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Outline

Two recent research themes:

◮ Cyclic reduction for solving Riccati eqns and nonlinear

eqns.

◮ Identification and exploitation of structure in solving

PEPs.

We show how cyclic reduction can be used to

◮ test for hyperbolicity,

◮ initiate a solution procedure that fully exploits the

hyperbolicity.
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Quadratic Eigenvalue Problem (QEP)

Q(λ) = λ2A + λB + C, A, B, C ∈ C
n×n

Q assumed regular (det Q(λ) 6≡ 0).

Find scalars λ and nonzero vectors x and y satisfying

Q(λ)x = 0 and y∗Q(λ) = 0.

Q(λ) has 2n eigenvalues .

For a given µ, the matrix Q(µ) has n eigenvalues .

A solvent of Q is a solution of

Q(X ) = AX 2 + BX + C = 0.

Françoise Tisseur Hyperbolic QEPs 3 / 18



Hyperbolic Quadratics

Q(λ) = λ2A + λB + C, A, B, C ∈ C
n×n

is hyperbolic if A, B, C Hermitian, A > 0, and

(x∗Bx)2 > 4(x∗Ax)(x∗Cx) for all nonzero x ∈ C
n.

Eigenvalues are all real and semisimple.

−∞ +∞
λ2n λn+1 λn λ1

Q indef.Q > 0 Q indef. Q > 0Q < 0

Q is hyperbolic iff Q(µ) < 0 for some µ ∈ R.
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Overdamped Quadratics

Q is overdamped if it is hyperbolic with B > 0, C ≥ 0.

Theorem

The following statements are equivalent.

(a) Q is overdamped.

(b) Q is hyperbolic with all e’vals real and nonpositive

(c) B > 0, C ≥ 0 and B > µA + µ−1C for some µ > 0.

From (b) if Q is hyperbolic then with θ > λmax,

Qθ(λ) := Q(λ + θ) = λ2A + λ(B + 2θA) + C + θB + θ2A

is overdamped.
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An Iteration Based on Cyclic Reduction

S0 = B, A0 = A, B0 = B, C0 = C,

Sk+1 = Sk − AkB−1
k Ck ,

Ak+1 = AkB−1
k Ak ,

Bk+1 = Bk − AkB−1
k Ck − CkB−1

k Ak ,

Ck+1 = CkB−1
k Ck .

Theorem (Guo & Lancaster, 2005)

If Q is overdamped,

(a) Ak > 0, Ck ≥ 0, Bk > 0 for all k ≥ 0.

(b) ‖Ak‖‖Ck‖ converges quadratically to zero with rate λn

λn+1
,

(c) Sk converges quadratically to nonsingular Ŝ with rate
λn

λn+1
, and S(1) = −Ŝ−1C, S(2) = −A−1Ŝ∗.
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A Key Property of the Iteration

S0 = B, A0 = A, B0 = B, C0 = C,

Sk+1 = Sk − AkB−1
k Ck ,

Ak+1 = AkB−1
k Ak ,

Bk+1 = Bk − AkB−1
k Ck − CkB−1

k Ak ,

Ck+1 = CkB−1
k Ck .

Lemma

Let µ > 0 and assume Ak > 0, Ck ≥ 0. Then

Bk > µ2k
Ak + µ−2k

Ck if and only if Ak+1 > 0, Ck+1 ≥ 0, and

Bk+1 > µ2k+1
Ak+1 + µ−2k+1

Ck+1.

Q(λ) overdamped ⇔ Qk(λ) = λ2Ak + λBk + Ck overdamped ∀k .
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Overdamping Test

α0 =
√
‖C‖/‖A‖,

Ã0 = α0A, B0 = B, C̃0 = α−1
0 C,

Ak+1 = ÃkB−1
k Ãk , Ck+1 = C̃kB−1

k C̃k

Bk+1 = Bk − ÃkB−1
k C̃k − C̃kB−1

k Ãk ,

αk+1 =
√
‖Ck+1‖/‖Ak+1‖,

Ãk+1 = αk+1Ak+1, C̃k+1 = α−1
k+1Ck+1.

Theorem

Q(λ) with A, B > 0 and 0 6= C ≥ 0 is overdamped iff

for some m ≥ 0, Bk > 0 for k = 1 : m − 1, Bm > Ãm + C̃m.

Bm > Ãm + C̃m ⇔ Q(−µm) < 0 with µm = α0α
2−1

1 α2−2

2 · · ·α2−m

m .
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Damped Mass-Spring System

A = In, C = tridiag(−5, 15,−5),
B = β tridiag(−10, 30,−10) − 10e1eT

1 − 10eneT
n ,

β > 0 is a real parameter.

