space
predicted, i.e., the percentage of actual accesses present in
the data set (or the percentage of intended policy) that we
are able to predict.

Prediction accuracy.
We evaluate the accuracy of our predictions with respect

to both exercised and intended policy. Accuracy is affected
by tuning three parameters: the minimum confidence, min-
conf, and support, minsup, that a rule may have, and the
feedback threshold, fthresh, that governs the minimum feed-
back score that a rule must have to be used in the prediction
process (see Section 2.2). We evaluate three values for min-
sup: 0.01, 0.03, and 0.07, which represent supports of one,
two, and three records. We evaluate confidence values rang-
ing between 0.01 and 0.8. Values above 0.8 resulted in so
few predictions that the accuracy was not meaningful.

In practice, the feedback score represents the result of
previous attempts to resolve misconfigurations. However,
the success rate of the resolution process depends on other

factors, like our ability to efficiently detect whom to prompt
to correct detected misconfigurations (see Section 3). To
evaluate the accuracy of our predictions in isolation from the
resolution process, we use ideal feedback, in which the scoring
is based on what we know to be the intended policy in the
system. We revert to the standard form of feedback when
evaluating the resolution process in subsequent sections.

We evaluated fthresh values of −1, 0, and 1, using the
technique described in Section 2.2 to score each rule. A
rule is used to generate predictions only if it had no feed-
back score or if its feedback score was greater than or equal
to the threshold value fthresh. For clarity, we present only
the results obtained with fthresh set to 1, since that setting
offered the greatest benefit.

Figures 1 and 2 show the prediction accuracy with respect
to exercised and intended policy. As expected, including
feedback in the prediction method improved accuracy for
combinations of other parameters. Using rules with higher
confidence and support parameters uniformly improves the
accuracy of predictions with respect to intended policy, but
the benefit with respect to exercised policy peaks at a confi-
dence of around 0.5. Intuitively, this shows that while past
behavior gives us more insight into intended policy, future
accesses are not drawn uniformly from this space. We con-
jecture that a larger data set, in which the exercised policy
covered a greater part of the intended policy, would show
improved performance with respect to exercised policy.

The increased accuracy achieved by using higher-quality
rules lowers the total number of predictions, as we will dis-
cuss in Section 2.3.

Prediction coverage.
We show prediction coverage for exercised and intended

policy while varying the same parameters as when evaluat-
ing prediction accuracy. Our findings are shown in Figures 3
and 4. As expected, again, coverage decreases as we improve
the accuracy of the rules. That is, the more accurate rules
apply in a lower number of cases, and so predictions that
would be made by a less accurate rule are missed. Interest-
ingly, a sharp drop-off in coverage doesn’t occur until confi-
dence values are raised above 0.5, suggesting that values in
the range between 0.3 and 0.5 may produce rules that are
both accurate and have good coverage. With reasonable pa-
rameters (minsup=0.01, minconf=0.4, and fthresh=1) our
predictions cover 48% of the exercised policy and 58% of
the intended policy.

188



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

P
er

ce
nt

ag
e 

of
 E

xe
rc

is
ed

 P
ol

ic
y 

P
re

di
ct

ed

Confidence

minsup=0.01, no feedback
minsup=0.03, no feedback
minsup=0.07, no feedback

minsup=0.01, fthresh=1
minsup=0.03, fthresh=1
minsup=0.07, fthresh=1

Figure 3: Coverage of exercised policy
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Figure 4: Coverage of intended policy
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Figure 5: Prediction accuracy versus time

Accuracy over time.
In addition to measuring the aggregate accuracy of predic-

tions across an entire run of the simulator, it is interesting to
know how prediction accuracy varies as a function of time.
To measure this, we compute the accuracy of predictions
over intervals that contain 50 predictions each. Figure 5
shows these results for different values of minconf with min-
sup fixed at 0.01. Rules with a higher minimum confidence
make fewer predictions and so result in fewer data points.
Different values of minsup exhibit similar trends.

Somewhat surprisingly, we found that the predictions made
early in the simulation are, roughly speaking, as accurate as
those made later when more history is available to the rule-
mining algorithm. We conjecture that this is because the
initial data points, though relatively few in quantity, are of
high quality. In other words, the early accesses are made by
a small number of people and to a small number of shared
resources, and so are representative of a very small but often
exercised subset of the intended policy.

2.4 Discussion
We evaluated our ability to predict accesses that are con-

sistent with policy with respect to both accuracy and cover-
age. Reasonably good performance was achieved using each
metric, but, more importantly, we identified a combination
of parameters for which the predictions were both reasonably
accurate (i.e., not erroneous) and covered a large portion
of the unexercised policy. Specifically, minimum confidence
values between 0.3 and 0.5 achieved the best tradeoff. For

these parameters, the increased accuracy resulting from our
use of feedback to prune rules far outweighed the associated
decrease in coverage.

Varying the minimum support that a rule must have did
not have as great an impact on results as the other param-
eters. The higher coverage that resulted from a minimum
support value of 0.01 outweighed the increase in accuracy
achieved by using higher values, and so for the evaluation in
Section 3.3 we will fix the minimum support to 0.01.

Finally, we found that the predictions made with relatively
few data points were roughly as accurate as predictions made
with many more. Consequently, it appears that our methods
would work well even in the early phases of adoption or
deployment of a system that uses them.

One important question is the extent to which the success
of our technique on our dataset will carry over to systems
with different access patterns and policies. Our technique
exploits the observation that principals with similar access
patterns are often granted access to those resources via simi-
lar policies. Thus, in any system where users’ access patterns
imply characteristics of access-control policy, our technique
is likely to provide benefit. Our technique will not be effec-
tive in a system where few shared resources exist or there is
little overlap between the access patterns of individual users.

Our technique is effective as long as there is a discrepancy
between implemented policy and intended policy. If a sys-
tem is able to exactly implement the intended policy and the
intended policy is fully known at the outset, then there are
no misconfigurations to detect. However, regardless of the
expressiveness of the policy language used by the system,
neither of these conditions is likely to be met: the intended
policy is often dynamic, i.e., developed in response to new
situations; and even when the intended policy is not dy-
namic, it is rarely fully specified at the outset. Therefore, it
seems likely that most systems will have misconfigurations.

As our dataset represents a somewhat small deployment,
an interesting question is to what extent our approach scales
to larger policies. The complexity of mining rules grows with
the number of attributes (i.e., resources in our system). As
a result, scaling to environments with ever larger numbers
of resources will eventually pose a problem to a centralized
rule miner. However, recent algorithms can efficiently mine
rules on datasets containing 10,000 attributes and 50,000
records [27]. In even larger organizations, the useful pat-
terns are likely to be with respect to localized resources (e.g.,
resources for an individual lab or building).
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3. TECHNIQUES FOR REPAIRING
MISCONFIGURATIONS

Once a potential misconfiguration has been identified, it
is best if the policy is corrected as soon as possible to maxi-
mize the likelihood that the misconfiguration will not affect
users. Since an identified misconfiguration might be erro-
neous, a user with the authority to modify policy must be
queried to determine if the identified misconfiguration is con-
sistent with the intended policy. If it is, then the user can
repair the misconfiguration by altering or extending the pol-
icy. How the user elects to modify the policy is orthogonal
to our work; it could entail changing an access-control list
on a server or issuing digitally signed credentials that create
a new group and delegate authority to that group. However,
if there is only a single administrator in charge of policy, the
question of which user to contact becomes trivial. Hence, we
look at the more difficult problem of repairing misconfigura-
tions in distributed access-control systems in which multiple
users may have the ability to modify policy.

Following the example in Section 2, when Bob discovers
that he cannot access the shared lab space, he must deter-
mine whom to ask for assistance in resolving the conflict.
Since the lab space is shared, Alice may not be the only
person with the authority to modify access-control policy.
Professors Charlie and David may also be able to edit the
policy governing the lab, but they may not be willing to
grant authority to Bob. In this case, then, we would like the
system to contact Alice and suggest to her that she amend
policy to allow Bob access.

In this scenario, our previous work relied on Bob’s intu-
ition to direct queries to the most appropriate principals [7].
However, we would like to resolve such misconfigurations
proactively, i.e., at a time when Bob is not actively inter-
acting with the system. Contacting the user to obtain his
intuition at a time when he is not already interacting with
the system would necessarily involve an additional user in-
terruption. Instead, we attempt to determine which users
are most likely to be able and willing to resolve the miscon-
figuration by analyzing past user behavior.