Number of iterations m to verify that Q(λ) is overdamped:

β 1 0.62 0.61 0.52 0.5197 0.519616 0.51961525 0.5196152423

m 0 0 1 2 3 5 8 12

Number of iterations m to verify that Q(λ) is not overdamped.

β 0.36 0.47 0.51 0.5196 0.519615 0.51961524 0.5196152422

m 1 2 4 8 11 15 17

Françoise Tisseur Hyperbolic QEPs 11 / 18



Weakly Overdamped Quadratics

Q(λ) = λ2A + λB + C is weakly overdamped if A, B, and C

are Hermitian, A, B > 0, C ≥ 0 and

γ = min‖x‖2=1[(x
∗Bx)2 − 4(x∗Ax)(x∗Cx)] ≥ 0.

◮ If γ = 0, Q has 2n real e’vals

λ1 ≥ · · · ≥ λn = λn+1 ≥ · · · ≥ λ2n.

◮ Partial multiplicities of λn are at most 2 (2 is generic).

◮ For weakly overdamped Q, cyclic iteration converges

linearly with constant 1/2 in the generic case.
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Alg. for detection and numerical solution

Let Q(λ) = λ2A + λB + C be Hermitian with A > 0.

Three steps:

◮ Preprocessing: form

Qθ(λ) ≡ Q(λ + θ) = λ2Aθ + λBθ + Cθ

with θ s.t. Bθ > 0 and Cθ ≥ 0, or conclude Q is not

hyperbolic and terminate alg.

◮ Overdamping test: check overdamping condition for Qθ.

If overdamped, µ ∈ R s.t. Qθ(µ) < 0 is computed;

otherwise terminate alg.

◮ Solution: Qθ converted to 2n × 2n definite pencil λX + Y

with X > 0 or Y > 0. Eigenpairs of Q obtained from

eigendecomp. of λX + Y by exploiting definiteness of X

or Y and block structure of X and Y .
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Solving hyperbolic QEPs

Let µ s.t. Qθ(µ) = Q(µ + θ) < 0. Hence with ω = µ + θ

Qω(λ) = Q(λ + ω) = λ2A + λ(B + 2ωA) + C + ωB + ω2A

= λ2Aω + λBω + Cω,

with Cω = Q(ω) < 0 and Aω = A > 0 .

The pencils

λ

[
Aω 0

0 −Cω

]
+

[
Bω Cω

Cω 0

]
, λ

[
0 Aω

Aω Bω

]
+

[
−Aω 0

0 Cω

]

are both Hermitian definite linearizations of Qω.
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Costs

Overdamping test: (m, ℓ: # of iter., m ≤ ℓ)

◮ Guo & Lancaster alg.: (19ℓ + 16)/3n3 flops.

◮ Guo, Higham & T. alg.: 20mn3/3 flops.

Overall eigensolution:

◮ QZ on linearized problem: 240n3 flops.

◮ Guo & Lancaster alg.: (19ℓ/3 + 25)n3 flops.

◮ Guo, Higham & T. alg.: (20m/3 + 13)n3 flops.

Guo, Higham & T. alg. works entirely with symm.

matrices and guarantees to produce real e’vals.
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Numerical Experiments

• type 1: λk , k = 1 : 2n, uniformly distributed in [−100,−1].

• type 2: λk uniformly distributed in [−100,−6] for

k = n + 1 : 2n and [−5,−1] for k = 1 : n.

• type 3: λk uniformly distributed in [−100, 20].

(Min, average, max) # iterations to test overdamping and % of

overdamped problems.

n type 1 type 2 type 3

5 (0, 2.4, 6) 100% (0, 0.8, 3) 100% (0, 2.4, 5) 25%

10 (0, 3.6, 10) 100% (0, 0.5, 3) 100% (2, 2.7, 4) 5%

50 (0, 4.2, 11) 100% (0, 2.1, 4) 100% (2, 2.1, 3) 0%

100 (3, 6.2, 10) 100% (0, 2.6, 4) 100% (2, 2.0, 2) 0%

250 (2, 6.0, 11) 100% (2, 3.0, 4) 100% (2, 2.0, 2) 0%

500 (3, 7.5, 11) 100% (2, 3.0, 4) 100% (2, 2.0, 2) 0%
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Concluding Remarks

◮ Have devise an efficient and reliable numerical test for

hyperbolicity or overdamping of a given Hermitian

quadratic.

◮ Have build upon an affirmative test result an efficient alg.

for solving the QEP which

• exploits hyperbolicity,

• guarantees real computed eigenvalues in floating

point arithmetic.

For papers and Eprints,

http://www.ma.man.ac.uk/~ftisseur/
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