3.1 Users to contact
The strategy that is most likely to succeed in repairing the

misconfiguration is one that exhaustively queries all users
who have the relevant authority, but this process is likely to
embitter the users who are wantonly interrupted. Therefore,
when deciding which users to contact, we must balance the
desire to repair the misconfiguration with the desire to avoid
unnecessary user interaction.

To determine which users have the authority to resolve a
misconfiguration, we could analyze the implemented access-
control policy. However, the language for expressing policy
varies widely between systems, and we wish to design a tech-
nique that is not specific to any particular language. Instead,
we determine who has authority to repair a misconfiguration
by analyzing the observed behavior of users when they re-
solved past misconfigurations. This is possible because, in
addition to logging past access attempts, our system main-
tains data about who users contacted when attempting to
manually resolve misconfigurations. The intuition is that,
because of similarities in the structure of access-control pol-
icy, principals who have rendered assistance in similar sce-
narios in the past are likely to provide assistance in the fu-
ture, as well. For cases where that is insufficient, we also

consider the users who have previously accessed the resource,
as they may be allowed to redelegate authority.

3.2 Directing resolution requests
We propose four different strategies for constructing a can-

didate list of these principals based on past user behavior.
Once this candidate list has been assembled, it is sorted in
descending order by the number of times the principal has
rendered assistance in previous scenarios.

Strategy 1: OU The candidate list consists of the princi-
pals who previously rendered assistance to Other Users
(OU) when they attempted to gain access to the re-
source mentioned in the prediction.

Strategy 2: OR The candidate list consists of the prin-
cipals who previously rendered assistance to the user
mentioned in the prediction when that user accessed
Other Resources (OR).

Strategy 3: U The candidate list consists of the Union
(U) of the lists produced by the OU and OR strategies.

Strategy 4: UPPA The candidate list contains the list U
plus the Principals who Previously Accessed (UPPA)
the resource mentioned in the prediction. Since these
principals have not previously rendered aid to anyone,
they will be sorted to the end of the candidate list.

The last strategy aims to cover the case where the struc-
ture of the policy that would authorize the predicted access
is slightly different than the policy that authorized previous
accesses. For example, should the system predict that Bob
will access Alice’s office, past observations may show that
Alice’s first access required the department to reconfigure
policy. However, the department is unlikely to authorize
Bob, whereas Alice (who has previously accessed the office)
may be willing to provide the needed delegation.

3.3 Evaluation
Our objective is to evaluate the ability of our resolution

techniques to resolve misconfigurations using the simulated
environment described in Section 2.3, and to determine to
what extent our techniques affect the usability of the system.

Our ability to resolve misconfigurations is measured by
our success rate, which is the percentage of misconfigurations
that we can resolve. Proactively resolving misconfigurations
decreases the number of high-latency accesses, or accesses
where a misconfiguration must be corrected at the time of
access. However, resolving misconfigurations does involve
user input; this effect is measured by counting the number
of user interruptions. Finally, the total user interaction time
estimates the extent to which users must interact with the
system, both with and without our techniques.

Success rate.
We define success rate to be the percentage of misconfig-

urations resolved, where a misconfiguration is a prediction
that correctly identifies a discrepancy between implemented
and intended policy. The process for resolving a miscon-
figuration consists of constructing a candidate list of prin-
cipals to query, determining how many of those candidates
to query, and performing the queries. We evaluate the suc-
cess rate using the four different strategies for constructing
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a candidate list presented in Section 3.2 with three different
limits on the number of candidates to query.

Figure 6 shows the success rates obtained with these strate-
gies when minconf and minsup are set to 0.4 and 0.01. The
U and UPPA strategies are more likely to succeed than OU
(which consults those who helped other users access the
same resource) or OR (which consults those who helped the
same user access other resources). This is not surprising, be-
cause U combines the results from OU and OR, and UPPA
further extends U (by consulting users who previously ac-
cessed the same resource). In all cases, there was a notice-
able benefit if the top two candidates were consulted instead
of just the top candidate, but asking candidates beyond the
top two offered little additional benefit. When only the most
likely candidate was consulted, UPPA and U were equiva-
lent, since UPPA’s extension of the candidate list involved
only appending to it. There is of course an increased over-
head cost when consulting more than just the top candidate;
we analyze this cost below.

High-latency accesses.
If an access request is consistent with the intended access-

control policy, but not with the implemented policy, then
the user must attempt to resolve the misconfiguration prior
to accessing the resource. The main cause of latency and
inconvenience in this scenario is that human intervention is
required to augment existing policy, and this intervention
is on the critical path to an access being allowed. At best,
this is inconvenient both to the person requesting access
and the person who must repair the misconfiguration. At
worst, the person who can resolve the misconfiguration may
not be available (e.g., flying), and the delay for repairing the
misconfiguration may be very lengthy. The data we collected
from our deployment encompasses 212 time-of-access policy
corrections; in 39 cases a user’s access was delayed by more
than 10 minutes, and in 21 by over an hour.

Here we evaluate the extent to which our prediction and
resolution techniques reduce the number of these high-latency
accesses. The amount of reduction depends on the extent to
which the predictions cover exercised policy (Figure 3) and
the ability of the resolution process to succeed in the cases
where exercised policy is correctly predicted (Figure 6).

Figure 7 shows the extent to which our prediction and
resolution techniques reduce the number of high-latency ac-
cesses. Due to its higher success rate, consulting two users
with UPPA reduces high-latency accesses more than consult-

ing only one. Lower minimum confidence thresholds yield
greater reductions, because they produce greater coverage.
More importantly, significant reductions can be achieved
with confidence values that are likely to result in an ac-
ceptable amount of overhead: for example, for a minimum
confidence value of 0.4, and a limit of two user consultations
reduces the number of high-latency accesses by 44%.

User interruptions.
Proactively resolving a misconfiguration may involve proac-

tively querying users to determine the intended policy. We
consider an interruption to be any query directed to a user
as part of the resolution process. This overstates the ex-
tent to which a user must be involved, because some queries
directed to a user can be answered automatically by the
user’s phone in Grey, e.g., if the misconfiguration can be re-
solved by policy that is implemented, but has not yet been
exercised. Our survey did not ask users how they would
implement their intended policies, so our simulations con-
sider only policy that was exercised over the course of our
deployment.

Often, several misconfigurations are detected at the same
time, and their corresponding resolution processes query the
same user, resulting in multiple interruptions. We introduce
an optimization, batching, that groups these queries into a
batch, allowing the user to answer them all as part of a
single interactive session. This optimization is motivated by
the observation that the incremental cost of additional user
interaction is less than that of the initial interruption.

Figure 8 shows the number of user interruptions for our
data when consulting either one or two principals chosen by
the UPPA strategy and varying the minimum confidence
values for rules. Some principals, such as a department
credential server, automatically respond to requests using
implemented policy without requiring user interaction, and
therefore these requests are not reflected in Figure 8. As ex-
pected, consulting two principals instead of one increases the
number of interruptions (and the success rate, as previously
discussed). In some scenarios, the first principal consulted
is one that responds automatically, but the second consulta-
tion requires user interaction. This explains how consulting
two principals can produce more than twice as many in-
terruptions as consulting only a single principal. Batching
is more effective when consulting two principals and for low
minimum confidence values; these settings result in more at-
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tempts to consult users, and thus more redundancy among
those requests that can be reduced through batching.

Interestingly, minimum confidence values of 0.4 and 0.5
cause a marked decrease in the number of interruptions with-
out significantly increasing the number of high-latency ac-
cesses (Figure 7).

User interaction time.
The results described thus far demonstrate that increased

proactive user interaction will reduce the number of high-
latency accesses, but it is difficult to determine when the
associated costs of interaction outweigh the benefit of avoid-
ing high-latency accesses.

Any attempt to quantify this tradeoff is necessarily an ap-
proximation; there are many factors that influence a user’s
perception of the system that cannot be measured precisely.
High-latency accesses, for example, typically annoy users far
more than interruptions of similar length that occur off the
critical path to an access [5]. In this evaluation we measure
only: (1) the delay observed by the user who is attempting
to gain access while the policy is being reconfigured (how
long Bob waits for access to Alice’s office when Alice must
reconfigure the policy); (2) the duration of the reconfigura-
tion (how long Alice takes to reconfigure her policy to allow
Bob access); and (3) the length of time required to obtain
credentials that describe implemented policy when no recon-
figuration is necessary. In our system, latency (1) ranged
between 25 seconds and 18.6 hours, with a median of 98 sec-
onds (the average, heavily influenced by a few outliers, was
53 minutes). The median time observed for latency (2) was
23 seconds, only 5.8 seconds of which was spent selecting the
appropriate correction (the rest was Alice finding her phone,
etc.). Finally, the average duration of latency (3) was 6.9
seconds. These particular latencies are specific to our sys-
tem; we anticipate that they would be much higher (on the
order of hours) in systems that do not offer integrated sup-
port for resolving misconfigurations. However, our results
will hold as long as there remains a similar relationship be-
tween the latencies (e.g., delay incurred by a user waiting for
access is much greater than delay incurred by a user modi-
fying policy), which we feel is likely for the vast majority of
access-control systems.

With these caveats in mind, we use our simulation results
and the timings above to approximate the total time that
all users would spend interacting with the system (accessing
resources or creating and correcting policy). If a misconfig-

uration must be resolved on the critical path of access, the
total user interaction time is the sum of latencies (1) and
(2). If a misconfiguration is resolved prior to access, the
total interaction time is simply latency (2), as the resulting
credentials can be proactively distributed to the recipient
of the delegation. Guided by data from our deployment,
we weight the various latencies incurred by users as follows.
Requests for credentials that occur on the critical path to an
access being granted are are assumed to take 6.9 seconds if
the request can be completed without user interaction, and
98 seconds otherwise. Whenever a query requires user inter-
action, we assume that the user takes 23 seconds to respond
to the query. We assume that each additional question posed
to the user as part of a batch takes 5.8 seconds.

We calculate the total time users would spend interacting
with the system using the UPPA strategy and varying the
minimum confidence level required of the rules. The results
are shown in Figure 9. Restricting UPPA to consult a single
user results in a slight time savings for all minimum confi-
dence values tested. Allowing a second user to be consulted
results in a small increase in total time for higher minimum
confidence values and larger increase in total time for lower
values. Notably, with a minimum confidence value of 0.4
and batching enabled, UPPA results in a slight overall time
savings even if it is allowed to contact two principals.

3.4 Discussion
Each strategy for directing queries in our resolution mech-

anism is capable of resolving a majority of policy misconfig-
urations. In particular, the UPPA strategy, when allowed
to consult two users, is able to resolve almost 95% of such
misconfigurations. The proactive resolution of these miscon-
figurations results in a drastic reduction (between 40% and
50%) in the number of high-latency accesses. Consulting
two users in the UPPA strategy is more effective at resolv-
ing misconfigurations than consulting a single user, but this
increase in effectiveness comes at a cost of significantly more
user interruptions. Batching can reduce the number of user
interruptions by approximately 15% when consulting more
than one user. When comparing a user consultation limit
of two to a limit of one on the basis of total user interac-
tion time, the time associated with the additional user in-
teraction is compensated by the savings resulting from fewer
high-latency accesses.

To summarize: Our results show that a significant reduc-
tion (44%) in the number of high-latency accesses can be
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achieved without increasing the total amount of time users
spend interacting with the system.

Our technique for resolving misconfigurations is general
in that it operates on the basis of observed behavior rather
than inspection of access-control policy. It is therefore inde-
pendent of both the underlying policy-specification language
and the manner in which misconfigurations are repaired. It
does, however, require that the system know who resolved
previous misconfigurations. Since changes to policy are gen-
erally logged, we feel that this is a reasonable requirement.

The results describing the estimated user interaction time
are necessarily specific to our system. However, our sys-
tem provides integrated support for resolving misconfigu-
rations at the time of access. Many systems do not sup-
port this functionality, and as a result, the duration of each
high-latency access is likely to be dramatically higher. Our
techniques significantly reduce the number of high-latency
accesses, so the case for proactively resolving misconfigura-
tions in such a scenario is likely to be even stronger than the
one we present here.

4. RELATED WORK
The objectives of our work are related to those of role min-

ing (e.g., [17, 23]), in which machine-learning techniques are
used to extract roles from implemented policy. These roles
may then serve as a guide when migrating a legacy system
to one that supports role-based access control. In contrast,
our techniques do not seek to characterize the implemented
access-control policy. Instead, we aim to discover the por-
tions of intended access-control policy that have not been
implemented. Additionally, our techniques operate on the
basis of observed behavior and are agnostic to the policy-
specification language. Jaeger et al. seek to characterize the
ways in which specified policy may conflict with constraints
that specify what accesses are prohibited [14]. Their tool,
Gokyo, allows the administrator to view the conflicts, and
determine the least complex way of correcting them, possi-
bly by marking them as explicit exceptions to specified pol-
icy. This tool could assist users of our techniques to resolve
misconfigurations without introducing conflicts.

Many tools for empirical access-control policy analysis
have been developed for firewalls (e.g., [4, 20, 13, 25, 2, 26]).
These tools generally provide ways to test or validate fire-
wall policy against administrator intentions or other rules.
Our work differs from these in multiple ways. First, since in
the firewall setting there is typically one authority for the
proper access-control policy (the human administrator or a
high-level specification of that policy), there is no analog in
that domain to a central concern here, namely determining
with whom to inquire about a potential policy change and
minimizing the costs for doing so. Second, because it has
the benefit of a policy authority that can be consulted freely,
firewall analysis has focused on detecting traffic permitted
in violation of policy, i.e., to improve security, at least as
much as what additional traffic should be allowed. The cen-
tral technique we employ here, namely learning from allowed
accesses to predict others that are likely to be intended, fo-
cuses exclusively on improving the usability of discretionary
access controls granted in a least-privilege manner.

The use of data-mining algorithms for detecting misconfig-
urations has recently been treated in several domains. Per-
haps most closely related to our work is Minerals [18], a
system also using association rule mining, to detect router

misconfigurations. By applying association rule mining to
router configuration files in a network, Minerals detected
misconfigurations such as router interfaces using private IP
addresses that should have been deleted, user accounts miss-
ing passwords, and BGP errors that could result in uninten-
tionally providing transit service or that could open routers
to attack. The work of El-Arini and Killourhy [11] similarly
seeks to detect router misconfigurations as statistical anoma-
lies within a Bayesian framework. As in the aforementioned
works in firewall analysis, though, whom to consult about
apparent configuration errors and minimizing the costs of
doing so were not issues in these works; these issues are cen-
tral to ours, however. Moreover, there are numerous techni-
cal differences between our works and theirs, owing largely
to the different domains in which they are conducted.

Our techniques operate using only data describing past
access attempts, and who was contacted to resolve any mis-
configurations. As such, our techniques should apply to sys-
tems employing a wide variety of access-control frameworks,
such as RBAC [22], SPKI/SDSI [21], RT [19], or PCA [3].
We utilize observed behavior to determine to whom a res-
olution request should be directed. Some systems, such as
PeerAccess [24], explicitly encode hints as to how queries
should be directed. Such hints could be considered in con-
junction with observed behavior.

Though we have conducted our study in the context of
Grey, there are numerous systems that we believe are well
equipped to utilize the techniques we develop here. In par-
ticular, similar to Grey’s support for dynamic delegation,
many other systems enable retrieving credentials remotely
from other parties as a means for satisfying access-control
policy (e.g., [10, 15, 16, 12, 8, 19]). These mechanisms can be
used to drive the correction of access-control misconfigura-
tions once they are detected, though stop short of detecting
those misconfigurations and predicting how they might be
corrected, as we have studied here. Trust-X [9] proposes
a mechanism in which subsets of policy cached from pre-
vious access-control decisions can be used to more quickly
grant access in the future. This is effective when the imple-
mented policies that govern different access requests share
many common components. Our technique is complemen-
tary in that we focus on addressing the discrepancy between
implemented policy and intended policy.

5. CONCLUSION
In various application contexts (e.g., health-care systems),

the consequences of unnecessary delays for access to infor-
mation can be severe. In such settings, it essential to elim-
inate access-control policy misconfigurations in advance of
attempted accesses; even in less critical environments, do-
ing so can greatly improve the usability of the access-control
system. In this paper we have shown how to eliminate a
large percentage of such misconfigurations in advance of at-
tempted accesses using a data-mining technique called asso-
ciation rule mining. We demonstrated that by doing so, we
can greatly reduce the critical-path delays to accesses, while
inducing little additional overall work on users of the system.
Specifically, we showed, using data from a deployed access-
control system, that our methods can reduce the number
of accesses that would have incurred a costly time-of-access
delay by 44%, and can correctly predict 58% of the intended
policy. These gains are achieved without increasing the total
amount of time users spend interacting with the system. To
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accomplish these results, we contributed both new uses of
rule mining and novel approaches for determining the users
to which to make suggestions for changing policy. These re-
sults should be applicable to a wide range of discretionary
access-control systems and settings, but particularly for sys-
tems that provide automated support for resolving miscon-
figurations via dynamic delegation.
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